
THE Java™ Programming Language, Fourth Edition
By Ken Arnold, James Gosling, David Holmes
...
Publisher: Addison Wesley Professional
Pub Date: August 17, 2005
ISBN: 0-321-34980-6
Pages: 928

Table of Contents | Index

Direct from the creators of the Java™ programming language, the completely revised fourth edition of The
Java™ Programming Language is an indispensable resource for novice and advanced programmers alike.

Developers around the world have used previous editions to quickly gain a deep understanding of the Java
programming language, its design goals, and how to use it most effectively in real-world development. Now,
Ken Arnold, James Gosling, and David Holmes have updated this classic to reflect the major enhancements
in Java™ 2 Standard Edition 5.0 (J2SE™ 5.0).

The authors systematically cover most classes in Java's main packages, java.lang.*, java.util, and java.io,
presenting in-depth explanations of why these classes work as they do, with informative examples. Several
new chapters and major sections have been added, and every chapter has been updated to reflect today's best
practices for building robust, efficient, and maintainable Java software.

Key changes in this edition include

New chapters on generics, enums, and annotations, the most powerful new language features
introduced in J2SE 5.0

•

Changes to classes and methods throughout to reflect the addition of generics•
Major new sections on assertions and regular expressions•
Coverage of all the new language features, from autoboxing and variable argument methods to the
enhanced for-loop and covariant return types

•

Coverage of key new classes, such as Formatter and Scanner•

The Java™ Programming Language, Fourth Edition, is the definitive tutorial introduction to the Java
language and essential libraries and an indispensable reference for all programmers, including those with
extensive experience. It brings together insights you can only get from the creators of Java: insights that will
help you write software of exceptional quality.

THE Java™ Programming Language, Fourth Edition
By Ken Arnold, James Gosling, David Holmes
...
Publisher: Addison Wesley Professional
Pub Date: August 17, 2005
ISBN: 0-321-34980-6
Pages: 928

Table of Contents | Index

Copyright

1

1

The
Java™
Series
Preface

About
This
Book
Examples
and
Documentation
Acknowledgments
(Fourth
Edition)
Acknowledgments
(Third
Edition)
Acknowledgments
(Second
Edition)
Acknowledgments
(First
Edition)

Chapter 1.
A
Quick
Tour

Section
1.1.
Getting
Started
Section
1.2.
Variables
Section
1.3.
Comments
in
Code
Section
1.4.
Named
Constants
Section
1.5.
Unicode
Characters
Section
1.6.
Flow
of
Control
Section
1.7.

2

2

Classes
and
Objects
Section
1.8.
Methods
and
Parameters
Section
1.9.
Arrays
Section
1.10.
String
Objects
Section
1.11.
Extending
a
Class
Section
1.12.
Interfaces
Section
1.13.
Generic
Types
Section
1.14.
Exceptions
Section
1.15.
Annotations
Section
1.16.
Packages
Section
1.17.
The
Java
Platform
Section
1.18.
Other
Topics
Briefly
Noted

Chapter 2.
Classes
and
Objects

Section
2.1.

3

3

A
Simple
Class
Section
2.2.
Fields
Section
2.3.
Access
Control
Section
2.4.
Creating
Objects
Section
2.5.
Construction
and
Initialization
Section
2.6.
Methods
Section
2.7.
this
Section
2.8.
Overloading
Methods
Section
2.9.
Importing
Static
Member
Names
Section
2.10.
The
main
Method
Section
2.11.
Native
Methods

Chapter 3.
Extending
Classes

Section
3.1.
An
Extended
Class
Section

4

4

3.2.
Constructors
in
Extended
Classes
Section
3.3.
Inheriting
and
Redefining
Members
Section
3.4.
Type
Compatibility
and
Conversion
Section
3.5.
What
protected
Really
Means
Section
3.6.
Marking
Methods
and
Classes
final
Section
3.7.
Abstract
Classes
and
Methods
Section
3.8.
The
Object
Class
Section
3.9.
Cloning
Objects
Section
3.10.
Extending
Classes:
How
and
When
Section
3.11.

5

5

Designing
a
Class
to
Be
Extended
Section
3.12.
Single
Inheritance
versus
Multiple
Inheritance

Chapter 4.
Interfaces

Section
4.1.
A
Simple
Interface
Example
Section
4.2.
Interface
Declarations
Section
4.3.
Extending
Interfaces
Section
4.4.
Working
with
Interfaces
Section
4.5.
Marker
Interfaces
Section
4.6.
When
to
Use
Interfaces

Chapter 5.
Nested
Classes
and
Interfaces

Section
5.1.
Static

6

6

Nested
Types
Section
5.2.
Inner
Classes
Section
5.3.
Local
Inner
Classes
Section
5.4.
Anonymous
Inner
Classes
Section
5.5.
Inheriting
Nested
Types
Section
5.6.
Nesting
in
Interfaces
Section
5.7.
Implementation
of
Nested
Types

Chapter 6.
Enumeration
Types

Section
6.1.
A
Simple
Enum
Example
Section
6.2.
Enum
Declarations
Section
6.3.
Enum
Constant
Declarations
Section
6.4.
java.lang.Enum

7

7

Section
6.5.
To
Enum
or
Not

Chapter 7.
Tokens,
Values,
and
Variables

Section
7.1.
Lexical
Elements
Section
7.2.
Types
and
Literals
Section
7.3.
Variables
Section
7.4.
Array
Variables
Section
7.5.
The
Meanings
of
Names

Chapter 8.
Primitives
as
Types

Section
8.1.
Common
Fields
and
Methods
Section
8.2.
Void
Section
8.3.
Boolean
Section
8.4.
Number

8

8

Section
8.5.
Character
Section
8.6.
Boxing
Conversions

Chapter 9.
Operators
and
Expressions

Section
9.1.
Arithmetic
Operations
Section
9.2.
General
Operators
Section
9.3.
Expressions
Section
9.4.
Type
Conversions
Section
9.5.
Operator
Precedence
and
Associativity
Section
9.6.
Member
Access

Chapter 10.
Control
Flow

Section
10.1.
Statements
and
Blocks
Section
10.2.
ifelse
Section
10.3.
switch
Section
10.4.

9

9

while
and
dowhile
Section
10.5.
for
Section
10.6.
Labels
Section
10.7.
break
Section
10.8.
continue
Section
10.9.
return
Section
10.10.
What,
No
goto?

Chapter 11.
Generic
Types

Section
11.1.
Generic
Type
Declarations
Section
11.2.
Working
with
Generic
Types
Section
11.3.
Generic
Methods
and
Constructors
Section
11.4.
Wildcard
Capture
Section
11.5.
Under
the
Hood:
Erasure

10

10

and
Raw
Types
Section
11.6.
Finding
the
Right
Method
Revisited
Section
11.7.
Class
Extension
and
Generic
Types

Chapter 12.
Exceptions
and
Assertions

Section
12.1.
Creating
Exception
Types
Section
12.2.
throw
Section
12.3.
The
throws
Clause
Section
12.4.
try,
catch,
and
finally
Section
12.5.
Exception
Chaining
Section
12.6.
Stack
Traces
Section
12.7.
When
to
Use

11

11

Exceptions
Section
12.8.
Assertions
Section
12.9.
When
to
Use
Assertions
Section
12.10.
Turning
Assertions
On
and
Off

Chapter 13.
Strings
and
Regular
Expressions

Section
13.1.
Character
Sequences
Section
13.2.
The
String
Class
Section
13.3.
Regular
Expression
Matching
Section
13.4.
The
StringBuilder
Class
Section
13.5.
Working
with
UTF-16

Chapter 14.
Threads

Section
14.1.
Creating
Threads

12

12

Section
14.2.
Using
Runnable
Section
14.3.
Synchronization
Section
14.4.
wait,
notifyAll,
and
notify
Section
14.5.
Details
of
Waiting
and
Notification
Section
14.6.
Thread
Scheduling
Section
14.7.
Deadlocks
Section
14.8.
Ending
Thread
Execution
Section
14.9.
Ending
Application
Execution
Section
14.10.
The
Memory
Model:
Synchronization
and
volatile
Section
14.11.
Thread
Management,
Security,
and
ThreadGroup
Section
14.12.

13

13

Threads
and
Exceptions
Section
14.13.
ThreadLocal
Variables
Section
14.14.
Debugging
Threads

Chapter 15.
Annotations

Section
15.1.
A
Simple
Annotation
Example
Section
15.2.
Annotation
Types
Section
15.3.
Annotating
Elements
Section
15.4.
Restricting
Annotation
Applicability
Section
15.5.
Retention
Policies
Section
15.6.
Working
with
Annotations

Chapter 16.
Reflection

Section
16.1.
The
Class
Class
Section
16.2.
Annotation
Queries

14

14

Section
16.3.
The
Modifier
Class
Section
16.4.
The
Member
classes
Section
16.5.
Access
Checking
and
AccessibleObject
Section
16.6.
The
Field
Class
Section
16.7.
The
Method
Class
Section
16.8.
Creating
New
Objects
and
the
Constructor
Class
Section
16.9.
Generic
Type
Inspection
Section
16.10.
Arrays
Section
16.11.
Packages
Section
16.12.
The
Proxy
Class
Section
16.13.
Loading

15

15

Classes
Section
16.14.
Controlling
Assertions
at
Runtime

Chapter 17.
Garbage
Collection
and
Memory

Section
17.1.
Garbage
Collection
Section
17.2.
A
Simple
Model
Section
17.3.
Finalization
Section
17.4.
Interacting
with
the
Garbage
Collector
Section
17.5.
Reachability
States
and
Reference
Objects

Chapter 18.
Packages

Section
18.1.
Package
Naming
Section
18.2.
Type
Imports
Section
18.3.
Package
Access

16

16

Section
18.4.
Package
Contents
Section
18.5.
Package
Annotations
Section
18.6.
Package
Objects
and
Specifications

Chapter 19.
Documentation
Comments

Section
19.1.
The
Anatomy
of
a
Doc
Comment
Section
19.2.
Tags
Section
19.3.
Inheriting
Method
Documentation
Comments
Section
19.4.
A
Simple
Example
Section
19.5.
External
Conventions
Section
19.6.
Notes
on
Usage

Chapter 20.
The
I/O
Package

17

17

Section
20.1.
Streams
Overview
Section
20.2.
Byte
Streams
Section
20.3.
Character
Streams
Section
20.4.
InputStreamReader
and
OutputStreamWriter
Section
20.5.
A
Quick
Tour
of
the
Stream
Classes
Section
20.6.
The
Data
Byte
Streams
Section
20.7.
Working
with
Files
Section
20.8.
Object
Serialization
Section
20.9.
The
IOException
Classes
Section
20.10.
A
Taste
of
New
I/O

18

18

Chapter 21.
Collections

Section
21.1.
Collections
Section
21.2.
Iteration
Section
21.3.
Ordering
with
Comparable
and
Comparator
Section
21.4.
The
Collection
Interface
Section
21.5.
Set
and
SortedSet
Section
21.6.
List
Section
21.7.
Queue
Section
21.8.
Map
and
SortedMap
Section
21.9.
enum
Collections
Section
21.10.
Wrapped
Collections
and
the
Collections
Class
Section
21.11.
Synchronized
Wrappers
and
Concurrent

19

19

Collections
Section
21.12.
The
Arrays
Utility
Class
Section
21.13.
Writing
Iterator
Implementations
Section
21.14.
Writing
Collection
Implementations
Section
21.15.
The
Legacy
Collection
Types
Section
21.16.
Properties

Chapter 22.
Miscellaneous
Utilities

Section
22.1.
Formatter
Section
22.2.
BitSet
Section
22.3.
Observer/Observable
Section
22.4.
Random
Section
22.5.
Scanner
Section
22.6.
StringTokenizer
Section
22.7.
Timer
and
TimerTask
Section

20

20

22.8.
UUID
Section
22.9.
Math
and
StrictMath

Chapter 23.
System
Programming

Section
23.1.
The
System
Class
Section
23.2.
Creating
Processes
Section
23.3.
Shutdown
Section
23.4.
The
Rest
of
Runtime
Section
23.5.
Security

Chapter 24.
Internationalization
and
Localization

Section
24.1.
Locale
Section
24.2.
Resource
Bundles
Section
24.3.
Currency
Section
24.4.
Time,
Dates,
and
Calendars
Section

21

21

24.5.
Formatting
and
Parsing
Dates
and
Times
Section
24.6.
Internationalization
and
Localization
for
Text

Chapter 25.
Standard
Packages

Section
25.1.
java.awt
The
Abstract
Window
Toolkit
Section
25.2.
java.applet
Applets
Section
25.3.
java.beans
Components
Section
25.4.
java.math
Mathematics
Section
25.5.
java.net
The
Network
Section
25.6.
java.rmi
Remote
Method
Invocation
Section
25.7.
java.security
and
Related
Packages

22

22

Security
Tools
Section
25.8.
java.sql
Relational
Database
Access
Section
25.9.
Utility
Subpackages
Section
25.10.
javax.*
Standard
Extensions
Section
25.11.
javax.accessibility
Accessibility
for
GUIs
Section
25.12.
javax.naming
Directory
and
Naming
Services
Section
25.13.
javax.sound
Sound
Manipulation
Section
25.14.
javax.swing
Swing
GUI
Components
Section
25.15.
org.omg.CORBA
CORBA
APIs

Appendix A.
Application
Evolution

Section
A.1.
Language,
Library,

23

23

and
Virtual
Machine
Versions
Section
A.2.
Dealing
with
Multiple
Dialects
Section
A.3.
Generics:
Reification,
Erasure,
and
Raw
Types

Appendix B.
Useful
Tables
Further
Reading

Java
Platform
Topics
Object-Oriented
Design
Multithreaded
Programming
Generics
Regular
Expressions
General
Programming
Techniques
Related
Languages
Software
Engineering
Visual
Design
&
GUI
Design

Colophon
Note
to
Translators

Article

24

24

Exercises

Quotes
Index

Copyright

© 2006 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054 U.S.A.

All rights reserved.

Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in
DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this book may be protected by one or more U.S. patents, foreign patents, or pending
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, perpetual,
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice this specification. This license allows and is limited to the creation and distribution of
clean room implementations of this specification that: (i) include a complete implementation of the current
version of this specification without subsetting or supersetting; (ii) implement all the interfaces and
functionality of the standard java.* packages as defined by SUN, without subsetting or supersetting; (iii) do
not add any additional packages, classes or methods to the java.* packages; (iv) pass all test suites relating to
the most recent published version of this specification that are available from SUN six (6) months prior to any
beta release of the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or
binary materials; and (vi) do not include any SUN binary materials without an appropriate and separate
license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems
Computer Corporation logo, Java, JavaSoft, JavaScript JDBC, JDBC Compliant, JavaOS, JavaBeans and
HotJava are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® is a registered trademark
in the United States and other countries, exclusively licensed through X/Open Company, Ltd. Apple and
Dylan are trademarks of Apple Computer, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

25

25

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact: U. S. Corporate
and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com

For sales outside the U. S., please contact: International Sales, international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Arnold, Ken, 1958-
 The Java programming language / Ken Arnold, James Gosling, David Holmes.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-34980-6 (pbk. : alk. paper)
 1. Java (Computer program language) I. Gosling, James. II. Holmes, David (David Colin) III. Title.
 QA76.73.J38A76 2005
 005.13'3--dc22 2005017029

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to: Pearson Education, Inc., Rights and Contracts
Department, One Lake Street, Upper Saddle River, NJ 07458

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, August 2005

Dedication

This book is dedicated to the Java team From whose hard work and vision A mighty oak has grown

To SusanK.A.

To Judy and KateJ.A.G.

To Lee, Taylor, and CaitlinD.H.

The Java™ Series

Ken Arnold, James Gosling, David Holmes

The Java™ Programming Language, Third Edition

26

26

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.awprofessional.com

Cynthia Bloch, Annette Wagner

MIDP 2.0 Style Guide for the Java™ 2 Platform, Micro Edition

Joshua Bloch

Effective Java™ Programming Language Guide

Mary Campione, Kathy Walrath, Alison Huml

The Java™ Tutorial, Third Edition: A Short Course on the Basics

Mary Campione, Kathy Walrath, Alison Huml,Tutorial Team

The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan

The Java™ Developers Almanac 1.4, Volume 1

Patrick Chan

The Java™ Developers Almanac 1.4, Volume 2

Patrick Chan, Rosanna Lee

The Java™ Class Libraries, Second Edition, Volume 2: java.applet, java.awt, java.beans

Patrick Chan, Rosanna Lee, Doug Kramer

The Java™ Class Libraries, Second Edition, Volume 1: java.io, java.lang, java.math, java.net, java.text,
java.util

Patrick Chan, Rosanna Lee, Doug Kramer

The Java™ Class Libraries, Second Edition, Volume 1: Supplement for the Java™ 2 Platform, Standard
Edition, v1.2

Kirk Chen, Li Gong

Programming Open Service Gateways with Java™ Embedded Server

Zhiqun Chen

Java Card™ Technology for Smart Cards: Architecture and Programmer's Guide

Maydene Fisher, Jon Ellis, Jonathan Bruce

JDBC™ API Tutorial and Reference, Third Edition

Li Gong, Gary Ellison, Mary Dageforde

Inside Java™ 2 Platform Security, Second Edition: Architecture, API Design, and Implementation

27

27

James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The Java™ Language Specification, Third Edition

Doug Lea

Concurrent Programming in Java™, Second Edition: Design Principles and Patterns

Rosanna Lee, Scott Seligman

JNDI API Tutorial and Reference: Building Directory-Enabled Java™ Applications

Sheng Liang

The Java™ Native Interface: Programmer's Guide and Specification

Tim Lindholm, Frank Yellin

The Java™ Virtual Machine Specification, Second Edition

Roger Riggs, Antero Taivalsaari, Jim Van Peursem, Jyri Huopaniemi, Mark Patel, Aleksi Uotila

Programming Wireless Devices with the Java™ 2 Platform, Micro Edition, Second Edition

Sun Microsystems, Inc.

Java™ Look and Feel Design Guidelines: Advanced Topics

Kathy Walrath, Mary Campione, Alison Huml, Sharon Zakhour

The JFC Swing Tutorial, Second Edition: A Guide to Constructing GUIs

Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, Mark Hapner

JDBC™ API Tutorial and Reference, Second Edition: Universal Data Access for the Java™ 2 Platform

Steve Wilson, Jeff Kesselman

Java™ Platform Performance: Strategies and Tactics

The Jini™ Technology Series

Eric Freeman, Susanne Hupfer, Ken Arnold

JavaSpaces™ Principles, Patterns, and Practice

The Java™ Series, Enterprise Edition

Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock

The J2EE™ Tutorial, Second Edition

Rick Cattell, Jim Inscore, Enterprise Partners

28

28

J2EE™ Technology in Practice: Building Business Applications with the Java™ 2 Platform, Enterprise
Edition

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, Kim Haase

Java™ Message Service API Tutorial and Reference: Messaging for the J2EE™ Platform

Inderjeet Singh, Beth Stearns, Mark Johnson, Enterprise Team

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise Edition

Vlada Matena, Sanjeev Krishnan, Linda DeMichiel, Beth Stearns

Applying Enterprise JavaBeans™, Second Edition: Component-Based Development for the J2EE™ Platform

Bill Shannon, Mark Hapner, Vlada Matena, James Davidson, Eduardo Pelegri-Llopart, Larry Cable,
Enterprise Team

Java™ 2 Platform, Enterprise Edition: Platform and Component Specifications

Rahul Sharma, Beth Stearns, Tony Ng

J2EE™ Connector Architecture and Enterprise Application Integration

Preface

Beautiful buildings are more than scientific. They are true organisms, spiritually conceived;
works of art, using the best technology by inspiration rather than the idiosyncrasies of mere
taste or any averaging by the committee mind.

Frank Lloyd Wright

The Java™ programming language has been warmly received by the world community of software developers
and Internet content providers. Users of the Internet and World Wide Web benefit from access to secure,
platform-independent applications that can come from anywhere on the Internet. Software developers who
create applications in the Java programming language benefit by developing code only once, with no need to
"port" their applications to every software and hardware platform.

For many, the language was known first as a tool to create applets for the World Wide Web. An applet is a
mini-application that runs inside a Web page. An applet can perform tasks and interact with users on their
browser pages without using resources from the Web server after being downloaded. Some applets may, of
course, talk with the server to do their job, but that's their business.

The Java programming language is indeed valuable for distributed network environments like the Web.
However, it goes well beyond this domain to provide a powerful general-purpose programming language
suitable for building a variety of applications that either do not depend on network features or want them for
different reasons. The ability to execute downloaded code on remote hosts in a secure manner is a critical
requirement for many organizations.

Other groups use it as a general-purpose programming language for projects in which machine independence
is less important. Ease of programming and safety features help you quickly produce working code. Some
common programming errors never occur because of features like garbage collection and type-safe references.
Support for multithreading caters to modern network-based and graphical user interfacebased applications that

29

29

must attend to multiple tasks simultaneously, and the mechanisms of exception handling ease the task of
dealing with error conditions. While the built-in tools are powerful, it is a simple language in which
programmers can quickly become proficient.

The Java programming language is designed for maximum portability with as few implementation
dependencies as possible. An int, for example, is a 32-bit signed two's-complement integer in all
implementations, irrespective of the CPU architecture on which the program executes. Defining everything
possible about the language and its runtime environment enables users to run compiled code anywhere and
share code with anyone who has a Java runtime environment.

About This Book

This book teaches the Java programming language to people who are familiar with basic programming
concepts. It explains the language without being arduously formal or complete. This book is not an
introduction to object-oriented programming, although some issues are covered to establish a common
terminology. Other books in this series and much online documentation focus on applets, graphical interfaces,
Web sites, databases, components, and other specific kinds of programming tasks. For other references, see
"Further Reading" on page 755.

This fourth edition provides integrated coverage of the Java programming language as provided by the Java™

2 Platform Standard Edition 5.0 and specified by the Java™ Language Specification, Third Edition. It also
covers most of the classes in the main packages (java.lang, java.util, java.io) as implemented in
the J2SE™ Development Kit 5.0 (more commonly known as JDK 5.0, or in the older nomenclature JDK
1.5.0).

If you have already read the third edition of this book, you will find some major changes, both in the language
and the book, since the 1.3 release that the third edition covered. There are new chapters on generics, enums,
and annotationsthe major new language features introduced in the 5.0 releaseand major new sections on
assertions and regular expressions. Some existing material has been restructured to accommodate other
changes and to improve the general flow of the textsuch as introducing the new boxing and unboxing
conversions. But every single chapter has been updated in some way, whether it is a new language feature like
variable argument methods; the new enhanced for loop construct; a new class such as Formatter for
formatting text output; or changes to classes and methods caused by the addition of generics (such as the
collections utilities and the reflection classes)change permeates this entire fourth edition.

The Java programming language shares many features common to most programming languages in use today.
The language should look familiar to C and C++ programmers because it was designed with C and C++
constructs where the languages are similar. That said, this book is neither a comparative analysis nor a
"bridge" tutorialno knowledge of C or C++ is assumed. C++ programmers, especially, may be as hindered by
what they must unlearn as they are helped by their knowledge.

Chapter 1A Quick Tourgives a quick overview of the language. Programmers who are unfamiliar with
object-oriented programming notions should read the quick tour, while programmers who are already familiar
with object-oriented programming paradigms will find the quick tour a useful introduction to the
object-oriented features of the language. The quick tour introduces some of the basic language features on
which examples through the rest of the book are built.

Chapters 2 through 6 cover the object-oriented core features of the language, namely, class declarations that
define components of a program, and objects manufactured according to class definitions. Chapter 2Classes
and Objectsdescribes the basis of the language: classes. Chapter 3Extending Classesdescribes how an existing
class can be extended, or subclassed, to create a new class with additional data and behavior. Chapter
4Interfacesdescribes how to declare interface types that are abstract descriptions of behavior that provide
maximum flexibility for class designers and implementors. Chapter 5Nested Classes and Interfacesdescribes

30

30

how classes and interfaces can be declared inside other classes and interfaces, and the benefits that provides.
Finally, Chapter 6Enumeration Typescovers the definition and use of type-safe enumeration constants.

Chapters 7 through 10 cover standard constructs common to most languages. Chapter 7Tokens, Values, and
Variablesdescribes the tokens of the language from which statements are constructed, the types defined by the
language and their allowed values, and the variables that store data in objects, arrays, or locally within
methods. Chapter 8Primitives as Typesexplores the relationship between the primitive types and objects of
their corresponding wrapper classes, and how boxing and unboxing can transparently convert between them.
Chapter 9Operators and Expressionsdescribes the basic operators of the language, how these operators are
used to build expressions, and how expressions are evaluated. Chapter 10Control Flowdescribes how control
statements direct the order of statement execution.

Chapter 11Generic Typesdescribes generic types: how they are written and used, their power, and their
limitations.

Chapter 12Exceptions and Assertionsdescribes the language's powerful error-handling capabilities, and the
use of assertions to validate the expected behavior of code.

Chapter 13Strings and Regular Expressionsdescribes the built-in language and runtime support for String
objects, the underlying character set support, and the powerful utilities for regular expression matching.

Chapter 14Threadsexplains the language's view of multithreading. Many applications, such as graphical
interfacebased software, must attend to multiple tasks simultaneously. These tasks must cooperate to behave
correctly, and threads meet the needs of cooperative multitasking.

Chapter 15Annotationsdescribes the annotation types used to document some of the extra-linguistic properties
of classes and method.

Chapter 16Reflectiondescribes the runtime type introspection mechanism and how you can construct and
manipulate objects of unknown type dynamically at runtime.

Chapter 17Garbage Collection and Memorytalks about garbage collection, finalization, and lower-strength
reference objects.

Chapter 18Packagesdescribes how you can group collections of classes and interfaces into separate packages.

Chapter 19Documentation Commentsshows how to write reference documentation in comments.

Chapters 20 through 24 cover the main packages. Chapter 20The I/O Packagedescribes the input/output
system, which is based on streams. Chapter 21Collectionscovers the collection or container classes such as
sets and lists. Chapter 22Miscellaneous Utilitiescovers the rest of the utility classes such as bit sets, formatted
output, text scanning, and random number generation. Chapter 23System Programmingleads you through the
system classes that provide access to features of the underlying platform. Chapter 24Internationalization and
Localizationcovers some of the tools used to create programs that can run in many linguistic and cultural
environments.

Chapter 25Standard Packagesbriefly explores the packages that are part of the standard platform, giving
overviews of those packages not covered in more detail in this book.

Appendix AApplication Evolutionlooks at some of the issues involved in dealing with the evolution of
applications and the Java platform, and the impact this has on some of the new language features.

Appendix BUseful Tableshas tables of information that you may find useful for quick reference.

31

31

Finally, Further Reading lists works that may be interesting for further reading on complete details, object
orientation, programming with threads, software design, and other topics.

Examples and Documentation

All the code examples in the text have been compiled and run on the latest version of the language available at
the time the book was written, which was the JDK 1.5.0_02 product version. Only supported features are
covereddeprecated types, methods, and fields are ignored except when unavoidable or when knowledge of the
past is necessary to understand the present. We have also covered issues beyond writing programs that simply
compile. Part of learning a language is to learn to use it well. For this reason, we have tried to show principles
of good programming style and design.

In a few places we refer to online documentation. Development environments provide a way to automatically
generate documentation (usually HTML documents) for a compiled class from its documentation comments.
This documentation is normally viewed with a Web browser.

Acknowledgments (Fourth Edition)

Once again we are indebted to a group of people who took time out from their hectic schedules (and even their
own books!) to give us the benefit of their experiences in making this the best edition yet. Of course, some of
those people were also responsible for the huge volume of work required for us to catch up with all the new
language and library features, but we won't hold that against them. Much.

On the reviewing side our thanks go first to Yoshiki Shibata. Yoshiki produced the Japanese translation of the
third edition and in the process single-handedly discovered at least 85% of the errata. To get the fourth edition
as errata free as possible we knew we needed Yoshiki onboard as a reviewer very early on. Yoshiki became
our front-line reviewer and nothing went out for general review without his nod of approval. Not only did he
provide valuable corrections and feedback on the new material, he also pointed out several areas where there
had been language changes that we hadn't been aware of!

Brian Goetz also rates special thanks not only for reviewing the entire edition, but also for re-reviewing
various sections that took several iterations to get right. The turnaround times for these re-reviews were very
tight and we much appreciate Brian's time at that critical stage.

The remainder of the core reviewing team consisted of Beth Stearns and Kevin Davis, who were able to stay
for the long haul, while Bob Withers, Herb Jellinek, Ken Louden, Rich Wardwell, and Kevin Hammond
provided valuable feedback on the earlier portions of the text. Thank you all very much.

We'd also like to thank Tim Peierls for supplying the chess example used in the enum chapter; and Keith Lea
and Martin Buchholz for valuable reviews of the generics materialthanks!

It will come as no surprise to most that writing the generics chapter (and the related part of the appendix) was
the hardest part of this edition. Armed initially only with a draft of the third edition of the Java Language
Specification, it was never going to be easy to fathom the depths of the new type system, so we brought in the
big guns: Neal Gafter, Josh Bloch, Gilad Bracha, and Peter von der Ahé were all instrumental in educating us
about generics, and for that we thank them. Peter's in-depth review of the generics chapter was especially
valuable and warrants an additional thank you. Of course, the teachers cannot be blamed for the shortcomings
of the student, so any errors or omissions in the description of generics are the sole responsibility of the
authors. (We'd like to thank Phil Wadler for catching two such omissions in the generics coverage just prior to
publication.)

32

32

We'd also like to thank the following technical experts for their assistance in specific areas: Doug Lea for
reviewing the Java memory model material and providing assistance with concurrent collections; Brian Goetz
for checking the overview of the concurrent collections (in addition to everything else); Mike "MadBot"
McCloskey for the review of, and assistance with, the use of the Scanner class and the associated regular
expression usage; and Jeremy Manson for trying to explain the unfathomable relationship between finalization
and the memory model.

Rosemary Simpson seems to always manage to be around when we need her. It's starting to get difficult to
find a creative way to say how much we appreciate her indexing, but I'm sure we'll have one by the fifth
edition.

On the production side, the path to the fourth edition was a somewhat changeable one. Mike Hendrickson held
the reins when the fourth edition was conceived, then handed the reins to Ann Sellers. Ann, with assistance
from Ebony Haight, saw the fourth edition through its early gestation, then handed the reins to Greg Doench.
Greg, with assistance from Noreen Regina, Stephane Nakib, Tyrrell Albaugh, Elizabeth Ryan, and Mary Lou
Nohr saw us through to the ultimate delivery. Thank you all, and to all those behind the scenes.

And thanks as well to Kathy Kerby, Ben Littauer, and Ariana Littauer for being a valuable source of borrowed
computrons. It's always nice to have neighbors from whom you can borrow a cup of cycles.

Last, but by no means least, thank you to our families for putting up with the trials and tribulations of
authorship once again.

Acknowledgments (Third Edition)

The third edition required yet more reviews and work, and the helper list is equally critical. Lisa Friendly
continued her attempts to keep the project in line; someday we will cooperate better. The set of reviewers
included new faces and old friends, all helpful: Joshua Bloch, Joseph Bowbeer, Gilad Bracha, Keith Edwards,
Joshua Engel, Rich Gillam, Peter Haggar, Cay Horstmann, Alexander Kuzmin, Doug Lea, Keith Lea, Tim
Lindholm, David Mendenhall, Andrew M. Morgan, Ray Ortigas, Brian Preston, Mark Schuldenfrei, Peter
Sparago, Guy Steele, Antoine Trux, and our Russian compatriots Leonid Arbouzov, Valery Shakurov,
Viatcheslav Rybalov, Eugene Latkin, Dmitri Khukhro, Konstantin Anisimov, Alexei Kaigorodov, Oleg
Oleinik, and Maxim Sokolnikov. Several people let us bend their ears to figure out how to approach things
better: Peter Jones, Robert W. Scheifler, Susan Snyder, Guy Steele, Jimmy Torres, and Ann Wollrath. Helen
Leary made the logistics work smoothly, as always.

Material support is always provided by the Addison-Wesley team: Julie DiNicola, Mike Hendrickson, and
Tracy Russ.

And since the last edition, Peet's Coffee and Tea has opened up on the East Coast, so the eastern part of this
writing team can enjoy it regularly. The world continues to improve apace.

Acknowledgments (Second Edition)

The cast of characters for this second edition is much like the first.

Series Editor Lisa Friendly continued to be doggedly supportive and attentive. The set of reviewers was
smaller, overlapping, and certainly as helpful and thorough. Overall reviews by Steve Byrne, Tom Cargill,
Mary Dageforde, Tim Lindholm, and Rob Murray were critical to clarity. Brian Beck, Peter Jones, Doug Lea,
Bryan O'Sullivan, Sue Palmer, Rosanna Lee, Lori Park, Mark Reinhold, Roger Riggs, Ann Wollrath, and Ken

33

33

Zadek contributed focused reviews of important parts. Guy Steele's support was ongoing and warm.
Rosemary Simpson's extensive and intensive efforts to make a useful index are deeply appreciated. Carla
Carlson and Helen Leary gave logistic support that kept all the wheels on the tracks instead of in the ditch.
Gerry Wiener provided the Tibetan word on page 550, and we also had help on this from Craig Preston and
Takao Miyatani. All who submitted errata and suggestions from the first edition were helpful.

For some inexplicable reason we left the friendly folks of Addison-Wesley off the original
acknowledgmentsluckily, most of them were present again for this edition. A merged list for both editions
includes Kate Duffy, Rosa Gonzales, Mike Hendrickson, Marina Lang, Shannon Patti, Marty Rabinowitz,
Sarah Weaver, and Pamela Yee. Others did much that we are blissfully unaware of, but for which we are
nonetheless abidingly grateful.

The revision was additionally aided by Josh Bloch, Joe Fialli, Jimmy Torres, Benjamin Renaud, Mark
Reinhold, Jen Volpe, and Ann Wollrath.

And Peet's Coffee and Tea continued its supporting role as purveyor to the caffeine-consuming connoisseur.

Acknowledgments (First Edition)

No technical book-writing endeavor is an island unto itself, and ours was more like a continent. Many people
contributed technical help, excellent reviews, useful information, and book-writing advice.

Contributing editor Henry McGilton of Trilithon Software played the role of "chief editorial firefighter" to
help make this book possible. Series editor Lisa Friendly contributed dogged perseverance and support.

A veritable multitude of reviewers took time out of their otherwise busy lives to read, edit, advise, revise, and
delete material, all in the name of making this a better book. Kevin Coyle performed one of the most detailed
editorial reviews at all levels. Karen Bennet, Mike Burati, Patricia Giencke, Steve Gilliard, Bill Joy, Rosanna
Lee, Jon Madison, Brian O'Neill, Sue Palmer, Stephen Perelgut, R. Anders Schneiderman, Susan Sim, Bob
Sproull, Guy Steele, Arthur van Hoff, Jim Waldo, Greg Wilson, and Ann Wollrath provided in-depth review.
Geoff Arnold, Tom Cargill, Chris Darke, Pat Finnegan, Mick Jordan, Doug Lea, Randall Murray, Roger
Riggs, Jimmy Torres, Arthur van Hoff, and Frank Yellin contributed useful comments and technical
information at critical junctures.

Alka Deshpande, Sharon Flank, Nassim Fotouhi, Betsy Halstead, Kee Hinckley, Dr. K. Kalyanasundaram,
Patrick Martin, Paul Romagna, Susan Snyder, and Nicole Yankelovich collaborated to make possible the five
words of non-ISO-Latin-1 text on pages 164 and 550. Jim Arnold provided research help on the proper
spelling, usage, and etymology of "smoog" and "moorge." Ed Mooney helped with the document preparation.
Herb and Joy Kaiser were our Croatian language consultants. Cookie Callahan, Robert E. Pierce, and Rita
Tavilla provided the support necessary to keep this project going at many moments when it would otherwise
have stalled with a sputtering whimper.

Thanks to Kim Polese for supplying us the capsule summary of why the Java programming language is
important to computer users as well as programmers.

Support and advice were provided at critical moments by Susan Jones, Bob Sproull, Jim Waldo, and Ann
Wollrath. And we thank our families, who, besides their loving support, would at times drag us out to play
when we should have been working, for which we are deeply grateful.

And thanks to the folks at Peet's Coffee and Tea, who kept us buzzed on the best Java on the planet.

Any errors or shortcomings that remain in this bookdespite the combined efforts of these myriadsare
completely the responsibility of the authors.

34

34

Results! Why, man, I have gotten a lot of results. I know several thousand things that won't
work.

Thomas Edison

Calvin and Hobbes quote (page 39) reprinted by permission of Universal Press Syndicate.

"Mail Myself to You," (page 183) words and music by Woody Guthrie. trO 1962 (renewed), 1963 (renewed)
by Ludlow Music, Inc. New York, NY. Used by permission.

Chapter 1. A Quick Tour

See Europe! Ten Countries in Seventeen Days!

Sign in a travel agent's window

This chapter is a whirlwind tour of the Java™ programming language that gets you started writing code
quickly. We briefly cover the main points of the language, without slowing you down with full-blown detail.
Subsequent chapters contain detailed discussions of specific features.

1.1. Getting Started

In the Java programming language, programs are built from classes. From a class definition, you can create
any number of objects that are known as instances of that class. Think of a class as a factory with blueprints
and instructions to build gadgetsobjects are the gadgets the factory makes.

A class contains members, the primary kinds being fields and methods. Fields are data variables belonging
either to the class itself or to objects of the class; they make up the state of the object or class. Methods are
collections of statements that operate on the fields to manipulate the state. Statements define the behavior of
the classes: they can assign values to fields and other variables, evaluate arithmetic expressions, invoke
methods, and control the flow of execution.

Long tradition holds that the first sample program for any language should print "Hello, world":

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, world");
 }
}

Use your favorite text editor to type this program source code into a file. Then run the compiler to compile the
source of this program into bytecodes, the "machine language" for the Java virtual machine (more on this later
in this chapter). Details of editing and compiling source vary from system to systemconsult your system
manuals for specific information. On the system we use most oftenthe Java™ 2 Platform, Standard Edition
(J2SE™) Development Kit (JDK) provided free of charge by Sun Microsystemsyou put the source for
HelloWorld into a file named HelloWorld.java. To compile it you type the command

javac HelloWorld.java

35

35

To run the program you type the command

java HelloWorld

This executes the main method of HelloWorld. When you run the program, it displays

Hello, world

Now you have a small program that does something, but what does it mean?

The program declares a class called HelloWorld with a single member: a method called main. Class
members appear between curly braces { and } following the class name.

The main method is a special method: the main method of a class, if declared exactly as shown, is executed
when you run the class as an application. When run, a main method can create objects, evaluate expressions,
invoke other methods, and do anything else needed to define an application's behavior.

The main method is declared publicso that anyone can invoke it (in this case the Java virtual machine)and
static, meaning that the method belongs to the class and is not associated with a particular instance of the
class.

Preceding the method name is the return type of the method. The main method is declared void because it
doesn't return a value and so has no return type.

Following the method name is the parameter list for the methoda sequence of zero or more pairs of types and
names, separated by commas and enclosed in parentheses (and). The main method's only parameter is an
array of String objects, referred to by the name args. Arrays of objects are denoted by the square brackets
[] that follow the type name. In this case args will contain the program's arguments from the command line
with which it was invoked. Arrays and strings are covered later in this chapter. The meaning of args for the
main method is described in Chapter 2 on page 73.

The name of a method together with its parameter list constitute the signature of the method. The signature
and any modifiers (such as public and static), the return type, and exception throws list (covered later in
this chapter) form the method header. A method declaration consists of the method header followed by the
method bodya block of statements appearing between curly braces.

In this example, the body of main contains a single statement that invokes the println methodthe
semicolon ends the statement. A method is invoked by supplying an object reference (in this case
System.outthe out field of the System class) and a method name (println) separated by a dot (.).

HelloWorld uses the out object's println method to print a newline-terminated string on the standard
output stream. The string printed is the string literal "Hello,world" , which is passed as an argument to
println. A string literal is a sequence of characters contained within double-quotes " and ".

Exercise 1.1: Enter, compile, and run HelloWorld on your system.

Exercise 1.2: Try changing parts of HelloWorld and see what errors you might get.

36

36

1.2. Variables

The next example prints a part of the Fibonacci sequence, an infinite sequence whose first few terms are

1
1
2
3
5
8
13
21
34

The Fibonacci sequence starts with the terms 1 and 1, and each successive term is the sum of the previous two
terms. A Fibonacci printing program is simple, and it demonstrates how to declare variables, write a simple
loop, and perform basic arithmetic. Here is the Fibonacci program:

class Fibonacci {
 /** Print out the Fibonacci sequence for values < 50 */
 public static void main(String[] args) {
 int lo = 1;

 int hi = 1;

 System.out.println(lo);
 while (hi < 50) {
 System.out.println(hi);
 hi = lo + hi; // new hi
 lo = hi - lo; /* new lo is (sum - old lo)
 that is, the old hi */
 }
 }
}

This example declares a Fibonacci class that, like HelloWorld, has a main method. The first two lines
of main are statements declaring two local variables: lo and hi. In this program hi is the current term in the
series and lo is the previous term. Local variables are declared within a block of code, such as a method
body, in contrast to fields that are declared as members of a class. Every variable must have a type that
precedes its name when the variable is declared. The variables lo and hi are of type int, 32-bit signed
integers with values in the range 231 through 2311.

The Java programming language has built-in "primitive" data types to support integer, floating-point, boolean,
and character values. These primitive types hold numeric data that is understood directly, as opposed to object
types defined by programmers. The type of every variable must be defined explicitly. The primitive data types
are:

boolean either TRue or false

char 16-bit Unicode UTF-16 character (unsigned)

byte 8-bit integer (signed)

short 16-bit integer (signed)

int 32-bit integer (signed)

37

37

long 64-bit integer (signed)

float 32-bit floating-point (IEEE 754)

double 64-bit floating-point (IEEE 754)

For each primitive type there is also a corresponding object type, generally termed a "wrapper" class. For
example, the class Integer is the wrapper class for int. In most contexts, the language automatically
converts between primitive types and objects of the wrapper class if one type is used where the other is
expected.

In the Fibonacci program, we declared hi and lo with initial values of 1. The initial values are set by
initialization expressions, using the = operator, when the variables are declared. The = operator (also called
the assignment operator), sets the variable named on the left-hand side to the value of the expression on the
right-hand side.

Local variables are undefined prior to initialization. You don't have to initialize them at the point at which you
declare them, but if you try to use local variables before assigning a value, the compiler will refuse to compile
your program until you fix the problem.

As both lo and hi are of the same type, we could have used a short-hand form for declaring them. We can
declare more than one variable of a given type by separating the variable names (with their initialization
expressions) by commas. We could replace the first two lines of main with the single equivalent line

int lo = 1, hi = 1;

or the much more readable

int lo = 1,
 hi = 1;

Notice that the presence of line breaks makes no difference to the meaning of the statementline breaks, spaces,
tabs, and other whitespace are purely for the programmer's convenience.

The while statement in the example demonstrates one way of looping. The expression inside the while is
evaluatedif the expression is true, the loop's body is executed and the expression is tested again. The while
is repeated until the expression becomes false. If it never becomes false, the loop will run forever unless
something intervenes to break out of the loop, such as a break statement or an exception.

The body of the while consists of a single statement. That could be a simple statement (such as a method
invocation), another control-flow statement, or a blockzero or more individual statements enclosed in curly
braces.

The expression that while tests is a boolean expression that has the value true or false. Boolean
expressions can be formed with the comparison operators (<, <=, >, >=) to compare the relative magnitudes
of two values or with the == operator or != operator to test for equality or inequality, respectively. The
boolean expression hi< 50 in the example tests whether the current high value of the sequence is less than
50. If the high value is less than 50, its value is printed and the next value is calculated. If the high value
equals or exceeds 50, control passes to the first line of code following the body of the while loop. That is the
end of the main method in this example, so the program is finished.

38

38

To calculate the next value in the sequence we perform some simple arithmetic and again use the = operator
to assign the value of the arithmetic expression on the right to the variable on the left. As you would expect,
the + operator calculates the sum of its operands, and the - operator calculates the difference. The language
defines a number of arithmetic operators for the primitive integer and floating-point types including addition
(+), subtraction (-), multiplication (*), and division (/), as well as some other operators we talk about later.

Notice that the println method accepts an integer argument in the Fibonacci example, whereas it
accepted a string argument in the HelloWorld example. The println method is one of many methods
that are overloaded so that they can accept arguments of different types. The runtime system decides which
method to actually invoke based on the number and types of arguments you pass to it. This is a very powerful
tool.

Exercise 1.3: Add a title to the printed list of the Fibonacci program.

Exercise 1.4: Write a program that generates a different sequence, such as a table of squares.

1.3. Comments in Code

The English text scattered through the code is in comments. There are three styles of comments, all illustrated
in the Fibonacci example. Comments enable you to write descriptive text alongside your code, annotating
it for programmers who may read your code in the future. That programmer may well be you months or years
later. You save yourself effort by commenting your own code. Also, you often find bugs when you write
comments, because explaining what the code is supposed to do forces you to think about it.

Text that occurs between /* and */ is ignored by the compiler. This style of comment can be used on part of
a line, a whole line, or more commonly (as in the example) to define a multiline comment. For single line and
part line comments you can use // which tells the compiler to ignore everything after it on that line.

The third kind of comment appears at the very top, between /** and */. A comment starting with two
asterisks is a documentation comment ("doc comment" for short). Documentation comments are intended to
describe declarations that follow them. The comment in the previous example is for the main method. These
comments can be extracted by a tool that uses them to generate reference documentation for your classes. By
convention, lines within a documentation comment or a /*...*/ comment have a leading asterisk (which is
ignored by documentation tools), which gives a visual clue to readers of the extent of the comment.

1.4. Named Constants

Constants are values like 12, 17.9, and "StringsLike This". Constants, or literals as they are also
known, are the way you specify values that are not computed and recomputed but remain, well, constant for
the life of a program.

The Fibonacci example printed all Fibonacci numbers with a value less than 50. The constant 50 was used
within the expression of the while loop and within the documentation comment describing main. Suppose
that you now want to modify the example to print the Fibonacci numbers with values less than 100. You have
to go through the source code and locate and modify all occurrences of the constant 50. Though this is trivial
in our example, in general it is a tedious and error-prone process. Further, if people reading the code see an
expression like hi< 50 they may have no idea what the constant 50 actually represents. Such "magic
numbers" hinder program understandability and maintainability.

A named constant is a constant value that is referred to by a name. For example, we may choose the name
MAX to refer to the constant 50 in the Fibonacci example. You define named constants by declaring fields of
the appropriate type, initialized to the appropriate value. That itself does not define a constant, but a field

39

39

whose value could be changed by an assignment statement. To make the value a constant we declare the field
as final. A final field or variable is one that once initialized can never have its value changedit is
immutable. Further, because we don't want the named constant field to be associated with instances of the
class, we also declare it as static.

We would rewrite the Fibonacci example as follows:

class Fibonacci2 {
 static final int MAX = 50;
 /** Print the Fibonacci sequence for values < MAX */
 public static void main(String[] args) {
 int lo = 1;
 int hi = 1;
 System.out.println(lo);
 while (hi < MAX) {
 System.out.println(hi);
 hi = lo + hi;
 lo = hi - lo;
 }
 }
}

Modifying the maximum value now requires only one change, in one part of the program, and it is clearer
what the loop condition is actually testing.

You can group related constants within a class. For example, a card game might use these constants:

class Suit {
 final static int CLUBS = 1;
 final static int DIAMONDS = 2;
 final static int HEARTS = 3;
 final static int SPADES = 4;
}

To refer to a static member of a class we use the name of the class followed by dot and the name of the
member. With the above declaration, suits in a program would be accessed as Suit.HEARTS,
Suit.SPADES, and so on, thus grouping all the suit names within the single name Suit. Notice that the
order of the modifiers final and static makes no differencethough you should use a consistent order. We
have already accessed static fields in all of the preceding examples, as you may have realizedout is a
static field of class System.

Groups of named constants, like the suits, can often be better represented as the members of an enumeration
type, or enum for short. An enum is a special class with predefined instances for each of the named constants
the enum represents. For example, we can rewrite our suit example using an enum:

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

Each enum constant is a static field that refers to the object for that valuesuch as Suit.HEARTS. By
representing each named constant as an object rather than just an integer value, you improve the type-safety
and so the robustness, of your program. Enums are covered in detail in Chapter 6.

40

40

Exercise 1.5: Change the HelloWorld application to use a named string constant as the string to print. (A
string constant can be initialized with a string literal.)

Exercise 1.6: Change your program from Exercise 1.3 to use a named string constant for the title.

1.5. Unicode Characters

Suppose we were defining a class that dealt with circles and we wanted a named constant that represented the
value π. In most programming languages we would name the constant "pi" because in most languages
identifiers (the technical term for names) are limited to the letters and digits available in the ASCII character
set. In the Java programming language, however, we can do this:

class Circle {
 static final double π = 3.14159265358979323846;
 // ...
}

The Java programming language moves you toward the world of internationalized software: you write code in
Unicode, an international character set standard. Unicode basic[1] characters are 16 bits, and together with the
supplemental characters (21 bits) provide a character range large enough to write the major languages used in
the world. That is why we can use π for the name of the constant in the example. π is a valid letter from the
Greek section of Unicode and is therefore valid in source. Most existing code is typed in ASCII, a 7-bit
character standard, or ISO Latin-1, an 8-bit character standard commonly called Latin-1. But these characters
are translated into Unicode before processing, so the character set is always Unicode.

[1] Basic Multilingual Plane, or BMP, in Unicode terminology.

1.6. Flow of Control

"Flow of control" is the term for deciding which statements in a program are executed and in what order. The
while loop in the Fibonacci program is one control flow statement, as are blocks, which define a
sequential execution of the statements they group. Other control flow statements include for, ifelse,
switch, and dowhile. We change the Fibonacci sequence program by numbering the elements of the
sequence and marking even numbers with an asterisk:

class ImprovedFibonacci {

 static final int MAX_INDEX = 9;

 /**
 * Print out the first few Fibonacci numbers,
 * marking evens with a '*'
 */
 public static void main(String[] args) {
 int lo = 1;
 int hi = 1;
 String mark;

 System.out.println("1: " + lo);
 for (int i = 2; i <= MAX_INDEX; i++) {
 if (hi % 2 == 0)
 mark = " *";
 else

41

41

 mark = "";
 System.out.println(i + ": " + hi + mark);
 hi = lo + hi;
 lo = hi - lo;
 }
 }
}

Here is the new output:

1: 1
2: 1
3: 2 *
4: 3
5: 5
6: 8 *
7: 13
8: 21
9: 34 *

To number the elements of the sequence, we used a for loop instead of a while loop. A for loop is
shorthand for a while loop, with an initialization and increment section added. The for loop in
ImprovedFibonacci is equivalent to this while loop:

int i = 2; // define and initialize loop index
while (i <= MAX_INDEX) {
 // ...generate the next Fibonacci number and print it...
 i++; // increment loop index
}

The use of the for loop introduces a new variable declaration mechanism: the declaration of the loop variable
in the initialization section. This is a convenient way of defining loop variables that need exist only while the
loop is executing, but it applies only to for loopsnone of the other control-flow statements allow variables to
be declared within the statement itself. The loop variable i is available only within the body of the for
statement. A loop variable declared in this manner disappears when the loop terminates, which means you can
reuse that variable name in subsequent for statements.

The ++ operator in this code fragment may be unfamiliar if you're new to C-derived programming languages.
The ++ operator increments by one the value of any variable it abutsthe contents of variable i in this case.
The ++ operator is a prefix operator when it comes before its operand, and postfix when it comes after. The
two forms have slightly different semantics but we defer that discussion until Chapter 9. Similarly,
minus-minus (--) decrements by one the value of any variable it abuts and can also be prefix or postfix. In
the context of the previous example, a statement like

i++;

is equivalent to

i = i + 1;

42

42

Expressions where the value assigned to a variable is calculated from the original value of the variable are
common enough that there is a short-hand for writing them. For example, another way to write i= i+ 1 is to
write

i += 1;

which adds the value on the right-hand side of the += operator (namely 1) to the variable on the left-hand side
(namely i). Most of the binary operators (operators that take two operands) can be joined with = in a similar
way (such as +=, -=, *=, and /=).

Inside the for loop body we use an ifelse statement to see whether the current hi value is even. The if
statement tests the boolean expression between the parentheses. If the expression is TRue, the statement
(which can be a block) in the body of the if is executed. If the expression is false, the statement in the
body of the else clause is executed. The else part is optional. If the else is not present, nothing is done
when the expression is false. After figuring out which (if any) clause to execute, and then actually
executing it, control passes to the code following the body of the if statement.

The example tests whether hi is even using the %, or remainder, operator (also known as the modulus
operator). It produces the remainder after dividing the value on the left side by the value on the right. In this
example, if the left-side value is even, the remainder is zero and the ensuing statement assigns a string
containing the even-number indicator to mark. The else clause is executed for odd numbers, setting mark
to an empty string.

The println invocations appear more complex in this example because the arguments to println are
themselves expressions that must be evaluated before println is invoked. In the first case we have the
expression "1: "+ lo, which concatenates a string representation of lo (initially 1) to the string literal "1:
"giving a string with the value "1: 1". The + operator is a concatenation operator when at least one of its
operands is a string; otherwise, it's an addition operator. Having the concatenation operation appear within the
method argument list is a common short-hand for the more verbose and tedious:

String temp = "1: " + lo;
System.out.println(temp);

The println invocation within the for loop body constructs a string containing a string representation of
the current loop count i, a separator string, a string representing the current value of hi and the marker string.

Exercise 1.7: Change the loop in ImprovedFibonacci so that i counts backward instead of forward.

1.7. Classes and Objects

The Java programming language, like many object-oriented programming languages, provides a tool to solve
programming problems using the notions of classes and objects. Every object has a class that defines its data
and behavior. Each class has three kinds of members:

Fields are data variables associated with a class and its objects. Fields store results of computations
performed by the class.

•

Methods contain the executable code of a class. Methods are built from statements. The way in which
methods are invoked, and the statements contained within those methods, are what ultimately directs
program execution.

•

43

43

Classes and interfaces can be members of other classes or interfaces (you will learn about interfaces
soon).

•

Here is the declaration of a simple class that might represent a point on a two-dimensional plane:

class Point {
 public double x, y;
}

This Point class has two fields representing the x and y coordinates of a point and has (as yet) no methods.
A class declaration like this one is, conceptually, a plan that defines what objects manufactured from that class
look like, plus sets of instructions that define the behavior of those objects.

Members of a class can have various levels of visibility or accessibility. The public declaration of x and y
in the Point class means that any code with access to a Point object can read and modify those fields.
Other levels of accessibility limit member access to code in the class itself or to other related classes.

1.7.1. Creating Objects

Objects are created by expressions containing the new keyword. Creating an object from a class definition is
also known as instantiation; thus, objects are often called instances.

Newly created objects are allocated within an area of system memory known as the heap. All objects are
accessed via object referencesany variable that may appear to hold an object actually contains a reference to
that object. The types of such variables are known as reference types, in contrast to the primitive types whose
variables hold values of that type. Object references are null when they do not reference any object.

Most of the time, you can be imprecise in the distinction between actual objects and references to objects. You
can say, "Pass the object to the method" when you really mean "Pass an object reference to the method." We
are careful about this distinction only when it makes a difference. Most of the time, you can use "object" and
"object reference" interchangeably.

In the Point class, suppose you are building a graphics application in which you need to track lots of points.
You represent each point by its own concrete Point object. Here is how you might create and initialize
Point objects:

Point lowerLeft = new Point();
Point upperRight = new Point();
Point middlePoint = new Point();

lowerLeft.x = 0.0;
lowerLeft.y = 0.0;

upperRight.x = 1280.0;
upperRight.y = 1024.0;

middlePoint.x = 640.0;
middlePoint.y = 512.0;

Each Point object is unique and has its own copy of the x and y fields. Changing x in the object
lowerLeft, for example, does not affect the value of x in the object upperRight. The fields in objects
are known as instance variables, because there is a unique copy of the field in each object (instance) of the

44

44

class.

When you use new to create an object, a special piece of code, known as a constructor, is invoked to perform
any initialization the object might need. A constructor has the same name as the class that it constructs and is
similar to a method, including being able to accept arguments. If you don't declare a constructor in your class,
the compiler creates one for you that takes no arguments and does nothing. When we say "newPoint() "
we're asking that a Point object be allocated and because we passed in no arguments, the no-argument
constructor be invoked to initialize it.

1.7.2. Static or Class Fields

Per-object fields are usually what you need. You usually want a field in one object to be distinct from the field
of the same name in every other object instantiated from that class.

Sometimes, though, you want fields that are shared among all objects of that class. These shared variables are
known as class variablesvariables specific to the class as opposed to objects of the class.

Why would you want to use class variables? Consider, for example, the Sony Walkman factory. Each
Walkman has a unique serial number. In object terms, each Walkman object has its own unique serial number
field. However, the factory needs to keep a record of the next serial number to be assigned. You don't want to
keep that number with every Walkman object. You'd keep only one copy of that number in the factory, or, in
object terms, as a class variable.

You obtain class-specific fields by declaring them static, and they are therefore commonly called static
fields. For example, a Point object to represent the origin might be common enough that you should provide
it as a static field in the Point class:

public static Point origin = new Point();

If this declaration appears inside the declaration of the Point class, there will be exactly one piece of data
called Point.origin that always refers to an object at (0.0, 0.0). This static field is there no matter how
many Point objects are created, even if none are created. The values of x and y are zero because that is the
default for numeric fields that are not explicitly initialized to a different value.

You can probably see now why named constants are declared static.

When you see the word "field" in this book, it generally means a per-object field, although the term non-static
field is sometimes used for clarity.

1.7.3. The Garbage Collector

After creating an object with new, how do you get rid of the object when you no longer want it? The answer
is simplestop referring to it. Unreferenced objects are automatically reclaimed by a garbage collector, which
runs in the background and tracks object references. When an object is no longer referenced, the garbage
collector can remove it from the storage allocation heap, although it may defer actually doing so until a
propitious time.

45

45

1.8. Methods and Parameters

Objects of the previously defined Point class are exposed to manipulation by any code that has a reference
to a Point object, because its fields are declared public. The Point class is an example of the simplest
kind of class. Indeed, some classes are this simple. They are designed to fit purely internal needs for a package
(a group of cooperating classes) or to provide simple data containers when those are all you need.

The real benefits of object orientation, however, come from hiding the implementation of a class behind
operations performed on its data. Operations of a class are declared via its methodsinstructions that operate on
an object's data to obtain results. Methods access internal implementation details that are otherwise hidden
from other objects. Hiding data behind methods so that it is inaccessible to other objects is the fundamental
basis of data encapsulation.

If we enhance the Point class with a simple clear method (to clear, or reset the coordinates to zero), it
might look like this:

public void clear() {
 x = 0.0;
 y = 0.0;
}

The clear method has no parameters, hence the empty () pair after its name; clear is declared void
because it does not return any value. Inside a method, fields and other methods of the class can be named
directlywe can simply say x and y without an explicit object reference.

1.8.1. Invoking a Method

Objects in general do not operate directly on the data of other objects, although, as you saw in the Point
class, a class can make its fields publicly accessible. Well-designed classes usually hide their data so that it
can be changed only by methods of that class.

To invoke a method, you provide an object reference to the target object and the method name, separated by a
dot. Arguments are passed to the method as a comma-separated list of values enclosed in parentheses.
Methods that take no arguments still require the parentheses, with nothing between them.

A method can return only a single value as a result. To return more than one value from a method, you must
create an object whose purpose is to hold return values in a single unit and then return that object.

When a method is invoked, the flow of execution leaves the current method and starts executing the body of
the invoked method. When the invoked method has completed, the current method continues execution with
the code after the method invocation. When we start executing the body of the method, the object that was the
target of the method invocation is now the current or receiver object, from the perspective of that method. The
arguments passed to the method are accessed via the parameters the method declared.

Here is a method called distance that's part of the Point class shown in previous examples. The
distance method accepts another Point object as a parameter, computes the Euclidean distance between
itself and the other point, and returns a double-precision floating-point result:

public double distance(Point that) {
 double xdiff = x - that.x;
 double ydiff = y - that.y;
 return Math.sqrt(xdiff * xdiff + ydiff * ydiff);
}

46

46

The return statement causes a method to stop executing its body and return execution to the invoking
method. If an expression is part of the return statement then the value of that expression is returned as the
value of the method invocation. The type of the expression must be compatible with the return type defined
for the method. In the example we use the sqrt method of the Math library class to calculate the square root
of the sum of the squares of the differences between the two x and y coordinates.

Based on the lowerLeft and upperRight objects created previously, you could invoke distance this
way:

double d = lowerLeft.distance(upperRight);

Here upperRight is passed as an argument to distance, which sees it as the parameter that. After this
statement executes, the variable d contains the Euclidean distance between lowerLeft and upperRight.

1.8.2. The this Reference

Occasionally, the receiving object needs to know its own reference. For example, the receiving object might
want to add itself to a list of objects somewhere. An implicit reference named this is available to methods,
and this is a reference to the current (receiving) object. The following definition of clear is equivalent to
the one just presented:

public void clear() {
 this.x = 0.0;
 this.y = 0.0;
}

You usually use this as an argument to other methods that need an object reference. The this reference
can also be used to explicitly name the members of the current object. Here's another method of Point
named move, which sets the x and y fields to specified values:

public void move(double x, double y) {
 this.x = x;
 this.y = y;
}

The move method uses this to clarify which x and y are being referred to. Naming the parameters x and y
is reasonable, because you pass x and y coordinates to the method. But then those parameters have the same
names as the fields, and therefore the parameter names hide the field names. If we simply wrote x= x we
would assign the value of the x parameter to itself, not to the x field as required. The expression this.x
refers to the object's x field, not the x parameter of move.

Exercise 1.8: Add a method to the Point class that sets the current object's coordinates to those of a passed
in Point object.

47

47

1.8.3. Static or Class Methods

Just as you can have per-class static fields, you can also have per-class static methods, often known as class
methods. Class methods are usually intended to do operations specific to the class itself, usually on static
fields and not on specific instances of that class. Class methods are declared using the static keyword and
are therefore also known as static methods.

As with the term "field", the word "method" generally means a per-object method, although the term
non-static method is sometimes used for clarity.

Why would you need static methods? Consider the Sony Walkman factory again. The record of the next serial
number to be assigned is held in the factory, not in every Walkman. A method that returned the factory's copy
of the next available serial number would be a static method, not a method to operate on specific Walkman
objects.

The implementation of distance in the previous example uses the static method Math.sqrt to calculate
a square root. The Math class supports many methods that are useful for general mathematical manipulation.
These methods are declared as static methods because they do not act on any particular instance of the Math
class; instead, they group a related set of functionality in the class itself.

A static method cannot directly access non-static members. When a static method is invoked, there's no
specific object for the method to operate on, and so no this reference. You could work around this by
passing an explicit object reference as an argument to the static method. In general, however, static methods
perform class-related tasks and non-static methods perform object-related tasks. Asking a static method to
work on object fields is like asking the Walkman factory to change the serial number of a Walkman hanging
on the belt of a jogger in Golden Gate Park.

1.9. Arrays

Simple variables that hold one value are useful but are not sufficient for many applications. A program that
plays a game of cards would want a number of Card objects it could manipulate as a whole. To meet this
need, you use arrays.

An array is a collection of variables all of the same type. The components of an array are accessed by simple
integer indexes. In a card game, a Deck object might look like this:

public class Deck {
 public static final int DECK_SIZE = 52;
 private Card[] cards = new Card[DECK_SIZE];
 public void print() {
 for (int i = 0; i < cards.length; i++)
 System.out.println(cards[i]);
 }
 // ...
}

First we declare a constant called DECK_SIZE to define the number of cards in a deck. This constant is
public so that anyone can find out how many cards are in a deck. Next we declare a cards field for
referring to all the cards. This field is declared private, which means that only the methods in the current
class can access itthis prevents anyone from manipulating our cards directly. The modifiers public and
private are access modifiers because they control who can access a class, interface, field, or method.

48

48

We declare the cards field as an array of type Card by following the type name in the declaration with
square brackets [and]. We initialize cards to a new array with DECK_SIZE variables of type Card. Each
Card element in the array is implicitly initialized to null. An array's length is fixed when it is created and
can never change.

The println method invocation shows how array components are accessed. It encloses the index of the
desired element within square brackets following the array name.

You can probably tell from reading the code that array objects have a length field that says how many
elements the array contains. The bounds of an array are integers between 0 and length-1, inclusive. It is a
common programming error, especially when looping through array elements, to try to access elements that
are outside the bounds of the array. To catch this sort of error, all array accesses are bounds checked, to ensure
that the index is in bounds. If you try to use an index that is out of bounds, the runtime system reports this by
throwing an exception in your programan ArrayIndexOutOfBoundsException. You'll learn about
exceptions a bit later in this chapter.

An array with length zero is an empty array. Methods that take arrays as arguments may require that the array
they receive is non-empty and so will need to check the length. However, before you can check the length of
an array you need to ensure that the array reference is not null. If either of these checks fail, the method may
report the problem by throwing an IllegalArgumentException. For example, here is a method that
averages the values in an integer array:

static double average(int[] values) {
 if (values == null)
 throw new IllegalArgumentException();
 else
 if (values.length == 0)
 throw new IllegalArgumentException();
 else {
 double sum = 0.0;
 for (int i = 0; i < values.length; i++)
 sum += values[i];

 return sum / values.length;
 }

}

This code works but the logic of the method is almost completely lost in the nested ifelse statements
ensuring the array is non-empty. To avoid the need for two if statements, we could try to test whether the
argument is null or whether it has a zero length, by using the boolean inclusive-OR operator (|):

if (values == null | values.length == 0)
 throw new IllegalArgumentException();

Unfortunately, this code is not correct. Even if values is null, this code will still attempt to access its
length field because the normal boolean operators always evaluate both operands. This situation is so
common when performing logical operations that special operators are defined to solve it. The conditional
boolean operators evaluate their right-hand operand only if the value of the expression has not already been
determined by the left-hand operand. We can correct the example code by using the conditional-OR (||)
operator:

49

49

if (values == null || values.length == 0)
 throw new IllegalArgumentException();

Now if values is null the value of the conditional-OR expression is known to be true and so no attempt
is made to access the length field.

The binary boolean operatorsAND (&), inclusive-OR (|), and exclusive-OR (^)are logical operators when their
operands are boolean values and bitwise operators when their operands are integer values. The conditional-OR
(||) and conditional-AND (&&) operators are logical operators and can only be used with boolean operands.

Exercise 1.9: Modify the Fibonacci application to store the sequence into an array and print the list of
values at the end.

Exercise 1.10: Modify the ImprovedFibonacci application to store its sequence in an array. Do this by
creating a new class to hold both the value and a boolean value that says whether the value is even, and
then having an array of object references to objects of that class.

1.10. String Objects

A String class type deals specifically with sequences of character data and provides language-level support
for initializing them. The String class provides a variety of methods to operate on String objects.

You've already seen string literals in examples like the HelloWorld program. When you write a statement
such as

System.out.println("Hello, world");

the compiler actually creates a String object initialized to the value of the specified string literal and passes
that String object as the argument to the println method.

You don't need to specify the length of a String object when you create it. You can create a new String
object and initialize it all in one statement, as shown in this example:

class StringsDemo {
 public static void main(String[] args) {
 String myName = "Petronius";

 myName = myName + " Arbiter";
 System.out.println("Name = " + myName);
 }
}

Here we declare a String variable called myName and initialize it with an object reference to a string literal.
Following initialization, we use the String concatenation operator (+) to make a new String object with
new contents and store a reference to this new string object into the variable. Finally, we print the value of
myName on the standard output stream. The output when you run this program is

Name = Petronius Arbiter

50

50

The concatenation operator can also be used in the short-hand += form, to assign the concatenation of the
original string and the given string, back to the original string reference. Here's an upgraded program:

class BetterStringsDemo {
 public static void main(String[] args) {
 String myName = "Petronius";
 String occupation = "Reorganization Specialist";

 myName += " Arbiter";

 myName += " ";
 myName += "(" + occupation + ")";
 System.out.println("Name = " + myName);
 }
}

Now when you run the program, you get this output:

Name = Petronius Arbiter (Reorganization Specialist)

String objects have a length method that returns the number of characters in the string. Characters are
indexed from 0 tHRough length()-1, and can be accessed with the charAt method, which takes an
integer index and returns the character at that index. In this regard a string is similar to an array of characters,
but String objects are not arrays of characters and you cannot assign an array of characters to a String
reference. You can, however, construct a new String object from an array of characters by passing the array
as an argument to a String constructor. You can also obtain an array of characters with the same contents as
a string using the toCharArray method.

String objects are read-only, or immutable: The contents of a String never change. When you see
statements like

str = "redwood";
// ... do something with str ..
str = "oak";

the second assignment gives a new value to the variable str, which is an object reference to a different string
object with the contents "oak". Every time you perform operations that seem to modify a String object,
such as the += operation in BetterStringsDemo, you actually get a new read-only String object, while
the original String object remains unchanged. The classes StringBuilder and StringBuffer
provide for mutable strings and are described in Chapter 13, where String is also described in detail.

The equals method is the simplest way to compare two String objects to see whether they have the same
contents:

if (oneStr.equals(twoStr))
 foundDuplicate(oneStr, twoStr);

51

51

Other methods for comparing subparts of strings or ignoring case differences are also covered in Chapter 13.
If you use == to compare the string objects, you are actually comparing oneStr and twoStr to see if they
refer to the same object, not testing if the strings have the same contents.

Exercise 1.11: Modify the StringsDemo application to use different strings.

Exercise 1.12: Modify ImprovedFibonacci to store the String objects it creates into an array instead
of invoking println with them directly.

1.10.1. String Conversion and Formatting

The concatenation operator converts primitive values to strings using the toString method of the
corresponding wrapper class. This conversion doesn't give you any control over the format of the resulting
string. Formatted conversion can be done with the java.util.Formatter class. A Formatter can
write its output to a string, a file, or some other output device. For convenience the System.out.printf
method (for "print formatted") uses a formatter to write to System.out. Formatted output uses a format
string together with a set of values to format. The format string contains normal text together with format
specifiers that tell the formatter how you want the subsequent values to be formatted. For example, you can
print the value of Math.PI to three decimal places using

System.out.printf("The value of Math.PI is %.3f %n", Math.PI);

which prints

The value of Math.PI is 3.142

whereas using println and string concatenation you'd get:

The value of Math.PI is 3.141592653589793

A format specifier consists of at least two parts: it starts with a % character, and it ends with a conversion
indicator. The conversion identifies both the type of the value to format, and the basic form. For example, %f
says to format a floating-point value in the usual decimal form, as used for Math.PI above, whereas %e says
to format a floating point value in scientific notationfor example, 3.142e+00. Integer values can be formatted
by %d for normal decimal, or %x for hexadecimal form. A string can be formatted by %s.

The %n conversion causes insertion of the correct line-separator character, something that println does
automatically for you. The line-separator depends on the current platform and may not be a simple \n
(newline) character. If you are familiar with printf from the C programming language you need to get used
to using %n instead of \n.

A format specifier can provide additional formatting information. You can provide a width that indicates the
minimum number of characters to printuseful for aligning columns of data. If the formatted value has fewer
characters than the width, it is padded with spaces to fit the minimum size. This lets you align values easily.
Some conversions also allow a precision value to be given, which is written as . followed by a non-negative
number. For floating-point values using %f the precision indicates how many decimal places to round toin the
example above the value of Math.PI is rounded to 3 decimal places because of the .3 in the format
specifier. If both a width and precision are given they are written in the form width.precision.

52

52

Additional flags in the format specifier can, among other things, request zero padding (instead of spaces) or
left-justification (the default is right justification).

Formatted output is covered in detail in Chapter 22.

Exercise 1.13: Rewrite the ImprovedFibonacci program using printf instead of println.

1.11. Extending a Class

One of the major benefits of object orientation is the ability to extend, or subclass, the behavior of an existing
class and continue to use code written for the original class when acting on an instance of the subclass. The
original class is known as the superclass. When you extend a class to create a new class, the new extended
class inherits fields and methods of the superclass.

If the subclass does not specifically override the behavior of the superclass, the subclass inherits all the
behavior of its superclass because it inherits the fields and methods of its superclass. In addition, the subclass
can add new fields and methods and so add new behavior.

Consider the Walkman example. The original model had a single jack for one person to listen to the tape.
Later models incorporated two jacks so two people could listen to the same tape. In the object-oriented world,
the two-jack model extends, or is a subclass of, the basic one-jack model. The two-jack model inherits the
characteristics and behavior of the basic model and adds new behavior of its own.

Customers told Sony they wanted to talk to each other while sharing a tape in the two-jack model. Sony
enhanced the two-jack model to include two-way communications so people could chat while listening to
music. The two-way communications model is a subclass of the two-jack model, inherits all its behavior, and
again adds new behavior.

Sony created many other Walkman models. Later models extend the capabilities of the basic modelthey
subclass the basic model and inherit features and behavior from it.

Let's look at an example of extending a class. Here we extend our former Point class to represent a pixel
that might be shown on a screen. The new Pixel class requires a color in addition to x and y coordinates:

class Pixel extends Point {
 Color color;

 public void clear() {
 super.clear();
 color = null;
 }
}

Pixel extends both the data and behavior of its Point superclass. Pixel extends the data by adding a field
named color. Pixel also extends the behavior of Point by overriding Point's clear method.

Pixel objects can be used by any code designed to work with Point objects. If a method expects a
parameter of type Point, you can hand it a Pixel object and it just works. All the Point code can be used
by anyone with a Pixel in hand. This feature is known as polymorphisma single object like Pixel can have
many (poly-) forms (-morph) and can be used as both a Pixel object and a Point object.

53

53

Pixel's behavior extends Point's behavior. Extended behavior can be entirely new (adding color in this
example) or can be a restriction on old behavior that follows all the original requirements. An example of
restricted behavior might be Pixel objects that live inside some kind of Screen object, restricting x and y
to the dimensions of the screen. If the original Point class did not forbid restrictions for coordinates, a class
with restricted range would not violate the original class's behavior.

An extended class often overrides the behavior of its superclass by providing new implementations of one or
more of the inherited methods. To do this the extended class defines a method with the same signature and
return type as a method in the superclass. In the Pixel example, we override clear to obtain the proper
behavior that Pixel requires. The clear that Pixel inherited from Point knows only about Point's
fields but obviously can't know about the new color field declared in the Pixel subclass.

1.11.1. Invoking Methods of the Superclass

To make Pixel do the correct "clear" behavior, we provide a new implementation of clear that first
invokes its superclass's clear using the super reference. The super reference is a lot like the this
reference described previously except that super references things from the superclass, whereas this
references things from the current object.

The invocation super.clear() looks to the superclass to execute clear as it would for an object of the
superclassnamely, Point. After invoking super.clear() to clear out the Point part of the object, we
add new functionality to set color to a reasonable empty value. We choose null, a reference to no object.

What would happen had we not invoked super.clear() in the previous example? Pixel's clear
method would set color to its null value, but the x and y variables that Pixel inherited from Point
would not be set to any "cleared" values. Not clearing all the values of a Pixel object, including its Point
parts, is probably a bug.

When you invoke super.method (), the runtime system looks back up the inheritance hierarchy to the
first superclass that contains the required method . If Point didn't have a clear method, for example, the
runtime system would look at Point's superclass for such a method and invoke that, and so on.

For all other references, invoking a method uses the actual class of the object, not the type of the object
reference. Here is an example:

Point point = new Pixel();
point.clear(); // uses Pixel's clear()

In this example, Pixel's version of clear is invoked even though the variable that holds the Pixel is
declared as a Point reference. But if we invoke super.clear() inside one of Pixel's methods, that
invocation will use the Point class's implementation of the clear method.

1.11.2. The Object Class

Classes that do not explicitly extend any other class implicitly extend the Object class. All objects are
polymorphically of class Object, so Object is the general-purpose type for references that can refer to
objects of any class:

Object oref = new Pixel();
oref = "Some String";

54

54

In this example, oref is correctly assigned references to Pixel and String objects even though those
classes have no relationship except that both have Object as a superclass. The Object class also defines
several important methods that you'll learn about in Chapter 3.

1.11.3. Type Casting

The following code fragment seems quite reasonable (if not particularly useful) but results in a compile-time
error:

String name = "Petronius";
Object obj = name;
name = obj; // INVALID: won't compile

We declare and initialize a String reference which we then assign to a general-purpose Object reference,
and then we try to assign the reference to a String back to the String reference. Why doesn't this work?
The problem is that while a String is always an Object, an Object is not necessarily a String, and
even though you can see that in this case it really is a String, the compiler is not so clever. To help the
compiler you have to tell it that the object referred to by obj is actually a String and so can be assigned to
name:

name = (String) obj; // That's better!

Telling the compiler that the type of an expression is really a different type is known as type casting or type
conversion. You perform a type cast by prefixing the expression with the new type in parentheses. The
compiler doesn't automatically trust you when you do this and so it checks that you are telling the truth. A
smart compiler may be able to tell at compile time that you are telling the truth; otherwise, it will insert a run
time check to verify that the cast really is allowed. If you lie to the compiler and the run time check fails, the
runtime system reports this by throwing a ClassCastException. As the Java programming language is
strongly typed there are strict rules concerning assignments between types.

Exercise 1.14: Sketch out a set of classes that reflects the class structure of the Sony Walkman product family
we have described. Use methods to hide the data, making all the data private and the methods public.
What methods would belong in the Walkman class? Which methods would be added for which extended
classes?

1.12. Interfaces

Sometimes you want only to declare methods an object must support but not to supply the implementation of
those methods. As long as their behavior meets specific criteriacalled the contractimplementation details of
the methods are irrelevant. These declarations define a type, and any class that implements those methods can
be said to have that type, regardless of how the methods are implemented. For example, to ask whether a
particular value is contained in a set of values, details of how those values are stored are irrelevant. You want
the methods to work equally well with a linked list of values, a hashtable of values, or any other data
structure.

To support this, you can define an interface. An interface is like a class but has only empty declarations of its
methods. The designer of the interface declares the methods that must be supported by classes that implement

55

55

the interface and declares what those methods should do. Here is a Lookup interface for finding a value in a
set of values:

interface Lookup {
 /** Return the value associated with the name, or
 * null if there is no such value */
 Object find(String name);
}

The Lookup interface declares one method, find, that takes a String and returns the value associated
with that name, or null if there is no associated value. In the interface no implementation can be given for
the methoda class that implements the interface is responsible for providing a specific implementationso
instead of a method body we simply have a semicolon. Code that uses references of type Lookup (references
to objects that implement the Lookup interface) can invoke the find method and get the expected results,
no matter what the actual type of the object is:

void processValues(String[] names, Lookup table) {
 for (int i = 0; i < names.length; i++) {
 Object value = table.find(names[i]);
 if (value != null)
 processValue(names[i], value);
 }
}

A class can implement as many interfaces as you choose. This example implements Lookup using a simple
array (methods to set or remove values are left out for simplicity):

class SimpleLookup implements Lookup {
 private String[] names;
 private Object[] values;

 public Object find(String name) {
 for (int i = 0; i < names.length; i++) {
 if (names[i].equals(name))
 return values[i];
 }
 return null; // not found
 }

 // ...
}

An interface can also declare named constants that are static and final. Additionally, an interface can
declare other nested interfaces and even classes. These nested types are discussed in detail in Chapter 5. All
the members of an interface are implicitly, or explicitly, publicso they can be accessed anywhere the
interface itself is accessible.

Interfaces can be extended using the extends keyword. An interface can extend one or more other
interfaces, adding new constants or new methods that must be implemented by any class that implements the
extended interface.

A class's supertypes are the class it extends and the interfaces it implements, including all the supertypes of
those classes and interfaces. So an object is not only an instance of its particular class but also of any of its

56

56

supertypes, including interfaces. An object can be used polymorphically with both its superclass and any
superinterfaces, including any of their supertypes.

A class's subtypes are the classes that extend it, including all of their subtypes. An interface's subtypes are the
interfaces that extend it, and the classes that implement it, including all of their subtypes.

Exercise 1.15: Write an interface that extends Lookup to declare add and remove methods. Implement the
extended interface in a new class.

1.13. Generic Types

Classes and interfaces can be declared to be generic types. A generic class or interface represents a family of
related types. For example, in

interface List<T> {
 // ... methods of List ...
}

List<T> (read as "list of T") declares a generic list that can be used for any non-primitive type T. You could
use such a declaration to have a list of Point objects (List<Point>), a list of String objects
(List<String>), a list of Integer objects (List<Integer>), and so on. In contrast to a raw List,
which can hold any kind of Object, a List<String> is known to hold only String objects, and this
fact is guaranteed at compile timeif you try to add a plain Object, for example, you'll get a compile-time
error.

Consider the Lookup interface from the previous section, it could be declared in a generic form:

interface Lookup<T> {
 T find(String name);
}

Now, rather than returning Object, the find method returns a T, whatever T may be. We could then
declare a class for looking up integers, for example:

class IntegerLookup implements Lookup<Integer> {
 private String[] names;
 private Integer[] values;

 public Integer find(String name) {
 for (int i = 0; i < names.length; i++) {
 if (names[i].equals(name))
 return values[i];
 }
 return null; // not found
 }

 // ...
}

57

57

Class IntegerLookup is not itself a generic class, rather it implements a generic interface, providing a
concrete typeIntegerin place of the abstract type parameter T. Compared to the SimpleLookup class,
this class can store items in an array of Integer and find returns an Integer.

How would we modify processValues to work with generic implementations of Lookup? Here's one
attempt to do so:

void processValues(String[] names, Lookup<Object> table) {
 for (int i = 0; i < names.length; i++) {
 Object value = table.find(names[i]);
 if (value != null)
 processValue(names[i], value);
 }
}

This compiles okay, and appears reasonabletable is an instance of a class that implements Lookup for any
kind of Object. As Integer instances are Object instances then we should be able to do this:

Lookup<Integer> l = new IntegerLookup();
// ... add entries to l ...
String[] names = { "One", "two" };
processValues(names, l); // INVALID: won't compile

But we find that this code won't compile. The problem is that, as defined, processValues will only accept
an instance of a class that implements Lookup<Object>, and IntegerLookup does not do that. Even
though Integer is a subtype of Object, Lookup<Integer> is not a subtype of Lookup<Object>
and therefore an instance of the former can not be used where an instance of the latter is required. Is there a
way to declare that we want to deal with an instance that implements Lookup of anything? Yeswe use what
is called a wildcard to specify the type parameter:

void processValues(String[] names, Lookup<?> table) {
 for (int i = 0; i < names.length; i++) {
 Object value = table.find(names[i]);
 if (value != null)
 processValue(names[i], value);
 }
}

The wildcard is written as ? and is read as "of unspecified type", or just as "of some type": table is an
instance of a class that implements a lookup of some type. We don't know what type, and in this example we
don't care. The only thing we know about the type we can lookup is that it must at least be an Object, so we
can invoke table.find and store the return value as an Object. Now we can use IntegerLookup
with processValues without a problem.

Suppose in our application we knew that we would always be looking up Integer or Long or Double,
etc.all the subclasses of the Number class. We know, from the previous example, that we can't define
processValues in terms of Lookup<Number>, but there is a way to limit the types that the wildcard can
represent:

void processValues(String[] names,
 Lookup<? extends Number> table) {
 for (int i = 0; i < names.length; i++) {
 Number value = table.find(names[i]);

58

58

 if (value != null)

 processValue(names[i], value);
 }
}

Where ? on its own is the unbounded wildcard, that can represent any type, "?extends X" is a bounded
wildcard: It can only represent the type X or any type that extends or implements X (depending on whether X
is a class or interface). This time in processValues we know that, at worst, table.find will return a
Number, so we can store that return value in a variable of type Number.

There is a lot more to generic types and you'll learn about their full power in Chapter 11. Meanwhile, you
know enough about them to understand the simple usages that will occur in the early chapters of this book.

1.14. Exceptions

What do you do when an error occurs in a program? In many languages, error conditions are signaled by
unusual return values like 1. Programmers often don't check for exceptional values because they may assume
that errors "can't happen." On the other hand, adding error detection and recovery to what should be a
straightforward flow of logic can complicate that logic to the point where the normal flow is completely
obscured. An ostensibly simple task such as reading a file into memory might require about seven lines of
code. Error checking and reporting expands this to 40 or more lines. Making normal operation the needle in
your code haystack is undesirable.

Checked exceptions manage error handling. Checked exceptions force you to consider what to do with errors
where they may occur in the code. If a checked exception is not handled, this is noticed at compile time, not at
run time when problems have been compounded because of the unchecked error.

A method that detects an unusual error condition throws an exception. Exceptions can be caught by code
farther back on the calling stackthis invoking code can handle the exception as needed and then continue
executing. Uncaught exceptions result in the termination of the thread of execution, but before it terminates
the thread's UncaughtExceptionHandler is given the opportunity to respond to the exception as best it
canperhaps doing nothing more than reporting that the exception occurred. THReads and
UncaughtExceptionHandlers are discussed in detail in Chapter 14.

An exception is an object, with type, methods, and data. Representing exceptions as objects is useful, because
an exception object can include data, methods, or both to report on or recover from specific kinds of
exceptions. Exception objects are generally derived from the Exception class, which provides a string field
to describe the error. All exceptions must be subclasses of the class Throwable, which is the superclass of
Exception.

The paradigm for using exceptions is the trycatchfinally sequence: you try something; if that something
throws an exception, you catch the exception; and finally you clean up from either the normal code path or the
exception code path, whichever actually happened.

Here is a getdataSet method that returns a set of data read from a file. If the file for the data set cannot be
found or if any other I/O exception occurs, this method throws an exception describing the error. First, we
define a new exception type BadDataSetException to describe such an error. Then we declare that the
method getdataSet tHRows that exception using a throws clause in the method header:

class BadDataSetException extends Exception { }

 class MyUtilities {

59

59

 public double[] getDataSet(String setName)
 throws BadDataSetException
 {
 String file = setName + ".dset";
 FileInputStream in = null;
 try {
 in = new FileInputStream(file);
 return readDataSet(in);
 } catch (IOException e) {
 throw new BadDataSetException();
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 ; // ignore: we either read the data OK
 // or we're throwing BadDataSetException
 }
 }
 }
 // ... definition of readDataSet ...
}

First we turn the data set name into a file name. Then we try to open the file and read the data using the
method readDataSet. If all goes well, readDataSet will return an array of doubles, which we will
return to the invoking code. If opening or reading the file causes an I/O exception, the catch clause is
executed. The catch clause creates a new BadDataSetException object and throws it, in effect
translating the I/O exception into an exception specific to getdataSet. Methods that invoke geTDataSet
can catch the new exception and react to it appropriately. In either casereturning successfully with the data set
or catching and then throwing an exceptionthe code in the finally clause is executed to close the file if it
was opened successfully. If an exception occurs during close, we catch it but ignore itthe semicolon by
itself forms an empty statement, which does nothing. Ignoring exceptions is not a good idea in general, but in
this case it occurs either after the data set is successfully readin which case the method has fulfilled its
contractor the method is already in the process of throwing an exception. If a problem with the file persists, it
will be reported as an exception the next time we try to use it and can be more appropriately dealt with at that
time.

You will use finally clauses for cleanup code that must always be executed. You can even have a
try-finally statement with no catch clauses to ensure that cleanup code will be executed even if
uncaught exceptions are thrown.

If a method's execution can result in checked exceptions being thrown, it must declare the types of these
exceptions in a throws clause, as shown for the getdataSet method. A method can throw only those
checked exceptions it declaresthis is why they are called checked exceptions. It may throw those exceptions
directly with tHRow or indirectly by invoking a method that throws exceptions. Exceptions of type
RuntimeException, Error, or subclasses of these exception types are unchecked exceptions and can be
thrown anywhere, without being declared.

Checked exceptions represent conditions that, although exceptional, can reasonably be expected to occur, and
if they do occur must be dealt with in some waysuch as the IOException that may occur reading a file.
Declaring the checked exceptions that a method throws allows the compiler to ensure that the method throws
only those checked exceptions it declared and no others. This check prevents errors in cases in which your
method should handle another method's exceptions but does not. In addition, the method that invokes your
method is assured that your method will not result in unexpected checked exceptions.

Unchecked exceptions represent conditions that, generally speaking, reflect errors in your program's logic and
cannot be reasonably recovered from at run time. For example, the

60

60

ArrayIndexOutOfBoundsException thrown when you access outside the bounds of an array tells you
that your program calculated an index incorrectly, or failed to verify a value to be used as an index. These are
errors that should be corrected in the program code. Given that you can make errors writing any statement it
would be totally impractical to have to declare or catch all the exceptions that could arise from those
errorshence they are unchecked.

Exercise 1.16: Add fields to BadDataSetException to hold the set name and the I/O exception that
signaled the problem so that whoever catches the exception will know details about the error.

1.15. Annotations

Annotations provide information about your program, or the elements of that program (classes, methods,
fields, variables, and so forth), in a structured way that is amenable to automated processing by external tools.
For example, in many organizations all code that gets written must be reviewed by a programmer other than
the author. Keeping track of what code has been reviewed, by whom, and when requires a lot of bookkeeping
and is a task most suited to an automated tooland indeed some code management systems will support this
kind of task. Annotations allow you to provide this review information with the code that is being reviewed.
For example, here is how you could annotate a class with review information:

@Reviewed(reviewer = "Joe Smith", date = 20050331)
public class Point {
 // ...
}

An annotation is considered a modifier (like public or static) and should appear before other modifiers,
on a line of its own. It is indicated by an @ character followed by the name of an annotation typein this case
Reviewed. An annotation type is a special kind of interface, whose members are known as elements. Here is
the definition of our Reviewed annotation type:

@interface Reviewed {
 String reviewer();
 int date();
}

This is very similar to an interface declaration, except the interface keyword is again preceded by the @
character. When you apply an annotation to a program element, you supply values for all of the elements of
the annotation type as shown above: The string "JoeSmith" is used to set the value of the reviewer
element, while the int value 20050331 is used to set the value of the date element. A tool could extract
these values from either the source file, or (more often) a compiled class file, and determine, for example,
whether a class has been reviewed since it was last modified.

While the language defines the syntax of annotation types, their actual purpose is determined by the tools that
recognize them. We won't have anything else to say about annotations until they are discussed in Chapter 15,
except to mention where they can be applied.

1.16. Packages

Name conflicts are a major problem when you're developing reusable code. No matter how carefully you pick

61

61

names for classes, someone else is likely to use that name for a different purpose. If you use simple,
descriptive names, the problem gets worse since such names are more likely to be used by someone else who
was also trying to use simple, descriptive names. Words like "list," "event," "component," and so on are used
often and are almost certain to clash with other people's uses.

The standard solution for name collision in many programming languages is to use a package prefix at the
front of every class, type, global function, and so on. Prefix conventions create naming contexts to ensure that
names in one context do not conflict with names in other contexts. These prefixes are usually a few characters
long and are usually an abbreviation of the product name, such as Xt for the X-Windows Toolkit.

When code uses only a few packages, the likelihood of prefix conflict is small. However, since prefixes are
abbreviations, the probability of a name conflict increases with the number of packages used.

The Java programming language has a formal notion of package that has a set of types and subpackages as
members. Packages are named and can be imported. Package names are hierarchical, with components
separated by dots. When you use part of a package, either you use its fully qualified namethe type name
prefixed by the package name, separated by a dotor you import all or part of the package. Importing all, or
part, of a package, simply instructs the compiler to look in the package for types that it can't find defined
locally. Package names also give you control over name conflicts. If two packages contain classes with the
same name, you can use the fully qualified class name for one or both of them.

Here is an example of a method that uses fully qualified names to print the current day and time using the
utility class Date (documented in Chapter 22), which, as with all time-based methods, considers time to be in
milliseconds since the epoch (00:00:00 GMT, January 1, 1970):

class Date1 {
 public static void main(String[] args) {
 java.util.Date now = new java.util.Date();
 System.out.println(now);
 }
}

And here is a version that uses import to declare the type Date:

import java.util.Date;

class Date2 {
 public static void main(String[] args) {
 Date now = new Date();
 System.out.println(now);
 }
}

When the compiler comes to the declaration of now it determines that the Date type is actually the
java.util.Date type, because that is the only Date type it knows about. Import statements simply
provide information to the compiler; they don't cause files to be "included" into the current file.

The name collision problem is not completely solved by the package mechanism. Two projects can still give
their packages the same name. This problem can be solved only by convention. The standard convention is to
use the reversed Internet domain name of the organization to prefix the package name. For example, if the
Acme Corporation had the Internet domain acme.com, it would use package names starting with
com.acme, as in com.acme.tools.

62

62

Classes are always part of a package. A package is named by providing a package declaration at the top of the
source file:

package com.sun.games;

class Card {
 // ...
}

If a package is not specified via a package declaration, the class is made part of an unnamed package. An
unnamed package may be adequate for an application (or applet) that is not loaded with any other code.
Classes destined for a library should always be written in named packages.

1.17. The Java Platform

The Java programming language is designed to maximize portability. Many details are specifically defined for
all implementations. For example, a double is a 64-bit IEEE 754 floating-point number. Many languages
leave precise definitions to particular implementations, making only general guarantees such as minimum
range, or they provide a way to ask the system what the range is on the current platform.

These portable definitions for the Java programming language are specific all the way down to the machine
language into which code is translated. Source code is compiled into Java bytecodes, which are designed to be
run on a Java virtual machine. Bytecodes are a machine language for an abstract machine, executed by the
virtual machine on each system that supports the Java programming language.[2] Other languages can also be
compiled into Java bytecodes.

[2] A system can, of course, implement the Java virtual machine in silicon that is, using a
special-purpose chip. This does not affect the portability of the bytecodes; it is just another
virtual machine implementation.

The virtual machine provides a runtime system, which provides access to the virtual machine itself (for
example, a way to start the garbage collector) and to the outside world (such as the output stream
System.out). The runtime system checks security-sensitive operations with a security manager or access
controller. The security manager could, for example, forbid the application to read or write the local disk, or
could allow network connections only to particular machines. Exactly what an application is allowed to do, is
determined by the security policy in force when the application runs.

When classes are loaded into a virtual machine, they will first be checked by a verifier that ensures the
bytecodes are properly formed and meet security and safety guarantees (for example, that the bytecodes never
attempt to use an integer as a reference to gain access to parts of memory).

These features combined give platform independence to provide a security model suitable for executing code
downloaded across the network at varying levels of trust. Source code compiled into Java bytecodes can be
run on any machine that has a Java virtual machine. The code can be executed with an appropriate level of
protection to prevent careless or malicious class writers from harming the system. The level of trust can be
adjusted depending on the source of the bytecodesbytecodes on the local disk or protected network can be
trusted more than bytecodes fetched from arbitrary machines elsewhere in the world.

63

63

1.18. Other Topics Briefly Noted

There are several other features that we mention briefly here and cover later in more detail:

Threads The language has built-in support for creating multithreaded applications. It uses per-object
and per-class monitor-style locks to synchronize concurrent access to object and class data. See
Chapter 14 for more details.

•

Reflection The reflection mechanism (known as runtime type information RTTIin some languages)
allows browsing of class types and their members, and programmatic manipulation of objects. See
Chapter 16 for more information about reflection.

•

I/O The java.io package provides many different kinds of input and output classes. See Chapter 20
for specifics of the I/O capabilities.

•

Collections You will find many useful collection classes, such as List and HashMap in the
java.util package. See Chapter 21 for more information about collections.

•

Utility interfaces and classes The java.util package has many other useful classes, such as
BitSet, Scanner, and Date. See Chapter 22 for more information about these utility classes.

•

Internationalization If your application is available to people all over the world, you need to be able to
adapt the user interface to support interacting with the user in their language, and using their
conventionssuch as how dates are presented, or how numbers are formatted. There are a number of
classes, mainly in the java.util and java.text packages that aid you in this.
Internationalization and localization are discussed in Chapter 24.

•

Carefulwe don't want to learn from this!

Calvin and Hobbes

Chapter 2. Classes and Objects

First things first, but not necessarily in that order.

Dr. Who, Meglos

The fundamental programming unit of the Java programming language is the class. Classes provide the
structure for objects and the mechanisms to manufacture objects from a class definition. Classes define
methods: collections of executable code that are the focus of computation and that manipulate the data stored
in objects. Methods provide the behavior of the objects of a class. Although you can compute using only
primitive typesinteger, floating-point, and so onalmost any interesting program will create and manipulate
objects.

Object-oriented programming strictly separates the notion of what is to be done from how it is done. "What"
is described as a set of methods (and sometimes publicly available data) and their associated semantics. This
combinationmethods, data, and semanticsis often described as a contract between the designer of the class and
the programmer who uses it because it says what happens when certain methods are invoked on an object.
This contract defines a type such that all objects that are instances of that type are known to honor that
contract.

A common assumption is that the methods declared in a class are its entire contract. The semantics of those
operations are also part of the contract, even though they may be described only in documentation. Two
methods may have the same name and parameters and throw the same exceptions, but they are not equivalent
if they have different semantics. For example, not every method called print can be assumed to print a copy
of the object. Someone might define a print method with the semantics "process interval" or "prioritize
nonterminals"not that we'd recommend this. The contract of the method, both signature and semantics
together, defines what it means.

64

64

The "how" of an object is defined by its class, which defines the implementation of the methods the object
supports. Each object is an instance of a class. When a method is invoked on an object, the class is examined
to find the code to be run. An object can use other objects to do its job, but we start with simple classes that
implement all their own methods directly.

2.1. A Simple Class

Here is a simple class, called Body[1] that could be used to store data about celestial bodies such as comets,
asteroids, planets, and stars:

[1] Good naming is a key part of class design, and Body should really be called
CelestialBody or something of that kind. We use Body for brevity, as we refer to it
dozens of time throughout the book.

class Body {
 public long idNum;
 public String name;
 public Body orbits;

 public static long nextID = 0;
}

A class is declared using the keyword class, giving the class a name and listing the class members between
curly braces. A class declaration creates a type name, so references to objects of that type can be declared with
a simple

Body mercury;

This declaration states that mercury is a variable that can hold a reference to an object of type Body. The
declaration does not create an objectit declares only a reference that is allowed to refer to a Body object.
During its existence, the reference mercury may refer to any number of Body objects. These objects must
be explicitly created. In this respect, the Java programming language is different from languages in which
objects are created when you declare variables.

This first version of Body is poorly designed. This is intentional: We will demonstrate the value of certain
language features as we improve the class in this chapter.

2.1.1. Class Members

A class can have three kinds of members:

Fields are the data variables associated with a class and its objects and hold the state of the class or
object.

•

Methods contain the executable code of a class and define the behavior of objects.•
Nested classes and nested interfaces are declarations of classes or interfaces that occur nested within
the declaration of another class or interface.

•

In this chapter we concentrate on the basic members: fields and methods. Nested members are discussed in
Chapter 5.

65

65

2.1.2. Class Modifiers

A class declaration can be preceded by class modifiers that give the class certain properties:

annotations Annotations and annotation types are discussed in Chapter 15.•
public A public class is publicly accessible: Anyone can declare references to objects of the class
or access its public members. Without a modifier a class is only accessible within its own package.
You'll learn about general access control in Section 2.3 on page 47. Packages and related accessibility
issues of classes and members are discussed in Chapter 18.

•

abstract An abstract class is considered incomplete and no instances of the class may be created.
Usually this is because the class contains abstract methods that must be implemented by a
subclass. You'll learn about this in "Abstract Classes and Methods" on page 97.

•

final A final class cannot be subclassed. Subclassing is discussed in Chapter 3.•
strict floating point A class declared strictfp has all floating-point arithmetic in the class
evaluated strictly. See "Strict and Non-Strict Floating-Point Arithmetic" on page 203 for details.

•

A class cannot be both final and abstract.

A class declaration can be preceded by several modifiers. Modifiers are allowed in any order, but we
recommend that you adopt a consistent order to improve the readability of your code. We always use, and
recommend, the order listed.

While we won't be concerned about class modifiers in this chapter you need to know a little about public
classes. Most Java development tools require that a public class be declared in a file with the same name as
the class, which means there can only be one public class declared per file.

Exercise 2.1: Write a simple Vehicle class that has fields for (at least) current speed, current direction in
degrees, and owner name.

Exercise 2.2: Write a LinkedList class that has a field of type Object and a reference to the next
LinkedList element in the list.

2.2. Fields

A class's variables are called fields; the Body class's name and orbits variables are examples. A field
declaration consists of a type name followed by the field name and optionally an initialization clause to give
the field an initial value. Every Body object has its own specific instances of three fields: a long that
uniquely identifies the body from all others, a String that is its name, and a reference to another Body
around which it orbits. Giving each separate object a different instance of the fields means that each object has
its own unique statesuch fields are known as instance variables. Changing the orbits field in one Body
object does not affect the orbits field in any other Body object.

Field declarations can also be preceded by modifiers that control certain properties of the field:

annotations Annotations and annotation types are discussed in Chapter 15.•
access modifiers These are discussed in Section 2.3 on page 47.•
static This is discussed below.•
final This is discussed below.•
transient This relates to object serialization and is discussed in Section 20.8 on page 549.•
volatile This relates to synchronization and memory model issues and is discussed in Section 14.10 on
page 370.

•

66

66

A field cannot be both final and volatile.

When multiple modifiers are applied to the same field declaration, we recommend using the order listed
above.

2.2.1. Field Initialization

When a field is declared it can be initialized by assigning it a value of the corresponding type. In the Body
example, the nextID field is initialized to the value zero. The initialization expression, or more simply the
initializer, need not be a constant, however. It could be another field, a method invocation, or an expression
involving all of these. The only requirement is that the initializer be of the right type and, if it invokes a
method, no checked exceptions may be thrown because there is no surrounding code to catch the exception.
For example, the following are all valid initializers:

double zero = 0.0; // constant
double sum = 4.5 + 3.7; // constant expression
double zeroCopy = zero; // field
double rootTwo = Math.sqrt(2); // method invocation
double someVal = sum + 2*Math.sqrt(rootTwo); // mixed

Although initializers provide a great deal of flexibility in the way fields can be initialized, they are only
suitable for simple initialization schemes. For more complex schemes we need additional toolsas we shall
soon see.

If a field is not initialized a default initial value is assigned to it depending on its type:

Type Initial Value

boolean false

char '\u0000'

byte, short, int, long 0

float, double +0.0

object reference null

2.2.2. Static Fields

Sometimes you want only one instance of a field shared by all objects of a class. You create such fields by
declaring them static, so they are called static fields or class variables. When you declare a static field
in a class only one copy of the field exists, no matter how many instances of the class are created.

In our case, Body has one static field, nextID, which contains the next body identifier to use. The
nextID field is initialized to zero when the class is initialized after it is loaded (see "Loading Classes" on
page 435). You will see that each newly created Body object will be assigned the current value of nextID as
its identifier, and the value of nextID will be incremented. Hence, we only want one copy of the nextID
field, to be used when creating all Body instances.

Within its own class a static field can be referred to directly, but when accessed externally it must usually
be accessed using the class name. For example, we could print the value of nextID as follows:

67

67

System.out.println(Body.nextID);

The use of System.out itself illustrates accessing a static field. When a static member of a class is
referenced many times from another class, or when multiple static members of a class are referenced from
another class, you can clarify the code, and perhaps save some typing, by using a static import statement to
name the class of the static member once. This is discussed in detail in Section 2.9 on page 71.

A static member may also be accessed using a reference to an object of that class, such as

System.out.println(mercury.nextID);

You should avoid this form because it gives the false impression that nextID is a member of the object
mercury, not a member of the class Body. It is the type of the reference, not the type of the object it refers
to, that determines the class in which to look for the static variable.

In this book when we use the term field, we usually mean the non-static kind. When the context makes it
ambiguous, we use the term non-static field to be clear.

Exercise 2.3: Add a static field to your Vehicle class to hold the next vehicle identification number, and a
non-static field to the Vehicle class to hold each car's ID number.

2.2.3. final Fields

A final variable is one whose value cannot be changed after it has been initializedany attempt to assign to
such a field will produce a compile-time error. We have seen final fields used to define named constants
because constants don't change value. In general, a final field is used to define an immutable property of a
class or objecta property that doesn't change for the lifetime of the class or object. Fields that are marked
final also have special semantics with regard to concurrent access by multiple threads, this is discussed in
more detail in Chapter 14.

If a final field does not have an initializer it is termed a blank final. You would use a blank final when
simple initialization is not appropriate for a field. Such fields must be initialized once the class has been
initialized (in the case of static final fields) or once an object of the class has been fully constructed (for
non-static final fields). The compiler will ensure that this is done and refuse to compile a class if it
determines that a final field does not get initialized.

A final field of a primitive type, or of String type, that is initialized with a constant expressionthat is, an
expression whose value can be determined at compile timeis known as a constant variable. Constant variables
are special because the compiler treats them as values not fields. If your code refers to a constant variable, the
compiler does not generate bytecode to load the value of the field from the object, it simply inserts the value
directly into the bytecode. This can be a useful optimization, but it means that if the value of your final field
needs to be changed, then every piece of code that refers to that field also has to be recompiled.

Whether a property is immutable is determined by the semantics of the application for which the class was
designed. When you decide whether a field should be final, consider three things:

Does the field represent an immutable property of the object?•
Is the value of the field always known at the time the object is created?•
Is it always practical and appropriate to set the value of the field when the object is created?•

68

68

If the property is merely infrequently changed rather than truly immutable then a final field is not
appropriate. If the value of the field is not known when the object is created then it can't be made final,
even if it is logically immutable once known. For example, in a simulation of celestial bodies a comet may
become trapped by the gravitational pull of a star and commence to orbit that star. Once trapped the comet
orbits the star forever or until it is destroyed. In this situation the orbits field will hold an immutable value
once set, but that value is not known when the comet object is created and so the field cannot be final.
Finally, if initialization of the field is expensive and the field's value is infrequently needed, then it may be
more practical to defer the initialization of the field until its value is neededthis is generally termed lazy
initializationwhich cannot be done to a final field.

There are additional considerations concerning final fields if your object must be clonable or serializable.
These are discussed in "Cloning Objects" on page 101 and "Object Serialization" on page 549, respectively.

Exercise 2.4: Consider your solution to Exercise 2.3. Do you think the identification number field should be
final?

2.3. Access Control

If every member of every class and object were accessible to every other class and object then understanding,
debugging, and maintaining programs would be an almost impossible task. The contracts presented by classes
could not be relied on because any piece of code could directly access a field and change it in such a way as to
violate the contract. One of the strengths of object-oriented programming is its support for encapsulation and
data hiding. To achieve these we need a way to control who has access to what members of a class or
interface, and even to the class or interface itself. This control is specified with access modifiers on class,
interface, and member declarations.

All members of a class are always available to code in the class itself. To control access from other classes,
class members have four possible access modifiers:

private Members declared private are accessible only in the class itself.•
package Members declared with no access modifier are accessible in classes in the same package, as
well as in the class itself. We discuss packages and related accessibility issues in Chapter 18.

•

protected Members declared protected are accessible in subclasses of the class, in classes in the
same package, and in the class itself. Extending classes is covered in Chapter 3.

•

public Members declared public are accessible anywhere the class is accessible.•

The private and protected access modifiers apply only to members not to the classes or interfaces
themselves (unless nested). For a member to be accessible from a section of code in some class, the member's
class must first be accessible from that code.

It is important to realize that access control is performed on a per-class (or interface) level not on a per-object
level. This means that members of a class are always accessible from all code written in that class regardless
of which instance the code is being applied to. We illustrate this with an example later when we look at how
methods can also be used to control access; see Section 2.6.6 on page 65.

You should view public and protected members as contractual, because they can be relied on by code you do
not control. Changing them can be impossible after that code relies on public or protected functionality.
Package and private access are part of your implementation, hidden from outsiders (classes in the same
package should be related).

We declared the Body class's fields public because programmers need access to them to do the work the
class is designed for. In a later version of the Body class, you will see that such a design is not usually a good
idea.

69

69

2.4. Creating Objects

In this first version of Body, objects that represent particular celestial bodies are created and initialized like
this:

Body sun = new Body();
sun.idNum = Body.nextID++;
sun.name = "Sol";
sun.orbits = null; // in solar system, sun is middle

Body earth = new Body();
earth.idNum = Body.nextID++;
earth.name = "Earth";
earth.orbits = sun;

First we declare a reference variable (sun) that can refer to objects of type Body. As mentioned before, such
a declaration does not create an object; it only defines a variable that references objects. The object it refers to
must be created explicitly.

We create the object sun refers to using new. The new construct is by far the most common way to create
objects (we cover the other ways in Chapter 16). When you create an object with new, you specify the type of
object you want to create and any arguments for its construction. The runtime system allocates enough space
to store the fields of the object and initializes it in ways you will soon see. When initialization is complete, the
runtime system returns a reference to the new object.

If the system cannot find enough free space to create the object, it may have to run the garbage collector to try
to reclaim space. If the system still cannot find enough free space, new throws an OutOfMemoryError
exception.

Having created a new Body object, we initialize its variables. Each Body object needs a unique identifier,
which it gets from the static nextID field of Body. The code must increment nextID so that the next
Body object created will get a unique identifier.

We then make an earth object in a similar fashion. This example builds a solar system model. In this model,
the sun is in the center, and sun's orbits field is null because it doesn't orbit anything. When we create
and initialize earth, we set its orbits field to sun. A moon object would have its orbits field set to
earth. In a model of the galaxy, the sun would orbit around the black hole presumed to be at the middle of
the Milky Way.

You create objects using new, but you never delete them explicitly. The virtual machine manages memory for
you using garbage collection, which means that objects that you cannot possibly use any longer can have their
space automatically reclaimed by the virtual machine without your intervention. If you no longer need an
object you should cease referring to it. With local variables in methods this can be as simple as returning from
the methodwhen the method is no longer executing none of its variables can possibly be used. More durable
references, such as fields of objects, can be set to null. Memory management is discussed in more detail in
Chapter 17.

Exercise 2.5: Write a main method for your Vehicle class that creates a few vehicles and prints their field
values.

Exercise 2.6: Write a main method for your LinkedList class that creates a few objects of type Vehicle
and places them into successive nodes in the list.

70

70

2.5. Construction and Initialization

A newly created object is given an initial state. Fields can be initialized with a value when they are declared,
or you can accept their default value, which is sometimes sufficient to ensure a correct initial state. But often
you need more than simple initialization to create the initial state. For example, the creating code may need to
supply initial data or perform operations that cannot be expressed as simple assignment.

2.5.1. Constructors

For purposes other than simple initialization, classes can have constructors. Constructors are blocks of
statements that can be used to initialize an object before the reference to the object is returned by new.
Constructors have the same name as the class they initialize. Like methods, they take zero or more arguments,
but constructors are not methods and thus have no return type. Arguments, if any, are provided between the
parentheses that follow the type name when the object is created with new. Constructors are invoked after the
instance variables of a newly created object of the class have been assigned their default initial values and
after their explicit initializers are executed.

This improved version of the Body class uses both constructors and initializers to set up each new object's
initial state:

class Body {
 public long idNum;
 public String name = "<unnamed>";
 public Body orbits = null;
 private static long nextID = 0;

 Body() {
 idNum = nextID++;
 }
}

A constructor declaration consists of the class name followed by a (possibly empty) list of parameters within
parentheses and a body of statements enclosed in curly braces. Constructors can have any of the same access
modifiers as class members, but constructors are not members of a classa distinction you can usually ignore,
except when it comes to inheritance. Constructors can also have annotations applied to them; see Chapter 15.

The constructor for Body takes no arguments, but it performs an important functionassigning a proper
idNum to the newly created object. In the original code, a simple programmer errorforgetting to assign the
idNum or not incrementing nextID after usecould result in different Body objects with the same idNum.
That would create bugs in code that relies on the part of the contract that says "All idNum values are
different."

By moving responsibility for idNum generation inside the Body class, we have prevented errors of this kind.
The Body constructor is now the only entity that assigns idNum and is therefore the only entity that needs
access to nextID. We can and should make nextID private so that only the Body class can access it. By
doing so, we remove a source of error for programmers using the Body class.

We also are now free to change the way idNum values are assigned to Body objects. A future
implementation of this class might, for example, look up the name in a database of known astronomical
entities and assign a new idNum only if an idNum had not previously been assigned. This change would not
affect any existing code, because existing code is not involved at all in the mechanism for idNum allocation.

71

71

The initializers for name and orbits set them to reasonable values. Therefore, when the constructor returns
from the following invocations, all data fields in the new Body object have been set to some reasonable initial
state. You can then set state in the object to the values you want:

Body sun = new Body(); // idNum is 0
sun.name = "Sol";

Body earth = new Body(); // idNum is 1
earth.name = "Earth";
earth.orbits = sun;

The Body constructor is invoked when new creates the object but after name and orbits have been set to
their default initial values.

The case shown herein which you know the name of the body and what it orbits when you create itis likely to
be fairly common. You can provide another constructor that takes both the name and the orbited body as
arguments:

Body(String bodyName, Body orbitsAround) {
 this();
 name = bodyName;
 orbits = orbitsAround;
}

As shown here, one constructor can invoke another constructor from the same class by using the this()
invocation as its first executable statement. This is called an explicit constructor invocation. If the constructor
you want to invoke has arguments, they can be passed to the constructor invocationthe type and number of
arguments used determines which constructor gets invoked. Here we use it to invoke the constructor that has
no arguments in order to set up the idNum. This means that we don't have to duplicate the idNum
initialization code. Now the allocation code is much simpler:

Body sun = new Body("Sol", null);
Body earth = new Body("Earth", sun);

The argument list determines which version of the constructor is invoked as part of the new expression.

If provided, an explicit constructor invocation must be the first statement in the constructor. Any expressions
that are used as arguments for the explicit constructor invocation must not refer to any fields or methods of the
current objectto all intents and purposes there is no current object at this stage of construction.

For completeness, you could also provide a one-argument constructor for constructing a Body object that
doesn't orbit anything. This constructor would be used instead of invoking the two-argument Body
constructor with a second argument of null:

Body(String bodyName) {
 this(bodyName, null);
}

and that is exactly what this constructor does, using another explicit constructor invocation.

72

72

Some classes always require that the creator supply certain kinds of data. For example, your application might
require that all Body objects have a name. To ensure that all statements creating Body objects supply a name,
you would define all Body constructors with a name parameter and you wouldn't bother initializing the name
field.

Here are some common reasons for providing specialized constructors:

Some classes have no reasonable initial state without parameters.•
Providing an initial state is convenient and reasonable when you're constructing some kinds of objects
(the two-argument constructor of Body is an example).

•

Constructing an object can be a potentially expensive operation, so you want objects to have a correct
initial state when they're created. For example, if each object of a class had a table, a constructor to
specify the initial size would enable the object to create the table with the right size from the
beginning instead of creating a table of a default size, which would later be discarded when the
method that set the actual size was invoked.

•

A constructor that isn't public restricts who can create objects using it. You could, for example,
prevent programmers using your package from creating instances of a class by making all its
constructors accessible only inside the package.

•

Constructors without arguments are so common that there is a term for them: no-arg (for "no arguments")
constructors. If you don't provide any constructors of any kind in a class, the language provides a default
no-arg constructor that does nothing. This constructorcalled the default constructoris provided automatically
only if no other constructors exist because there are classes for which a no-arg constructor would be incorrect
(like the Attr class you will see in the next chapter). If you want both a no-arg constructor and one or more
constructors with arguments, you must explicitly provide a no-arg constructor. The default constructor has the
same accessibility as the class for which it was definedif the class is public then the default constructor is
public.

Another form of constructor is a copy constructorthis constructor takes an argument of the current object type
and constructs the new object to be a copy of the passed in object. Usually this is simply a matter of assigning
the same values to all fields, but sometimes the semantics of a class dictate more sophisticated actions. Here is
a simple copy constructor for Body:

Body(Body other) {
 idNum = other.idNum;
 name = other.name;
 orbits = other.orbits;
}

Whether this is correct depends on the contract of the class and on what the uniqueness of idNum is supposed
to indicatefor this example we won't concern ourselves with that.

This idiom is not used much within the Java class libraries, because the preferred way to make a direct copy
of an object is by using the clone methodsee "Cloning Objects" on page 101. However, many classes
support a more general form of construction that "copies" another object. For example, the
StringBuilder and StringBuffer classes (described in Chapter 13) each have a constructor that takes
a single CharSequence argument that allows you to copy an existing String, StringBuffer, or
StringBuilder object; and the collection classes (described in Chapter 21) each have a constructor that
takes another Collection as an argument and so allow one collection to be initialized with the same
contents as another (which need not be of exactly the same type). Writing a correct copy constructor requires
the same consideration as writing a correct clone method.

Constructors can also be declared to throw checked exceptions. The tHRows clause comes after the

73

73

parameter list and before the opening curly brace of the constructor body. If a tHRows clause exists then any
method that invokes this constructor as part of a new expression must either catch the declared exception or
itself declare that it throws that exception. Exceptions and throws clauses are discussed in detail in Chapter
12.

Exercise 2.7: Add two constructors to Vehicle: a no-arg constructor and one that takes an initial owner's
name. Modify the main program so that it generates the same output it did before.

Exercise 2.8: What constructors should you add to LinkedList?

2.5.2. Initialization Blocks

Another way to perform more complex initialization of fields is to use an initialization block. An initialization
block is a block of statements that appears within the class declaration, outside of any member, or constructor,
declaration and that initializes the fields of the object. It is executed as if it were placed at the beginning of
every constructor in the classwith multiple blocks being executed in the order they appear in the class. An
initialization block can throw a checked exception only if all of the class's constructors are declared to throw
that exception.

For illustration, this variant of the Body class replaces the no-arg constructor with an equivalent initialization
block:

class Body {
 public long idNum;
 public String name = "<unnamed>";
 public Body orbits = null;

 private static long nextID = 0;

 {
 idNum = nextID++;
 }

 public Body(String bodyName, Body orbitsAround) {
 name = bodyName;
 orbits = orbitsAround;
 }
}

Now the two-argument constructor doesn't need to perform the explicit invocation of the no-arg constructor,
but we no longer have a no-arg constructor and so everyone is forced to use the two-argument constructor.

This wasn't a particularly interesting use of an initialization block but it did illustrate the syntax. In practice,
initialization blocks are most useful when you are writing anonymous inner classessee Section 5.4 on page
144that can't have constructors. An initialization block can also be useful to define a common piece of code
that all constructors execute. While this could be done by defining a special initialization method, say init,
the difference is that such a method would not be recognized as construction code and could not, for example,
assign values to blank final fields. Initialization is the purpose of having initialization blocks, but in practice
you can make it do anythingthe compiler won't check what it does. Spreading initialization code all through a
class is not a good design, and initialization blocks should be used judiciously, when they express something
that cannot easily be done by constructors alone.

74

74

2.5.3. Static Initialization

The static fields of a class can have initializers as we have already seen. But in addition we can perform more
complex static initialization in a static initialization block. A static initialization block is much like a
non-static initialization block except it is declared static, can only refer to static members of the class, and
cannot throw any checked exceptions. For example, creating a static array and initializing its elements
sometimes must be done with executable statements. Here is example code to initialize a small array of prime
numbers:

class Primes {
 static int[] knownPrimes = new int[4];

 static {
 knownPrimes[0] = 2;
 for (int i = 1; i < knownPrimes.length; i++)
 knownPrimes[i] = nextPrime();
 }
 // declaration of nextPrime ...
}

The order of initialization within a class is first-to-lasteach field initializer or initialization block is executed
before the next one, from the beginning of the source to the end. The static initializers are executed after the
class is loaded, before it is actually used (see "Preparing a Class for Use" on page 441). With this guarantee,
our static block in the example is assured that the knownPrimes array is already created before the
initialization code block executes. Similarly, anyone accessing a static field is guaranteed that the field has
been initialized.

What if a static initializer in class X invokes a method in Y, but Y's static initializers invoke a method in X to
set up its static values? This cyclic static initialization cannot be reliably detected during compilation because
the code for Y may not be written when X is compiled. If cycles happen, X's static initializers will have been
executed only to the point where Y's method was invoked. When Y, in turn, invokes the X method, that
method runs with the rest of the static initializers yet to be executed. Any static fields in X that haven't had
their initializers executed will still have their default values (false, '/u0000', zero, or null depending
on their type).

2.6. Methods

A class's methods typically contain the code that understands and manipulates an object's state. Some classes
have public or protected fields for programmers to manipulate directly, but in most cases this isn't a
very good idea (see "Designing a Class to Be Extended" on page 108). Many objects have tasks that cannot be
represented as a simple value to be read or modified but that require computation.

We have already seen a number of examples of methods in Chapter 1all of our demonstration programs had a
main method that was executed by the Java virtual machine. Here is another main method that creates a
Body object and prints out the values of its fields.

class BodyPrint {
 public static void main(String[] args) {
 Body sun = new Body("Sol", null);
 Body earth = new Body("Earth", sun);
 System.out.println("Body " + earth.name +
 " orbits " + earth.orbits.name +
 " and has ID " + earth.idNum);
 }
}

75

75

A method declaration consists of two parts: the method header and the method body. The method header
consists of an optional set of modifiers, an optional set of type parameters, the method return type, the
signature, and an optional tHRows clause listing the exceptions thrown by the method. The method signature
consists of the method name and the (possibly empty) parameter type list enclosed in parentheses. All
methods must have a return type and signature. Type parameters are used to declare generic methods and are
discussed in Chapter 11. Exceptions and throws clauses are discussed in detail in Chapter 12. The method
body consists of statements enclosed between curly braces.

The method modifiers consist of the following:

annotations Annotations and annotation types are discussed in Chapter 15.•
access modifiers These were discussed on page 47.•
abstract An abstract method is one whose body has not been defined in this classthe body is
specified as a semicolon after the parameter list. A subclass is then responsible for providing a body
for this method. This is discussed in Section 3.7 on page 97.

•

static This is discussed below.•
final A final method cannot be overridden in a subclass. This is discussed in Section 3.6 on page
96.

•

synchronized A synchronized method has additional semantics related to the control of
concurrent threads within a program. This is discussed in Section 14.3 on page 345.

•

native This is discussed in Section 2.11 on page 74.•
strict floating point A method declared strictfp has all floating-point arithmetic evaluated strictly.
If a method is declared within a class declared strictfp, then that method is implicitly declared
strictfp. See Section 9.1.3 on page 203 for details.

•

An abstract method cannot be static, final, synchronized, native, or strict. A native method cannot be strict.

When multiple modifiers are applied to the same method declaration, we recommend using the order listed.

2.6.1. Static Methods

A static method is invoked on behalf of an entire class, not on a specific object instantiated from that class.
Such methods are also known as class methods. A static method might perform a general task for all
objects of the class, such as returning the next available serial number or something of that nature.

A static method can access only static fields and other static methods of the class. This is because
non-static members must be accessed through an object reference, and no object reference is available
within a static methodthere is no this reference.

In this book when we use the term method, we usually mean the non-static kind. When the context makes it
ambiguous, we use the term non-static method to be clear.

Exercise 2.9: Add a static method to Vehicle that returns the highest identification number used thus far.

2.6.2. Method Invocations

Methods are invoked as operations on objects via references using the dot (.) operator:

reference.method(arguments)

76

76

In the BodyPrint example we invoke the println method on the object referred to by the static reference
System.out and passing a single String argument formed by concatenating a number of other strings.

Each method is declared to have a specific number of parameters, each of a specific type. The last parameter
of a method can be declared as a sequence of parameters of a given type. This is indicated by an ellipse (...)
after the type name. For example, String... is a sequence of zero or more String objects. Sequence
parameters allow you to invoke the method by passing in a variable number of arguments, some of which will
correspond to that sequence. These variable argument methods are described in the next section.

When a method is invoked the caller must provide an argument of the appropriate type for each of the
parameters declared by the method. An argument need not be exactly the same type as its corresponding
parameter because some automatic conversions are applied. For example, a byte argument can be converted
to an int parameter, and wrapper objects can be converted to their primitive values (and vice-versa) as
neededsee "Boxing Conversions" on page 198.

Methods also have a return type, either a primitive type or a reference type. If a method does not return any
value, the place where a return type would go is filled with a void.

The BodyPrint example illustrates a common situation in which you would like to examine the state of an
object. Rather than providing access to all the fields of the object, a class can define a method that returns a
string representation of the state of the object. For example, here is a method of the Body class to return a
String that describes the particular Body object it is invoked upon:

public String toString() {
 String desc = idNum + " (" + name + ")";
 if (orbits != null)
 desc += " orbits " + orbits.toString();
 return desc;
}

This method uses + and += to concatenate String objects. It first builds a string that describes the identifier
and name. If the body orbits another body, we append the string that describes that body by invoking its
toString method. This recursion builds a string of bodies orbiting other bodies until the chain ends with an
object that doesn't orbit anything. The resulting string is then returned to the caller by the return statement.

The toString method of an object is specialit is invoked to get a String when an object is used in a
string concatenation expression using the + operator. Consider these expressions:

System.out.println("Body " + sun);
System.out.println("Body " + earth);

The toString methods of sun and earth are invoked implicitly and produce the following output:

Body 0 (Sol)
Body 1 (Earth) orbits 0 (Sol)

All objects have a toString method whether their class explicitly defines one or notthis is because all
classes extend the class Object and it defines the toString method. Class extension and the Object
class are discussed in Chapter 3.

77

77

Exercise 2.10: Add a toString method to Vehicle.

Exercise 2.11: Add a toString method to LinkedList.

2.6.3. Methods with Variable Numbers of Arguments

The last parameter in a method (or constructor) parameter list can be declared as a sequence of a given type.
To indicate that a parameter is a sequence you write an ellipse (...) after the parameter type, but before its
name. For example, in

public static void print(String... messages) {
 // ...
}

the parameter messages is declared to be a sequence of String objects. Sequence parameters allow a
method to be invoked with a variable number of arguments (including zero) that form the sequence. Such
methods are known as variable-argument, or more commonly varargs methods; methods that don't declare a
sequence parameter are known as fixed-argument methods.[2]

[2] More formally, the number of arguments that can be passed to a method invocation is
known as the arity of the invocation. Varargs methods are variable-arity methods, while
fixed-argument methods are fixed-arity methods.

The need to process a variable number of arguments can arise in many situations. For example, our Body
objects already track which other body they orbit, but it can be useful to know which Body objects they are
orbited by. While a given body generally only orbits one other body, it may itself be orbited by many other
bodies. To track this we could define an array of Body objects and provide a method to add each orbiting
body, one at a time, to that array. That is not an unreasonable solution, but it is much more convenient if we
just define a method that can take a sequence of Body objects:

public void setOrbiters(Body... bodies) {
 // ... store the values ...
}

You could then use this method in the following way:

Body sun = new Body("Sol", null);
Body earth = new Body("Earth", sun);
Body moon = new Body("Moon", earth);
Body mars = new Body("Mars", sun);
Body phobos = new Body("Phobos", mars);

Body deimos = new Body("Deimos", mars);

earth.setOrbiters(moon);
mars.setOrbiters(phobos, deimos);

You may be wondering what type the parameter sequence bodies has inside setOrbitersquite simply it
is an array of Body objects. Declaring a parameter as a sequence is nothing more than asking the compiler to
construct an array for you and to set its elements to be the arguments actually passed for the sequence. When

78

78

you invoke a method, the compiler will match each supplied argument to a named parameter. If the compiler
finds a sequence parameter then it will bundle all the remaining arguments into an array of the type specified
by the sequence parameterremember a sequence parameter must be the last declared parameter. Of course,
those arguments must be of the right type to be stored in the array. If no arguments are left to store in the array
then a zero-length array is created and passed as the argument. Knowing this, you could save the compiler the
trouble and pass an array yourself:

Body[] marsMoons = { phobos, deimos };
mars.setOrbiters(marsMoons);

But in most cases it is easier to just let the compiler do its job.

Sometimes the compiler will need some help working out what you intended a particular method invocation
to mean. For example, suppose you invoke setOrbiters with the single argument null. Does that mean
to pass null as the array (and so have no array) or does it mean to have an array of length one with a null
entry? The compiler can't be sure so it will give you a warning. To remove the ambiguity you need to cast
null to a suitable typefor a sequence parameter of type T, if you cast to T then you get an array of T of
length one with a null enTRy; if you cast to T[] then you get a null array reference. Other ambiguities
can arise in the context of method overloading, but we'll get to those later (see "Overloading Methods" on
page 69).

You've already seen an example of another varargs method in use, but may not have realized it. The printf
method that was introduced on page 23 is declared to take a String and a sequence of Objects. For each
format specifier in the format string, the method expects a corresponding object argument to be passed in.

Exercise 2.12: Considering your Vehicle and LinkedList classes, can you think of a need for any
methods that take a variable number of arguments?

2.6.4. Method Execution and Return

When a method is invoked, the flow of control passes from the calling method into the invoked method and
the statements of that method are executed in sequence according to the semantics of those statements. A
method completes execution and returns to the caller when one of three things happens: a return statement
is executed, the end of the method is reached, or an uncaught exception is thrown.

If a method returns any result, it can only return a single resulteither a primitive value or a reference to an
object. Methods that need to return more than one result can achieve this effect in several ways: return
references to objects that store the results as fields, take one or more parameters that reference objects in
which to store the results, or return an array that contains the results. Suppose, for instance, that you want to
write a method to return what a particular person can do with a given bank account. Multiple actions are
possible (deposit, withdraw, and so on), so you must return multiple permissions. You could create a
Permissions class whose objects store boolean values to say whether a particular action is allowed:

public class Permissions {
 public boolean canDeposit,
 canWithdraw,
 canClose;
}

Here is a method that fills in the fields to return multiple values:

79

79

public class BankAccount {
 private long number; // account number
 private long balance; // current balance (in cents)

 public Permissions permissionsFor(Person who) {
 Permissions perm = new Permissions();
 perm.canDeposit = canDeposit(who);
 perm.canWithdraw = canWithdraw(who);
 perm.canClose = canClose(who);
 return perm;
 }

 // ... define canDeposit et al ...
}

In methods that return a value, every path through the method must either return a value that is assignable to a
variable of the declared return type or throw an exception. The permissionsFor method could not return,
say, a String, because you cannot assign a String object to a variable of type Permissions. But you
could declare the return type of permissionsFor as Object without changing the return statement,
because you can assign a Permissions object reference to a variable of type Object, since (as you know)
all classes extend Object. The notion of being assignable is discussed in detail in Chapter 3.

2.6.5. Parameter Values

All parameters to methods are passed "by value." In other words, values of parameter variables in a method
are copies of the values the invoker specified as arguments. If you pass a double to a method, its parameter
is a copy of whatever value was being passed as an argument, and the method can change its parameter's
value without affecting values in the code that invoked the method. For example:

class PassByValue {
 public static void main(String[] args) {
 double one = 1.0;

 System.out.println("before: one = " + one);
 halveIt(one);
 System.out.println("after: one = " + one);
 }

 public static void halveIt(double arg) {
 arg /= 2.0; // divide arg by two
 System.out.println("halved: arg = " + arg);
 }
}

The following output illustrates that the value of arg inside halveIt is divided by two without affecting the
value of the variable one in main:

before: one = 1.0
halved: arg = 0.5
after: one = 1.0

You should note that when the parameter is an object reference, it is the object referencenot the object
itselfthat is passed "by value." Thus, you can change which object a parameter refers to inside the method

80

80

without affecting the reference that was passed. But if you change any fields of the object or invoke methods
that change the object's state, the object is changed for every part of the program that holds a reference to it.
Here is an example to show this distinction:

class PassRef {
 public static void main(String[] args) {
 Body sirius = new Body("Sirius", null);

 System.out.println("before: " + sirius);
 commonName(sirius);
 System.out.println("after: " + sirius);
 }

 public static void commonName(Body bodyRef) {
 bodyRef.name = "Dog Star";
 bodyRef = null;
 }
}

This program produces the following output:

before: 0 (Sirius)
after: 0 (Dog Star)

Notice that the contents of the object have been modified with a name change, while the variable sirius
still refers to the Body object even though the method commonName changed the value of its bodyRef
parameter variable to null. This requires some explanation.

The following diagram shows the state of the variables just after main invokes commonName:

At this point, the two variables sirius (in main) and bodyRef (in commonName) both refer to the same
underlying object. When commonName changes the field bodyRef.name, the name is changed in the
underlying object that the two variables share. When commonName changes the value of bodyRef to null,
only the value of the bodyRef variable is changed; the value of sirius remains unchanged because the
parameter bodyRef is a pass-by-value copy of sirius. Inside the method commonName, all you are
changing is the value in the parameter variable bodyRef, just as all you changed in halveIt was the value
in the parameter variable arg. If changing bodyRef affected the value of sirius in main, the "after" line
would say "null". However, the variable bodyRef in commonName and the variable sirius in main
both refer to the same underlying object, so the change made inside commonName is visible through the
reference sirius.

Some people will say incorrectly that objects are passed "by reference." In programming language design, the
term pass by reference properly means that when an argument is passed to a function, the invoked function
gets a reference to the original value, not a copy of its value. If the function modifies its parameter, the value
in the calling code will be changed because the argument and parameter use the same slot in memory. If the
Java programming language actually had pass-by-reference parameters, there would be a way to declare

81

81

halveIt so that the above code would modify the value of one, or so that commonName could change the
variable sirius to null. This is not possible. The Java programming language does not pass objects by
reference; it passes object references by value. Because two copies of the same reference refer to the same
actual object, changes made through one reference variable are visible through the other. There is exactly one
parameter passing modepass by valueand that helps keep things simple.

You can declare method parameters to be final, meaning that the value of the parameter will not change
while the method is executing. Had bodyRef been declared final, the compiler would not have allowed
you to change its value to null. When you do not intend to change a parameter's value, you can declare it
final so the compiler can enforce this expectation. A final declaration can also protect against assigning
a value to a parameter when you intended to assign to a field of the same name. The declaration can also help
the compiler or virtual machine optimize some expressions using the parameter, because it is known to remain
the same. A final modifier on a parameter is an implementation detail that affects only the method's code,
not the invoking code, so you can change whether a parameter is final without affecting any invoking code.

2.6.6. Using Methods to Control Access

The Body class with its various constructors is considerably easier to use than its simple data-only form, and
we have ensured that the idNum is set both automatically and correctly. But a programmer could still mess up
the object by setting its idNum field after construction because the idNum field is public and therefore
exposed to change. The idNum should be read-only data. Read-only data in objects is common, but there is
no keyword to apply to a field that allows read-only access outside the class while letting the class itself
modify the field.

To enforce read-only access, you must either make the field final, which makes it read-only for the lifetime
of the object, or you must hide it. You hide the field by making the idNum field private and providing a
new method so that code outside the class can read its value using that method:

class Body {
 private long idNum; // now "private"

 public String name = "<unnamed>";
 public Body orbits = null;

 private static long nextID = 0;

 Body() {
 idNum = nextID++;
 }

 public long getID() {
 return idNum;
 }

 //...
}

Now programmers who want to use the body's identifier will invoke the getID method, which returns the
value. There is no longer any way for programmers to modify the identifierit has effectively become a
read-only value outside the class. It can be modified only by the internal methods of the Body class.

Methods that regulate access to internal data are sometimes called accessor methods. Their use promotes
encapsulation of the class's data.

82

82

Even if an application doesn't require fields to be read-only, making fields private and adding methods to set
and fetch them enables you to add actions that may be needed in the future. If programmers can access a
class's fields directly, you have no control over the values they will use or what happens when values are
changed. Additionally, making a field part of the contract of a class locks in the implementation of that
classyou can't change the implementation without forcing all clients to be recompiled. For example, a future
version of Body may want to look-up the ID number in a database indexed by the body's name and not
actually store the ID number in the object at all. Such a change cannot be made if idNum is accessible to
clients. For these reasons, you will see very few public or protected fields in subsequent examples in
this book.

Methods to get or set a value in an object's state are sometimes said to define a property of that object. For
example, the Body class's getID can be said to define an ID property for Body objects that is retrieved by
the getID method, and implemented by the idNum field. Some automatic systems, including those for the
JavaBeans™ component architecture, use these conventions to provide automatic property manipulation
systems; see Section 25.3 on page 721. We can and should define the name and orbits fields to be
properties by making them private and providing set and get methods for them:

class Body {
 private long idNum;
 private String name = "<unnamed>";
 private Body orbits = null;

 private static long nextID = 0;

 // constructors omitted ...

 public long getID() { return idNum; }
 public String getName() { return name; }
 public void setName(String newName) {
 name = newName;
 }
 public Body getOrbits() { return orbits; }
 public void setOrbits(Body orbitsAround) {
 orbits = orbitsAround;
 }
}

Making a field final can be another way to prevent unwanted modifications to a field, but immutability and
accessibility should not be confused. If a field is immutable then it should be declared final regardless of
accessibility. Conversely, if you don't want a field to form part of the contract of a class you should hide it
behind a method, regardless of whether the field is read-only or modifiable.

Now that we have made all the fields of Body private, we can return to an earlier remark that access control is
per-class not per-object. Suppose that a body could be captured by another body and forced to orbit around it,
we could define the following method in Body:

public void capture(Body victim) {
 victim.orbits = this;
}

If access control were per-object, then the capture method when invoked on one object would not be able
to access the private orbits field of the victim body object to modify it. But because access control is
per-class, the code of a method in a class has access to all the fields of all objects of that classit simply needs a
reference to the object, such as via a parameter as above. Some object-oriented languages advocate per-object
access control, but the Java programming language is not one of them.

83

83

Exercise 2.13: Make the fields in your Vehicle class private, and add accessor methods for the fields.
Which fields should have methods to change them, and which should not?

Exercise 2.14: Make the fields in your LinkedList class private, and add accessor methods for the
fields. Which fields should have methods to change them, and which should not?

Exercise 2.15: Add a changeSpeed method that changes the current speed of the vehicle to a passed-in
value and add a stop method that sets the speed to zero.

Exercise 2.16: Add a method to LinkedList to return the number of elements in a list.

2.7. this

You have already seen (on page 52) how you can use an explicit constructor invocation to invoke another one
of your class's constructors at the beginning of a constructor. You can also use the special object reference
this inside a non-static method, where it refers to the current object on which the method was invoked.
There is no this reference in a static method because there is no specific object being operated on.

The this reference is most commonly used as a way to pass a reference to the current object as an argument
to other methods. Suppose a method requires adding the current object to a list of objects awaiting some
service. It might look something like this:

service.add(this);

The capture method in class Body also used this to set the value of the victim's orbits field to the
current object.

An explicit this can be added to the beginning of any field access or method invocation in the current
object. For example, the assignment to name in the Body class two-argument constructor

name = bodyName;

is equivalent to the following:

this.name = bodyName;

Conventionally, you use this only when it is needed: when the name of the field you need to access is
hidden by a local variable or parameter declaration. For example, we could have written the two-argument
Body constructor as

public Body(String name, Body orbits) {
 this();
 this.name = name;
 this.orbits = orbits;
}

84

84

The name and orbits fields are hidden from the constructor by the parameters of the same name. To
access, for example, the name field instead of the name parameter, we prefix it with this to specify that the
name is for the field belonging to "this" object. Deliberately hiding identifiers in this manner is considered
acceptable programming practice only in this idiomatic use in constructors and "set" methodssome coding
guidelines and development environments advocate never hiding identifiers, even in these cases. The way in
which names are resolved is discussed in "The Meanings of Names" on page 178.

2.8. Overloading Methods

Each method has a signature, which is its name and the number and types of its parameters. Two methods can
have the same name if they have different numbers or types of parameters and thus different signatures. This
feature is called overloading because the simple name of the method has an overloaded (more than one)
meaning. When you invoke a method, the compiler uses the number and types of arguments to find the best
match from the available overloads. Here are some orbitsAround methods for our Body class that return
TRue if the current body orbits around the specified body or a body with the specified identifier:

public boolean orbitsAround(Body other) {
 return (orbits == other);
}
public boolean orbitsAround(long id) {
 return (orbits != null && orbits.idNum == id);
}

Both methods declare one parameter, but the type of the parameter differs. If the method orbitsAround is
invoked with a Body reference as an argument, the version of the method that declares a Body parameter is
invokedthat version compares the passed in reference to the body's own orbits reference. If
orbitsAround is invoked with a long argument, the version of the method that declares a long
parameter is invokedthat version of the method compares the passed in identification number with the idNum
field of the object it orbits. If the invocation matches neither of these signatures, the code will not compile.

For varargs methods, a sequence parameter T... is treated as being a parameter of type T[] for overloading
purposes. So if two signatures differ only because one declares a sequence and the other an array, then a
compile-time error occurs.

The signature does not include the return type or the list of thrown exceptions, and you cannot overload
methods based on these factors. A full discussion of how the language chooses which available overloaded
method to invoke for a given invocation can be found in "Finding the Right Method" on page 224.

As you may have realized, constructors can also be overloaded in the same way that methods are.

Overloading is typically used when a method or constructor can accept the same information presented in a
different form, as in the orbitsAround example, or when it can use a number of parameters, some of
which have default values and need not be supplied. For example, the Body class might have two overloaded
constructors: one that takes a name and another Body object that it orbits around (as shown on page 55) and a
second that takes only a name, indicating that body does not orbit another body.

You should use overloading judiciously and carefully. While overloading based on the number of arguments
is usually quite clear, overloading based on the same number but different types of arguments can be
confusing. When you add varargs methods to the mix, even overloading based on different numbers of
parameters can become confusing when reading or writing invocations of those methodsdoes that
two-argument invocation match two fixed parameters, or one fixed parameter and a sequence with one

85

85

element, or just a sequence with two elements? For example, the following shows extremely poor use of
overloading:

public static void print(String title) {
 // ...
}
public static void print(String title, String... messages) {
 // ...
}
public static void print(String... messages) {
 // ...
}

Given the invocation

print("Hello"); // which print ?

which print method is to be invoked? While not obvious, this example actually has clearly defined
behavior: a fixed-argument method will always be selected over a varargs methodagain, see "Finding the
Right Method" on page 224 for details. So in this case it will invoke the print method that takes a single
String parameter. In contrast, this invocation is ambiguous and results in a compile-time error:

print("Hello", "World"); // INVALID: ambiguous invocation

This could be a string and a one-element sequence, or a two-element sequence. The only way to resolve this
ambiguity is to pass actual arrays if you intend to match with the sequence parameters:

print("Hello", new String[] {"World"});
print(new String[] { "Hello", "World" });

The first invocation now clearly matches the two-parameter print method, and the second clearly matches
the single-sequence-parameter print method.

You can best avoid such situations by never overloading methods in a way that leads to such ambiguity.

Exercise 2.17: Add two turn methods to Vehicle: one that takes a number of degrees to turn and one that
takes either of the constants Vehicle.TURN_LEFT or Vehicle.TURN_RIGHT.

2.9. Importing Static Member Names

Static members should generally be referenced using the name of the class to which the static member
belongs, as in System.out or Math.sqrt. This is usually the best practice because it makes clear what
your code is referring to. But using the name of the class every time you reference a static field or method can
sometimes make your code cluttered and more difficult to understand. For example, suppose you needed to
define the mathematical function to calculate the hyperbolic tangent (tanh).[3] This can be calculated using the
Math.exp function:

86

86

[3] This function is part of the math library so there's no need to actually do this.

static double tanh(double x) {
 return (Math.exp(x) - Math.exp(-x)) /
 (Math.exp(x) + Math.exp(-x));
}

The appearance of Math tHRoughout the expression is very distracting and certainly doesn't improve the
readability of the code. To alleviate this problem you can tell the compiler that whenever you refer to the
method exp, you mean the static method Math.exp. You do this with a static import statement:

import static java.lang.Math.exp;

A static import statement must appear at the start of a source file, before any class or interface declarations.
Given the previous static import statement, anywhere we invoke a method exp in our source file it will be
taken to mean Math.exp (assuming we don't hide it with another declaration of expsee "The Meanings of
Names" on page 178). Now we can rewrite our example more clearly as:

static double tanh(double x) {
 return (exp(x) - exp(-x)) /
 (exp(x) + exp(-x));
}

A static import statement consists of the keyword phrase importstatic , followed by the fully qualified
name of the class or interface you are importing the static member from, a dot and then the static member's
name. Like all statements it is terminated by a semicolon.

A static import on demand statement uses an asterisk (*) instead of a member name. This tells the compiler
that if it finds names that it doesn't know about, it should look at the type given by the static import on
demand statement to see if it has a static member by that name. If so, the compiler will assume that you
intended to refer to the static member. For example, if our hyperbolic tangent function were part of a class that
defined many mathematical functions and used many of the static methods and constants of the Math class,
then we might use a static import on demand statement to import all of those method and constant names:

import static java.lang.Math.*;

When names can be imported in this way it is easier for naming conflicts to occur. There are various rules
about how static import and static import on demand work with each other and with the other names used in
your program. These are explained in more detail in "The Meanings of Names" on page 178.

The use of static imports can help the readability of your code, but if misused they can also make it harder to
understand what your code is doing. When the reader sees Math.exp it is quite evident what is being
referred to, but a simple exp is not so clear. If you have multiple static import on demand statements, the
reader will have to look up each of the types to see if they have a static member named exp. As a general rule
you should use static imports to improve the readability and clarity of your code, not to save yourself some
typing.

87

87

2.10. The main Method

Details of invoking an application vary from system to system, but whatever the details, you must always
provide the name of a class that drives the application. When you run a program, the system locates and runs
the main method for that class. The main method must be public, static, and void (it returns
nothing), and it must accept a single argument of type String[]. Here is an example that prints its
arguments:

class Echo {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.print(args[i] + " ");
 System.out.println();
 }
}

The String array passed to main contains the program arguments. They are usually typed by users when
they run the program. For example, on a command-line system such as UNIX or a DOS shell, you might run
the Echo application this way:

java Echo in here

In this command, java is the Java bytecode interpreter, Echo is the name of the class, and the rest of the
words are the program arguments. The java command finds the compiled bytecodes for the class Echo,
loads them into a Java virtual machine, and invokes Echo.main with the program arguments contained in
strings in the String array. The result is the following output:

in here

The name of the class is not included in the strings passed to main. You already know the name because it is
the name of the class in which main is declared.

An application can have any number of main methods because each class in the application can have one.
Which class's main method is used is specified each time the program is run, as Echo was.

Exercise 2.18: Change Vehicle.main to create cars with owners whose names are specified on the
command line, and then print them.

2.11. Native Methods

If you need to write a program that will use some existing code that isn't written in the Java programming
language, or if you need to manipulate some hardware directly, you can write native methods. A native
method lets you implement a method that can be invoked from the Java programming language but is written
in a "native" language, usually C or C++. Native methods are declared using the native modifier. Because
the method is implemented in another language, the method body is specified as a semicolon. For example,
here is a declaration of a native method that queries the operating system for the CPU identifier of the host
machine:

public native int getCPUID();

88

88

Other than being implemented in native code, native methods are like all other methods: they can be
overloaded, overridden, final, static, synchronized, public, protected, or private. A
native method cannot, however, be declared abstract or strictfp.

If you use a native method, all portability and safety of the code are lost. You cannot, for instance, use a
native method in almost any code you expect to download and run from across a network connection (an
applet, for example). The downloading system may or may not be of the same architecture, and even if it is, it
might not trust your system well enough to run arbitrary native code.

Native methods are implemented using an API provided by the people who wrote the virtual machine on
which the code executes. The standard one for C programmers is called JNIJava Native Interface. Others are
being defined for other native languages. A description of these APIs is beyond the scope of this book.

The significant problems we face cannot be solved by the same level of thinking that created
them.

Albert Einstein

Chapter 3. Extending Classes

I am, in point of fact, a particularly haughty and exclusive person, of pre-Adamite ancestral
descent. You will understand this when I tell you that I can trace my ancestry back to a
protoplasmal primordial atomic globule.

Gilbert and Sullivan, The Mikado

The quick tour (Chapter 1) described briefly how a class can be extended, or subclassed, and how an object of
an extended class can be used wherever the original class is required. The term for this capability is
polymorphism, meaning that an object of a given class can have multiple forms, either as its own class or as
any class it extends. The new class is a subclass or extended class of the class it extends; the class that is
extended is its superclass.

The collection of methods and fields that are accessible from outside a class, together with the description of
how those members are expected to behave, is often referred to as the class's contract. The contract is what the
class designer has promised that the class will do. Class extension provides two forms of inheritance:

inheritance of contract or type, whereby the subclass acquires the type of the superclass and so can be
used polymorphically wherever the superclass could be used; and

•

inheritance of implementation, whereby the subclass acquires the implementation of the superclass in
terms of its accessible fields and methods.

•

Class extension can be used for a number of purposes. It is most commonly used for specializationwhere the
extended class defines new behavior and so becomes a specialized version of its superclass. Class extension
may involve changing only the implementation of an inherited method, perhaps to make it more efficient.
Whenever you extend a class, you create a new class with an expanded contract. You do not, however, change
the part of the contract you inherit from the class you extended. Changing the way that the superclass's
contract is implemented is reasonable, but you should never change the implementation in a way that violates
that contract.

The ability to extend classes interacts with the access control mechanisms to expand the notion of contract
that a class presents. Each class can present two different contractsone for users of the class and one for

89

89

extenders of the class. Both of these contracts must be carefully designed.

With class extension, inheritance of contract and inheritance of implementation always occur together.
However, you can define new types independent of implementation by using interfaces. You can also reuse
existing implementations, without affecting type, by manually using composition and forwarding. Interfaces
and composition are discussed in Chapter 4.

Class extension that involves generic classes has its own special rules concerning redefining members,
overriding, and overloading. These rules are discussed in detail in Chapter 11. In this chapter, generic types
are not considered.

3.1. An Extended Class

To demonstrate subclassing, we start with a basic attribute class designed to store namevalue pairs. Attribute
names are human-readable strings, such as "color" or "location." Attribute values are determined by the kind
of attribute; for example, a "location" may have a string value representing a street address, or it may be a set
of integer values representing latitude and longitude.

public class Attr {
 private final String name;
 private Object value = null;

 public Attr(String name) {
 this.name = name;
 }

 public Attr(String name, Object value) {
 this.name = name;
 this.value = value;
 }

 public String getName() {
 return name;
 }

 public Object getValue() {
 return value;
 }

 public Object setValue(Object newValue) {
 Object oldVal = value;
 value = newValue;
 return oldVal;
 }

 public String toString() {
 return name + "='" + value + "'";
 }
}

An attribute must have a name, so each Attr constructor requires a name parameter. The name must be
immutable (and so is marked final) because it may be used, for example, as a key into a hashtable or sorted
list. In such a case, if the name field were modified, the attribute object would become "lost" because it would
be filed under the old name, not the modified one. Attributes can have any type of value, so the value is stored
in a variable of type Object. The value can be changed at any time. Both name and value are private
members so that they can be accessed only via the appropriate methods. This ensures that the contract of
Attr is always honored and allows the designer of Attr the freedom to change implementation details in

90

90

the future without affecting clients of the class.

Every class you have seen so far is an extended class, whether or not it is declared as such. A class such as
Attr that does not explicitly extend another class implicitly extends the Object class. Object is at the
root of the class hierarchy. The Object class declares methods that are implemented by all objectssuch as
the toString method you saw in Chapter 2. Variables of type Object can refer to any object, whether it is
a class instance or an array. The Object class itself is described in more detail on page 99.

The next class extends the notion of attribute to store color attributes, which might be strings that name or
describe colors. Color descriptions might be color names like "red" or "ecru" that must be looked up in a table,
or numeric values that can be decoded to produce a standard, more efficient color representation we call
ScreenColor (assumed to be defined elsewhere). Decoding a description into a ScreenColor object is
expensive enough that you would like to do it only once. So we extend the Attr class to create a
ColorAttr class to support a method to retrieve a decoded ScreenColor object. We implement it so the
decoding is done only once:

class ColorAttr extends Attr {
 private ScreenColor myColor; // the decoded color

 public ColorAttr(String name, Object value) {
 super(name, value);
 decodeColor();
 }

 public ColorAttr(String name) {
 this(name, "transparent");
 }

 public ColorAttr(String name, ScreenColor value) {
 super(name, value.toString());
 myColor = value;
 }

 public Object setValue(Object newValue) {
 // do the superclass's setValue work first
 Object retval = super.setValue(newValue);
 decodeColor();
 return retval;
 }

 /** Set value to ScreenColor, not description */
 public ScreenColor setValue(ScreenColor newValue) {
 // do the superclass's setValue work first
 super.setValue(newValue.toString());
 ScreenColor oldValue = myColor;
 myColor = newValue;
 return oldValue;
 }

 /** Return decoded ScreenColor object */
 public ScreenColor getColor() {
 return myColor;
 }

 /** set ScreenColor from description in getValue */
 protected void decodeColor() {
 if (getValue() == null)
 myColor = null;
 else
 myColor = new ScreenColor(getValue());
 }
}

91

91

We first create a new ColorAttr class that extends the Attr class. The ColorAttr class does everything
the Attr class does and adds new behavior. Therefore, the Attr class is the superclass of ColorAttr, and
ColorAttr is a subclass of Attr. The class hierarchy for these classes looks like this, going bottom-up
from subclass to superclass:

The extended ColorAttr class does three primary things:

It provides three constructors: two to mirror its superclass and one to directly accept a
ScreenColor object.

•

It both overrides and overloads the setValue method of its superclass so that it can set the color
object when the value is changed.

•

It provides a new getColor method to return a value that is the color description decoded into a
ScreenColor object.

•

We look at the intricacies of the construction process and the effect of inheritance on the different class
members over the next few sections.

Note the use of the protected access modifier on the decodeColor method. By making this method
protected it can be accessed in the current class or in a subclass but is not externally visible. We look in
detail at what protected access really means on page 93.

Exercise 3.1: Starting with the Vehicle class from the exercises in Chapter 2, create an extended class
called PassengerVehicle to add a capability for counting the number of seats available in the car and the
number currently occupied. Provide a new main method in PassengerVehicle to create a few of these
objects and print them out.

3.2. Constructors in Extended Classes

An object of an extended class contains state variables (fields) that are inherited from the superclass as well as
state variables defined locally within the class. To construct an object of the extended class, you must
correctly initialize both sets of state variables. The extended class's constructor can deal with its own state but
only the superclass knows how to correctly initialize its state such that its contract is honored. The extended
class's constructors must delegate construction of the inherited state by either implicitly or explicitly invoking
a superclass constructor.

A constructor in the extended class can directly invoke one of the superclass's constructors using another kind
of explicit constructor invocation: the superclass constructor invocation, which uses the super construct.
This is shown in the first constructor of the ColorAttr class:

public ColorAttr(String name, Object value) {
 super(name, value);
 decodeColor();
}

92

92

This constructor passes the name and value up to the corresponding two-argument superclass constructor. It
then invokes its own decodeColor method to make myColor hold a reference to the correct
ScreenColor object.

You can defer the choice of which superclass constructor to use by explicitly invoking one of your class's own
constructors using this instead of super, as shown in the second constructor of ColorAttr.

public ColorAttr(String name) {
 this(name, "transparent");
}

We chose to ensure that every color attribute has a color. If a color value is not supplied we provide a default
of "TRansparent", hence the one-argument constructor invokes the two-argument constructor using a
default argument.

If you do not invoke a superclass constructor or one of your own constructors as your constructor's first
executable statement, the superclass's no-arg constructor is automatically invoked before any statements of the
new constructor are executed. That is, your constructor is treated as if

super();

were its first statement. If the superclass doesn't have a no-arg constructor, you must explicitly invoke another
constructor.

The third constructor of ColorAttr enables the programmer creating a new ColorAttr object to specify
the ScreenColor object itself.

public ColorAttr(String name, ScreenColor value) {
 super(name, value.toString());
 myColor = value;
}

The first two constructors must convert their parameters to ScreenColor objects using the decodeColor
method, and that presumably has some overhead. When the programmer already has a ScreenColor object
to provide as a value, you want to avoid the overhead of that conversion. This is an example of providing a
constructor that adds efficiency, not capability.

In this example, ColorAttr has constructors with the same signatures as its superclass's constructors. This
arrangement is by no means required. Sometimes part of an extended class's benefit is to provide useful
parameters to the superclass constructors based on few or no parameters of its own constructor. It is common
to have an extended class that has no constructor signatures in common with its superclass.

Constructors are not methods and are not inherited. If the superclass defines a number of constructors and an
extended class wishes to have constructors of the same form, then the extended class must explicitly declare
each constructor, even if all that constructor does is invoke the superclass constructor of the same form.

93

93

3.2.1. Constructor Order Dependencies

When an object is created, memory is allocated for all its fields, including those inherited from superclasses,
and those fields are set to default initial values for their respective types (zero for all numeric types, false
for boolean, '\u0000' for char, and null for object references). After this, construction has three
phases:

Invoke a superclass's constructor.1.
Initialize the fields using their initializers and any initialization blocks.2.
Execute the body of the constructor.3.

First the implicit or explicit superclass constructor invocation is executed. If an explicit this constructor
invocation is used then the chain of such invocations is followed until an implicit or explicit superclass
constructor invocation is found. That superclass constructor is then invoked. The superclass constructor is
executed in the same three phases; this process is applied recursively, terminating when the constructor for
Object is reached because there is no superclass constructor at that point. Any expressions evaluated as part
of an explicit constructor invocation are not permitted to refer to any of the members of the current object.

In the second stage all the field initializers and initialization blocks are executed in the order in which they are
declared. At this stage references to other members of the current object are permitted, provided they have
already been declared.

Finally, the actual statements of the constructor body are executed. If that constructor was invoked explicitly,
then upon completion, control returns to the constructor that invoked it, and executes the rest of its body. This
process repeats until the body of the constructor used in the new construct has been executed.

If an exception is thrown during the construction process, the new expression terminates by throwing that
exceptionno reference to the new object is returned. Because an explicit constructor invocation must be the
first statement in a constructor body, it is impossible to catch an exception thrown by another constructor. (If
you were allowed to catch such exceptions it would be possible to construct objects with invalid initial states.)

Here is an example you can trace to illustrate the different stages of construction:

class X {
 protected int xMask = 0x00ff;
 protected int fullMask;

 public X() {
 fullMask = xMask;
 }

 public int mask(int orig) {
 return (orig & fullMask);
 }
}

class Y extends X {
 protected int yMask = 0xff00;

 public Y() {

 fullMask |= yMask;
 }
}

94

94

If you create an object of type Y and follow the construction step by step, here are the values of the fields after
each step:

Step What Happens xMask yMask fullMask

0 Fields set to default values 0 0 0

1 Y constructor invoked 0 0 0

2 X constructor invoked (super) 0 0 0

3 Object constructor invoked 0 0 0

4 X field initialization 0x00ff 0 0

5 X constructor executed 0x00ff 0 0x00ff

6 Y field initialization 0x00ff 0xff00 0x00ff

7 Y constructor executed 0x00ff 0xff00 0xffff

Understanding this ordering is important when you invoke methods during construction. When you invoke a
method, you always get the implementation of that method for the actual type of the object. If the method uses
fields of the actual type, they may not have been initialized yet. During step 5, if the constructor X invoked
mask, it would use a fullMask value of 0x00ff, not 0xffff. This is true even though a later invocation
of maskafter the object was completely constructedwould use 0xffff.

Also, imagine that class Y overrides mask with an implementation that explicitly uses the yMask field in its
calculations. If the constructor for X used the mask method, it would actually invoke Y's mask method, and
at that point yMask would be 0 instead of the expected 0xff00.

Methods you invoke during the construction phase of an object must be designed with these factors in mind.
Your constructors should avoid invoking overridable methodsmethods that are not private, static, or
final. If you do invoke such methods, clearly list them in your documentation to alert anyone wanting to
override these methods of their potential unusual use.

Exercise 3.2: Type in the classes X and Y as shown previously, and add print statements to trace the values of
the masks. Add a main method and run it to see the results. (Hint: Use the printf methodshown in Chapter
1with a format specifier of %x to print integers in hexadecimal format.)

Exercise 3.3: If it were critical to set up these masks using the values from the extended class during
construction, how could you work around these problems?

3.3. Inheriting and Redefining Members

When you extend a class you can both add new members to a class and redefine existing members. Exactly
what effect redefining an inherited member has depends on the kind of member. You'll learn about field and
method members here, but we defer discussion of nested members until Chapter 5.

95

95

3.3.1. Overriding

In our new ColorAttr class we have both overridden and overloaded the instance method setValue:

Overloading a method is what you have already learned: providing more than one method with the
same name but with different signatures to distinguish them.

•

Overriding a method means replacing the superclass's implementation of a method with one of your
own. The signatures must be identicalbut the return type can vary in a particular way, as discussed
below.

•

Overloading an inherited method simply means that you have added a new method, with the same name as,
but a different signature from, an inherited method. In ColorAttr we have gone from having one
setValue method to having two overloaded forms of the method.

public Object setValue(Object newValue) {
 // ...
}
public ScreenColor setValue(ScreenColor newValue) {
 // ...
}

This is no different from having overloaded forms of a method declared in the same class.

Overriding a method means that you have replaced its implementation so that when the method is invoked on
an object of the subclass, it is the subclass's version of the method that gets invoked. In the ColorAttr
class, we overrode the Attr class's setValue(Object) by providing a new setValue(Object)
method in the ColorAttr class that uses the super keyword to invoke the superclass's implementation and
then invokes decodeColor. The super reference can be used in method invocations to access methods
from the superclass that are overridden in this class. You'll learn about super in detail on page 89.

When you're overriding methods, the signature must be the same as in the superclassif they differ then it is an
overload, not an override. The return type of an overriding method is allowed to vary in a specific way: If the
return type is a reference type then the overriding method can declare a return type that is a subtype of that
declared by the superclass method. Because a reference to a superclass can always hold a reference to an
instance of a subclass, this variation is perfectly safeit is referred to as being a covariant return type. We'll see
a good example of this when we look at object cloning on page 101. If the return type is a primitive type, then
the return type of the overriding method must be identical to that of the superclass method. It is an error if two
methods differ only in return type and the compiler will reject your class.

For overriding in a varargs method, as with overloading (see page 60), a sequence parameter of type T... is
treated the same as a parameter of type T[]. This means that an overriding method can "convert" the last
array parameter to a sequence, without changing the signature of the method. This allows clients of the
subclass to invoke that method with a variable number of arguments. Defining an overriding method that
replaces a sequence with an array is allowed, but is strongly discouraged. This is confusing and not useful, so
don't do it.[1]

[1] In the JDK 5.0 release the javac compiler issues a (somewhat misleading) warning in
both cases. It is expected that the warning when converting to a sequence will be removed. It
is possible that in a future release converting from a sequence to an array will be an error.

The overriding methods have their own access specifiers. A subclass can change the access of a superclass's
methods, but only to provide more access. A method declared protected in the superclass can be
redeclared protected (the usual thing to do) or declared public, but it cannot be declared private or
have package access. Making a method less accessible than it was in a superclass would violate the contract of

96

96

the superclass, because an instance of the subclass would not be usable in place of a superclass instance.

The overriding method is also allowed to change other method modifiers. The synchronized, native,
and strictfp modifiers can be freely varied because they are implementation concerns, as are any
annotationssee Chapter 15. The overriding method can be final but obviously the method it is overriding
cannotsee "Marking Methods and Classes final" on page 96 for the implications of final methods. An
instance method cannot have the same signature as an inherited static method, and vice versa. The overriding
method can, however, be made abstract, even though the superclass method was notsee "Abstract Classes
and Methods" on page 97.

A subclass can change whether a parameter in an overriding method is final; a final modifier for a
parameter is not part of the method signatureit is an implementation detail. Also, the overriding method's
throws clause can be different from that of the superclass method's as long as every exception type listed in
the overriding method is the same as or a subtype of the exceptions listed in the superclass's method. That is,
each type in the overriding method's tHRows clause must be polymorphically compatible with at least one of
the types listed in the throws clause of the supertype's method. This means that the throws clause of an
overriding method can have fewer types listed than the method in the superclass, or more specific types, or
both. The overriding method can even have no tHRows clause, which means that it results in no checked
exceptions. Exceptions and tHRows clauses are described in detail in Chapter 12.

3.3.2. Hiding Fields

Fields cannot be overridden; they can only be hidden. If you declare a field in your class with the same name
(regardless of type) as one in your superclass, that other field still exists, but it can no longer be accessed
directly by its simple name. You must use super or another reference of your superclass's type to access it.
We show you an example in the next section.

3.3.3. Accessing Inherited Members

When a method accesses an object's member that has been redefined in a subclass, to which member will the
method referthe superclass member or the subclass member? The answer to that depends on the kind of
member, its accessibility, and how you refer to it.

When you invoke a method through an object reference, the actual class of the object governs which
implementation is used. When you access a field, the declared type of the reference is used. The following
example will help explain:

class SuperShow {
 public String str = "SuperStr";

 public void show() {
 System.out.println("Super.show: " + str);
 }
}

class ExtendShow extends SuperShow {
 public String str = "ExtendStr";

 public void show() {
 System.out.println("Extend.show: " + str);

 }

 public static void main(String[] args) {
 ExtendShow ext = new ExtendShow();
 SuperShow sup = ext;

97

97

 sup.show();
 ext.show();
 System.out.println("sup.str = " + sup.str);
 System.out.println("ext.str = " + ext.str);
 }
}

There is only one object, but we have two variables containing references to it: One variable has type
SuperShow (the superclass) and the other variable has type ExtendedShow (the actual class). Here is the
output of the example when run:

Extend.show: ExtendStr
Extend.show: ExtendStr
sup.str = SuperStr
ext.str = ExtendStr

For the show method, the behavior is as you expect: The actual class of the object, not the type of the
reference, governs which version of the method is called. When you have an ExtendShow object, invoking
show always calls ExtendShow's show even if you access it through a reference declared with the type
SuperShow. This occurs whether show is invoked externally (as in the example) or internally within
another method of either ExtendShow or SuperShow.

For the str field, the type of the reference, not the actual class of the object, determines which class's field is
accessed. In fact, each ExtendShow object has two String fields, both called str, one of which is hidden
by ExtendShow's own, different field called str:

The field that gets accessed is determined at compile time based on the type of the reference used to access it.

Inside a method, such as show, a reference to a field always refers to the field declared in the class in which
the method is declared, or else to an inherited field if there is no declaration in that class. So in
SuperShow.show the reference to str is to SuperShow.str, whereas in ExtendShow.show the
reference to str is to ExtendShow.str.

You've already seen that method overriding enables you to extend existing code by reusing it with objects of
expanded, specialized functionality not foreseen by the inventor of the original code. But where fields are
concerned, it is hard to think of cases in which hiding them is a useful feature.

If an existing method had a parameter of type SuperShow and accessed str with that object's reference, it
would always get SuperShow.str even if the method were actually handed an object of type
ExtendShow. If the classes were designed to use a method instead of a field to access the string, the
overriding method would be invoked in such a case and the ExtendShow.str could be returned. This
hiding behavior is often another reason to prefer defining classes with private data accessed only by methods,

98

98

which are overridden, not hidden.

Hiding fields is allowed because implementors of existing superclasses must be free to add new public or
protected fields without breaking subclasses. If the language forbade using the same field name in a
superclass and a subclass, adding a new field to an existing superclass could potentially break any subclasses
already using those names.

If adding new fields to existing superclasses would break some unknown number of subclasses, you'd be
effectively immobilized, unable to add public or protected fields to a superclass. Purists might well
argue that classes should have only private data, but you get to decide on your style.

3.3.4. Accessibility and Overriding

A method can be overridden only if it is accessible. If the method is not accessible then it is not inherited, and
if it is not inherited it can't be overridden. For example, a private method is not accessible outside its own
class. If a subclass defines a method that coincidentally has the same signature and return type as the
superclass's private method, they are completely unrelatedthe subclass method does not override the
superclass's private method.

What does this mean in practice? An external invocation of the subclass method (assuming it is accessible
outside its class) results in the subclass implementation being invoked. This is normal behavior. But notice
that in the superclass, any invocations of the private method result in the superclass's implementation of the
method being invoked, not any like-named method in a subclass. In short, invocations of private methods
always invoke the implementation of the method declared in the current class.

When a method is inaccessible because the superclass and subclass are in different packages things are more
complicated. We defer a discussion of this until Chapter 18.

3.3.5. Hiding Static Members

Static members within a classwhether fields or methodscannot be overridden, they are always hidden. The fact
that they are hidden has little effect, howevereach static field or method should always be accessed via the
name of its declaring class, hence the fact that it gets hidden by a declaration in a subclass is of little
consequence. If a reference is used to access a static member then, as with instance fields, static members are
always accessed based on the declared type of the reference, not the type of the object referred to.

3.3.6. The super Keyword

The super keyword is available in all non-static methods of a class. In field access and method invocation,
super acts as a reference to the current object as an instance of its superclass. Using super is the only case
in which the type of the reference governs selection of the method implementation to be used. An invocation
of super.method always uses the implementation of method the superclass defines (or inherits). It does
not use any overriding implementation of that method further down the class hierarchy. Here is an example
that shows super in action:

class Base {
 /** return the class name */
 protected String name() {
 return "Base";
 }
}

class More extends Base {

99

99

 protected String name() {
 return "More";
 }

 protected void printName() {
 Base sref = (Base) this;

 System.out.println("this.name() = " + this.name());
 System.out.println("sref.name() = " + sref.name());
 System.out.println("super.name() = " + super.name());
 }
}

Although sref and super both refer to the same object using the type Base, only super will ignore the
real class of the object to use the superclass's implementation of name. The reference sref will act the same
way this acts, selecting an implementation of name based on the actual class of the object. Here is the
output of printName:

this.name() = More
sref.name() = More
super.name() = Base

3.4. Type Compatibility and Conversion

The Java programming language is strongly typed, which means that it checks for type compatibility at
compile time in most casespreventing incompatible assignments by forbidding anything questionable. Now
that you understand the basic type relationship defined by subclasses and superclasses, we can revisit a few
details regarding the compatibility of reference types within assignments (implicit or explicit) and conversion
between types. The full rules for how and when type conversions are applied, for both reference and primitive
types, are discussed in "Type Conversions" on page 216.

3.4.1. Compatibility

When you assign the value of an expression to a variable, either as part of an initializer, assignment statement,
or implicitly when an argument value is assigned to a method parameter, the type of the expression must be
compatible with the type of the variable. For reference types this means that the type of the expression must
be the same type as, or a subtype of, the declared type of the variableor can be converted to such a type. For
example, any method that expects an Attr object as a parameter will accept a ColorAttr object because
ColorAttr is a subtype of Attr. This is called assignment compatibility.[2] But the converse is not trueyou
cannot assign an Attr object to a variable of type ColorAttr, or pass an Attr object as an argument
when a ColorAttr is expected.

[2] There is a slight difference between direct assignment and parameter passingsee the
discussion on page 218.

The same rule applies for the expression used on a return statement within a method. The type of the
expression must be assignment compatible with the declared return type of the method.

The null object reference is a special case in that it is assignment compatible with all reference types,
including array typesa reference variable of any type can be assigned null.

100

100

The types higher up the type hierarchy are said to be wider, or less specific, than the types lower down the
hierarchy. The lower types are said to be narrower, or more specific, than their supertypes. When you are
expecting a supertype and receive a subtype, a widening conversion takes place. Such a conversion causes the
subtype object to be treated as an instance of the supertype and can be checked at compile time. No action is
needed by the programmer in a widening conversion. Going the other waytaking a reference to a supertype
and converting it to a reference to a subtypeis known as a narrowing conversion. Narrowing conversions must
be explicitly requested using the cast operator.

A variable, or an expression, of primitive type can be automatically converted to a reference type using an
instance of the wrapper class corresponding to that primitive typesuch as an int value becoming an
Integer object. Conversely, a reference to a wrapper object can be converted to the primitive value that is
being wrapped. These primitivetowrapper conversions (termed boxing conversions) are discussed in Chapter
8. The existence of the boxing conversions means that a variable of type Object can be assigned the value of
any expression that you can form in the Java programming language.

The type compatibility of an expression in a given context (assignment, argument-passing, operand, etc.) is
affected by different type conversions that can be applied manually or automatically, depending on that
context. Widening and boxing conversions are examples of type conversions that will be automatically
applied in some contexts. The different type conversions that exist and the contexts in which they are applied
are discussed in "Type Conversions" on page 216. If an expression requires multiple conversions, or if there is
no applicable automatic conversion (as in the case of a narrowing conversion), then you must tell the compiler
what conversion to apply by using the cast operator.

3.4.2. Explicit Type Casting

A cast is used to tell the compiler that an expression should be treated as having the type specified by the
castand when applied to primitive types can also affect the value of the expression. A cast consists of a type
name within parentheses, applied to an expression. In the previous example we used a widening cast in
printName to convert the type of this to its superclass type:

Base sref = (Base) this;

This cast was unnecessary but emphasized that we really wanted the current object to be treated as an instance
of its superclass. If we then try to assign sref back to a reference of the narrower More type, an explicit cast
is essential:

More mref = (More) sref;

Even though we know the object referred to is of the right type, the compiler still requires an explicit cast.

A widening conversion is also known as an upcast because it casts from one type to another further up the
type hierarchyit is also a safe cast because it is always valid. A narrowing conversion is also known as a
downcast because it casts from one type to another, further down the inheritance hierarchyit is also an unsafe
cast because it may not be valid.

When a cast is used to request a conversion, the compiler does not assume that the conversion is correct. If the
compiler can tell that is cast is correct, then it can apply the cast. If the compiler can tell that a cast is incorrect
then a compile time error can occur. If the compiler cannot ascertain that the cast is correct at compile time,
then a run time check will be performed. If the run time check fails because the cast is incorrect, then a
ClassCastException is thrown.

101

101

3.4.3. Testing for Type

You can test the class of an object by using the instanceof operator, which evaluates to true if the
expression on its left is a reference type that is assignment compatible with the type name on its right, and
false otherwise. Because null is not an instance of any type instanceof for null always returns
false. Using instanceof you can safely downcast a reference, knowing that no exception will be
thrown. For example:

if (sref instanceof More)
 mref = (More) sref;

Note that we still have to apply the castthat's to convince the compiler that we really meant to use the object as
a subclass instance.

Type testing with instanceof is particularly useful when a method doesn't require an object of a more
extended type but if passed such an object it can make use of the extended functionality. For example, a sort
method may accept a general List type as an argument, but if it actually receives a SortedList then it
doesn't have to do anything:

public static void sort(List list) {
 if (list instanceof SortedList)
 return;
 // else sort the list ...
}

3.5. What protected Really Means

We noted briefly that making a class member protected means it can be accessed by classes that extend
that class, but that is loose language. More precisely, beyond being accessible within the class itself and to
code within the same package (see Chapter 18), a protected member can also be accessed from a class through
object references that are of at least the same type as the classthat is, references of the class's type or one its
subtypes. An example will make this easier to understand.

Consider a linked-list implementation of a queue, class SingleLinkQueue, with methods add and
remove for storing an object at the tail of the queue and removing the object from the head of the queue,
respectively. The nodes of the queue are made up of Cell objects that have a reference to the next cell in the
queue and a reference to the object stored in the current cell.

class Cell {
 private Cell next;
 private Object element;
 public Cell(Object element) {
 this.element = element;
 }
 public Cell(Object element, Cell next) {
 this.element = element;
 this.next = next;
 }
 public Object getElement() {
 return element;
 }
 public void setElement(Object element) {

102

102

 this.element = element;
 }
 public Cell getNext() {
 return next;
 }
 public void setNext(Cell next) {
 this.next = next;
 }
}

A queue then consists of a reference to the head and tail cells and the implementation of add and remove.

public class SingleLinkQueue {
 protected Cell head;
 protected Cell tail;

 public void add(Object item) {/* ... */}
 public Object remove() {/* ... */}
}

We make the head and tail references protected so that extended classes can manipulate the linked-list
cells directly, rather than having to use add and removewhich would involve wrapping and unwrapping the
elements each time.

One group decides that it needs a priority queue in which items are stored in a specific order rather than
always being inserted at the tail. So it defines a PriorityQueue class in another package that extends
SingleLinkQueue and overrides add to insert the object in the right place. The PriorityQueue class's
implementation of add can access the head and tail fields inherited from SingleLinkQueuethe code
is in a subclass of SingleLinkQueue and the type of the object reference used (this) is the same as that
subclass, namely PriorityQueue, so access to the protected members is allowed. This is what you
would expect.

The group designing the priority queue needs an additional featureit wants to be able to merge two priority
queues. In a merge operation the target queue ends up with the elements of both queues, while the queue with
which it was merged becomes empty. The merge operation starts like this:

public void merge(PriorityQueue q) {
 Cell first = q.head;
 // ...
}

We are not accessing the protected member of the current object, but the protected member of an
object passed as an argument. This is allowed because the class attempting the access is PriorityQueue
and the type of the reference q is also PriorityQueue. If q were a subclass of PriorityQueue this
access would also be valid.

Later the group determines that there is a new requirement: It wants to be able to merge a
SingleLinkQueue with a PriorityQueue. So it defines an overloaded version of merge that starts
like this:

public void merge(SingleLinkQueue q) {
 Cell first = q.head;
 // ...

103

103

}

But this code won't compile.

The problem is that the class attempting to access the protected member is PriorityQueue while the
type of the reference to the object being accessed is SingleLinkQueue. SingleLinkQueue is not the
same as, nor a subclass of, PriorityQueue, so the access is not allowed. Although each
PriorityQueue is a SingleLinkQueue, not every SingleLinkQueue is a PriorityQueue.

The reasoning behind the restriction is this: Each subclass inherits the contract of the superclass and expands
that contract in some way. Suppose that one subclass, as part of its expanded contract, places constraints on
the values of protected members of the superclass. If a different subclass could access the protected members
of objects of the first subclass then it could manipulate them in a way that would break the first subclass's
contractand this should not be permissible.

Protected static members can be accessed in any extended class. If head were a static field, any method
(static or not) in PriorityQueue could access it. This is allowed because a subclass can't modify the
contract of its static members because it can only hide them, not override themhence, there is no danger of
another class violating that contract.

Members declared protected are also available to any code within the package of the class. If these
different queue classes were in the same package, they could access one another's head and tail fields, as
could any unrelated type in that package. Classes in the same package are assumed to be fairly trustworthy
and not to violate each other's contractssee Chapter 18. In the list "private, package, protected, public," each
access level adds to the kinds of code to which a member is accessible.

3.6. Marking Methods and Classes final

Marking a method final means that no extended class can override the method to change its behavior. In
other words, this is the final version of that method. Entire classes can also be marked final:

final class NoExtending {
 // ...
}

A class marked final cannot be extended by any other class, and all the methods of a final class are
themselves effectively final.

Final classes and methods can improve security. If a class is final, nobody can declare a class that extends
it, and therefore nobody can violate its contract. If a method is final, you can rely on its implementation
details (unless it invokes non-final methods, of course). You could use final, for example, on a
validatePassword method to ensure that it does what it is advertised to do instead of being overridden to
always return TRue. Or you can mark as final the class that contains the method so that it can never be
extended to confuse the implementation of validatePassword.

Marking a method or class final is a serious restriction on the use of the class. If you make a method
final, you should really intend that its behavior be completely fixed. You restrict the flexibility of your
class for other programmers who might want to use it as a base from which to add functionality to their code.
Marking an entire class final prevents anyone else from extending your class, limiting its usefulness to

104

104

others. If you make anything final, be sure that you want to create these restrictions.

In many cases, you can achieve the security of marking a whole class final by leaving the class extensible
and instead marking each method in the class as final. In this way, you can rely on the behavior of those
methods while still allowing extensions that can add functionality without overriding methods. Of course,
fields that the final methods rely on should be final or private, or else an extended class could change
behavior by changing those fields.

Another ramification of final is that it simplifies optimizations. When a non-final method is invoked, the
runtime system determines the actual class of the object, binds the method invocation to the correct
implementation of the method for that type, and then invokes that implementation. But if, for example, the
getName method was final in the Attr class and you had a reference to an object of type Attr or any
extended type, it can take fewer steps to invoke the method. In the simplest case, such as getName, an
invocation can be replaced with the actual body of the method. This mechanism is known as inlining. An
inlined method makes the following two statements perform the same:

system.out.println("id = " + rose.name);
System.out.println("id = " + rose.getName());

Although the two statements are equally efficient, a getName method allows the name field to be read-only
and gives you the benefits of abstraction, allowing you to change the implementation.

The same optimizations can be applied to private and static methods, because they too cannot be overridden.

Some type checks become faster with final classes. In fact, many type checks become compile time checks,
and errors can be caught earlier. If the compiler encounters a reference to a final class, it knows that the
object referred to is exactly that type. The entire class hierarchy for that class is known, so the compiler can
check whether any use is valid or invalid. With a non-final reference, some checks can happen only at run
time.

Exercise 3.4: Which methods (if any) of Vehicle and PassengerVehicle might reasonably be made
final?

3.7. Abstract Classes and Methods

An extremely useful feature of object-oriented programming is the concept of the abstract class. Using
abstract classes, you can declare classes that define only part of an implementation, leaving extended classes
to provide specific implementation of some or all of the methods. The opposite of abstract is concretea class
that has only concrete methods, including implementations of any abstract methods inherited from
superclasses, is a concrete class.

Abstract classes are helpful when some of the behavior is defined for most or all objects of a given type, but
other behavior makes sense only for particular classes and not for a general superclass. Such a class is
declared abstract, and each method not implemented in the class is also marked abstract. (If you need
to define some methods but you don't need to provide any implementation, you probably want to use
interfaces, which are described in Chapter 4.)

For example, suppose you want to create a benchmarking harness to provide an infrastructure for writing
benchmarked code. The class implementation could understand how to drive and measure a benchmark, but it
couldn't know in advance which benchmark would be run. Most abstract classes fit a pattern in which a
class's particular area of expertise requires someone else to provide a missing piecethis is commonly known as

105

105

the "Template Method" pattern. In many cases the expertise methods are good candidates for being final so
that the expertise cannot be compromised in any way. In this benchmarking example, the missing piece is
code that needs to be benchmarked. Here is what such a class might look like:

abstract class Benchmark {
 abstract void benchmark();

 public final long repeat(int count) {
 long start = System.nanoTime();
 for (int i = 0; i < count; i++)
 benchmark();
 return (System.nanoTime() - start);
 }
}

Any class with any abstract methods must be declared abstract. This redundancy helps the reader
quickly see that the class is abstract without scanning to see whether any method in the class is declared
abstract.

The repeat method provides the benchmarking expertise. It can time a run of count repetitions of the
benchmark. The method System.nanoTime returns a timestamp in nanosecondssee page 665. By
subtracting the starting time from the finishing time you get an approximation of the time spent executing the
benchmark. If the timing needs become more complex (perhaps measuring the time of each run and
computing statistics about the variations), this method can be enhanced without affecting any extended class's
implementation of its specialized benchmark code.

The abstract method benchmark must be implemented by each subclass that is not abstract itself.
This is why it has no implementation in this class, just a declaration. Here is an example of a simple
Benchmark extension:

class MethodBenchmark extends Benchmark {
 /** Do nothing, just return. */
 void benchmark() {
 }

 public static void main(String[] args) {
 int count = Integer.parseInt(args[0]);
 long time = new MethodBenchmark().repeat(count);
 System.out.println(count + " methods in " +
 time + " nanoseconds");
 }
}

This class times how long it takes to invoke an empty method benchmark, plus the loop overhead. You can
now time method invocations by running the application MethodBenchmark with the number of times to
repeat the test. The count is taken from the program arguments and decoded using the Integer class's
parseInt method on the argument string, as described in "String Conversions" on page 316.

Any class can override methods from its superclass to declare them abstract, turning a concrete method
into an abstract one at that point in the type tree. This technique is useful, for example, when a class's
default implementation is invalid for a part of the class hierarchy.

You cannot create an object of an abstract class because there would be no valid implementation for some
methods that might well be invoked.

106

106

Exercise 3.5: Write a new extended class that benchmarks something else, such as how long it takes to run a
loop from zero to some passed-in parameter.

Exercise 3.6: Change Vehicle so that it has an EnergySource object reference, which is associated with
the Vehicle in its constructor. EnergySource must be an abstract class, because a GasTank object's
measure of fullness will differ from that of a Battery object. Put an abstractempty method in
EnergySource and implement it in GasTank and Battery classes. Add a start method to Vehicle
that ensures that the energy source isn't empty.

3.8. The Object Class

The Object class is the root of the class hierarchy. Every class directly or indirectly extends Object and so
a variable of type Object can refer to any object, whether a class instance or an array. For example, the
Attr class can hold an attribute of any type, so its value field was declared to be of type Object. Such a
class cannot hold primitive types directly, but can hold references to the associated wrapper classsee Chapter
8.

The Object class defines a number of methods that are inherited by all objects. These methods fall into two
categories: general utility methods and methods that support threads. Thread support is covered in Chapter 14.
This section describes the utility methods and how they affect classes. The utility methods are:

public boolean equals(Object obj)

Compares the receiving object and the object referenced by obj for equality,
returning true if they have the same value and false if they don't. If you
want to determine whether two references refer to the same object, you can
compare them using == and !=. The equals method is concerned with
value equality. The default implementation of equals in Object assumes
that an object is equal only to itself, by testing if this == obj.

public int hashCode()

Returns a hash code for this object. Each object has a hash code for use in
hashtables. The default implementation returns a value that is usually
different for different objects. It is used when storing objects in hashed
collections, as described in Chapter 21.

protected Object clone() throws CloneNotSupportedException

Returns a clone of this object. A clone is a new object that is a copy of the
object on which clone is invoked. Cloning is discussed in the next section.

public final Class<?> getClass()

Returns the type token that represents the class of this object. For each class
T there is a type token Class<T> (read as "class of T") that is an instance of
the generic class Class described in "The Class Class" on page 399. When
invoked on an instance of Object this method will return an instance of
Class<Object>; when invoked on an instance of Attr it will return an
instance of Class<Attr>, and so forth.

protected void finalize() throws Throwable

107

107

Finalizes the object during garbage collection. This method is discussed in
detail in "Finalization" on page 449.

public String toString()

Returns a string representation of the object. The toString method is
implicitly invoked whenever an object reference is used within a string
concatenation expression as an operand of the + operator. The Object
version of toString constructs a string containing the class name of the
object, an @ character, and a hexadecimal representation of the instance's
hash code.

Both the hashCode and equals methods should be overridden if you want to provide a notion of equality
different from the default implementation provided in the Object class. The default is that any two different
objects are not equal and their hash codes are usually distinct.

If your class has a notion of equality in which two different objects can be equal, those two objects must
return the same value from hashCode. The mechanism used by hashed collections relies on equals
returning TRue when it finds a key of the same value in the table. For example, the String class overrides
equals to return TRue if the two String objects have the same contents. It also overrides hashCode to
return a hash based on the contents of the String so that two strings with the same contents have the same
hashCode.

The term identity is used for reference equality: If two references are identical, then == between the two will
be true. The term equivalence describes value equalityobjects that may or may not be identical, but for
which equals will return true. So one can say that the default implementation of equals is that
equivalence is the same as identity. A class that defines a broader notion of equality can have objects that are
not identical be equivalent by overriding equals to return TRue based on the states of the objects rather
than their identities.

Some hashtables, such as java.util.IdentityHashMap, are concerned with identity of objects, not
equivalence. If you need to write such a hashtable, you want hash codes corresponding to the identity of
objects, not their states. The method System.identityHashCode returns the same value that the
Object class's implementation of hashCode would return for an object if it were not overridden. If you
simply use hashCode on the objects you are storing, you might get a hash code based on equivalence, not on
identity, which could be far less efficient.

Exercise 3.7: Override equals and hashCode for ColorAttr.

3.9. Cloning Objects

The Object.clone method helps you write clone methods for your own classes. A clone method returns a
new object whose initial state is a copy of the current state of the object on which clone was invoked.
Subsequent changes to the new clone object should not affect the state of the original object.

3.9.1. Strategies for Cloning

There are three important factors in writing a clone method:

The empty Cloneable interface, which you must implement to provide a clone method that can
be used to clone an object.[3]

•

108

108

[3] Cloneable should have been spelled Clonable, but the misspelling was
realized too late to be fixed.

The clone method implemented by the Object class, which performs a simple clone by copying
all fields of the original object to the new object. This method works for many classes but may need to
be supplemented by an overriding method.

•

The CloneNotSupportedException, which can be used to signal that a class's clone method
shouldn't have been invoked.

•

A given class can have one of four different attitudes toward clone:

Support clone. Such a class implements Cloneable and declares its clone method to throw no
exceptions.

•

Conditionally support clone. Such a class might be a collection class that can be cloned in principle
but cannot successfully be cloned unless its contents can be cloned. This kind of class will implement
Cloneable, but will let its clone method pass through any CloneNotSupportedException
it may receive from other objects it tries to clone. Or a class may have the ability to be cloned itself
but not require that all subclasses also have the ability to be cloned.

•

Allow subclasses to support clone but don't publicly support it. Such a class doesn't implement
Cloneable, but if the default implementation of clone isn't correct, the class provides a protected
clone implementation that clones its fields correctly.

•

Forbid clone. Such a class does not implement Cloneable and provides a clone method that
always throws CloneNotSupportedException.

•

Object.clone checks whether the object on which it was invoked implements the Cloneable interface
and throws CloneNotSupportedException if it does not. Otherwise, Object.clone creates a new
object of exactly the same type as the original object on which clone is invoked and initializes the fields of
the new, cloned object to have the same values as the fields of the original object. When Object.clone is
finished, it returns a reference to the new object.

The simplest way to make a class that can be cloned is to declare that it implements the Cloneable
interface, and override the clone method, redeclaring it to be public:

public class MyClass extends HerClass implements Cloneable {
 public MyClass clone()
 throws CloneNotSupportedException {
 return (MyClass) super.clone();
 }
 // ...
}

Any other code can now make a clone of a MyClass object. In this simple case, all fields of MyClass will
be assigned by Object.clone into the new object that is returned. Note that the overriding implementation
declares that it returns an instance of MyClass, not Object, utilizing the ability to specify a covariant
return typethis saves the calling code from having to supply a cast, but we have to supply it internally when
returning the value from super.clone().

The clone method in Object has a throwsCloneNotSupportedException declaration. This
means a class can declare that it can be cloned, but a subclass can decide that it can't be cloned. Such a
subclass would implement the Cloneable interface because it extends a class that does so, but the subclass
could not, in fact, be cloned. The extended class would make this known by overriding clone to always
throw CloneNotSupportedException and documenting that it does so. Be carefulthis means that you
cannot determine whether a class can be cloned by a run time check to see whether the class implements
Cloneable. Some classes that can't be cloned will be forced to signal this condition by throwing an
exception.

109

109

3.9.2. Correct Cloning

Objects of most classes can be cloned in principle. Even if your class does not support the Cloneable
interface, you should ensure that its clone method is correct. In many classes, the default implementation of
clone will be wrong because it duplicates a reference to an object that shouldn't be shared. In such cases,
clone should be overridden to behave correctly. The default implementation assigns each field from the
source to the same field in the destination object.

If, for example, an object has a reference to an array, a clone of one of the objects will refer to the same array.
If the array holds read-only data, such a shared reference is probably fine. But if it is a list of objects that
should be distinct for each of your objects, you probably don't want the clone's manipulation of its own list to
affect the list of the original source object, or vice versa.

Here is an example of the problem. Suppose you have a simple integer stack class:

public class IntegerStack implements Cloneable { // dangerous
 private int[] buffer;
 private int top;

 public IntegerStack(int maxContents) {
 buffer = new int[maxContents];
 top = -1;
 }

 public void push(int val) {
 buffer[++top] = val;
 }
 public int pop() {
 return buffer[top--];
 }

 public IntegerStack clone() {
 try {
 return (IntegerStack) super.clone();
 } catch (CloneNotSupportedException e) {
 // Cannot happen -- we support clone
 throw new InternalError(e.toString());
 }
 }

 // ...
}

Here we override clone to make it public, but we use the default implementation from the Object class.

Now let's look at some code that creates an IntegerStack object, puts some data onto the stack, and then
clones it:

IntegerStack first = new IntegerStack(2);
first.push(2);
first.push(9);
IntegerStack second = first.clone();

With the default clone method, the data in memory will look something like this:

110

110

Now consider what happens when future code invokes first.pop(), followed by first.push(17).
The top element in the stack first will change from 9 to 17, which is expected. The programmer will
probably be surprised, however, to see that the top element of second will also change to 17 because there
is only one array that is shared by the two stacks.

The solution is to override clone to make a copy of the array:

public IntegerStack clone() {
 try {
 IntegerStack nObj = (IntegerStack) super.clone();
 nObj.buffer = buffer.clone();
 return nObj;
 } catch (CloneNotSupportedException e) {
 // Cannot happen -- we support
 // clone, and so do arrays
 throw new InternalError(e.toString());
 }
}

First the clone method invokes super.clone. This invocation is very important because the superclass
may be working around its own problem of shared objects. If you do not invoke the superclass's method, you
solve your own cloning problem but you may create another one. Furthermore, super.clone will
eventually invoke the method Object.clone, which creates an object of the correct type. If the
IntegerStack implementation of clone used new to create an IntegerStack object, it would be
incorrect for any object that extended IntegerStack. The extended class's invocation of super.clone
would give it an IntegerStack object, not an object of the correct, extended type. The return value of
super.clone is then cast to an IntegerStack reference.

Object.clone initializes each field in the new clone object by assigning it the value from the same field of
the object being cloned. You then need only write special code to deal with fields for which copying the value
is incorrect. IntegerStack.clone doesn't need to copy the top field, because it is already correct from
the "copy values" default. It must, however, make a copy of the buffer array, which is done by cloning the
arrayall arrays can be cloned, with clone returning a reference of the same type as the array reference on
which clone was invoked.

With the specialized clone method in place, the example code now creates memory that looks like this:

Cloning is an alternative form of construction but is not recognized as construction by the system. This means
that you have to be wary of using blank finals (see page 46) that can be set only in constructors. If the value of
the final field should be a copy of the value in the object being cloned, then there is no problem since

111

111

Object.clone will achieve this. If copying the value is not appropriate for the field then it cannot be
declared final. In this example, the buffer array is immutable for the life of the object, but it can't be
declared final because its value needs to be explicitly set in clone.

If the object that should not be shared between the clone and the original, is not an array, that object should
support copying in some way. That may mean that the object itself supports clone, or that it has a copy
constructor that allows a duplicate object to be created. For example, the String class does not support
clone but it does have a copy constructor that creates a new String with the same contents as the String
passed to the constructor. The issues when writing copy constructors are the same as those for writing
cloneyou must decide when a simple field copy is sufficient and when more specific action is required. One
advantage the copy constructor has is that it can deal with final fields in situations where clone cannot.

Sometimes making clone work correctly is not worth the trouble, and some classes should not support
clone. In such cases, you should define a clone method that throws CloneNotSupportedException
so that objects with bad state will never be created by an unsuspecting subclass that uses clone.

You can declare that all subclasses of a class must support clone properly by overriding your class's clone
method with one that drops the declaration of CloneNotSupportedException. Subclasses
implementing the clone method cannot throw CloneNotSupportedException, because methods in a
subclass cannot add an exception to a method. In the same way, if your class makes clone public, all
extended classes must also have public clone methods, because a subclass cannot make a method less
visible than it was in its superclass.

3.9.3. Shallow versus Deep Cloning

The default implementation of clone provides what is known as a shallow clone or copyit simply performs a
field by field copy. A deep clone would clone each object referred to by a field and each entry in an array.
This would apply recursively and so deep cloning an object would clone all of the objects reachable from that
object. In general, clone is overridden to perform a deeper clone whenever a shallow clone is not
appropriatesuch as in the IntegerStack example.

The object serialization mechanism (see page 549) allows you to write entire object graphs to a stream of
bytes and, using that generated stream of bytes, create an equivalent copy of the original object graphs.
Serialization can provide a way to make deeper copies than those provided by Object.clone.

Exercise 3.8: Make Vehicle and PassengerVehicle into Cloneable types. Which of the four
described attitudes should each class take toward cloning? Is the simple copying done by Object.clone
correct for the clone methods of these classes?

Exercise 3.9: Write a Garage class whose objects can hold up to some number of Vehicle objects in an
array. Make Garage a Cloneable type, and write a proper clone method for it. Write a Garage.main
method to test it.

Exercise 3.10: Make your LinkedList class (from the exercises in Chapter 2) Cloneable, with clone
returning a new list that refers to the same values as the original list, not clones of the values. In other words,
changes to one list should not affect the other list, but changes to the objects referenced by the list would be
visible in both lists.

3.10. Extending Classes: How and When

The ability to write extended classes is a large part of the benefits of object-oriented programming. When you
extend a class to add new functionality, you create what is commonly termed an IsA relationshipthe extension

112

112

creates a new kind of object that "is a" kind of the original class. The IsA relationship is quite different from a
HasA relationship, in which one object uses another object to store state or do workit "has a" reference to that
other object.

Let's look at an example. Consider a Point class that represents a point in two-dimensional space by an (x,
y) pair. You might extend Point to create, say, a Pixel class to represent a colored point on a screen. A
Pixel IsA Point: anything that is true of a simple Point would also be true of a Pixel. The Pixel
class might add mechanisms to represent the color of the pixel or a reference to an object that represents the
screen on which the pixel is drawn. As a point in a two-dimensional space (the plane of a display) with an
extension to the contract (it has color and a screen), a Pixel IsA Point.

On the other hand, a circle is not a point. Although a circle can be described by a point and a radius, a point
has uses that no circle would have. For example, if you had a method to place the center of a rectangle at a
particular point, would it really make sense to pass in a circle? A circle HasA center that IsA point, but a
circle IsNotA point with a radius, and therefore should not be a subclass of Point.

There are times when the correct choice is not obvious and for which different choices will be correct
depending on the application. In the end, applications must run and make sense.

Getting IsA versus HasA relationships correct is both subtle and potentially critical. For example, one obvious
and common way to design an employee database using object-oriented tools is to use an Employee class
that has the properties all persons share (such as name and employee number) and extend it to classes for
particular kinds of employees, such as Manager, Engineer, and FileClerk.

This design fails in real-world situations, in which one person operates simultaneously in more than one role.
For example, an engineer might be an acting manager in a group and must now appear in two guises. As
another example, a teaching assistant is often both a student and a staff member at a university.

A more flexible design would create a Role class and extend it to create classes for roles such as Manager.
You would then change the design of the Employee class to have a set of Role objects. A person could
now be associated with an ever-changing set of roles in the organization. We have changed from saying that a
manager IsAn employee to saying that manager IsA role, and that an employee can HaveA manager's role as
well as other roles.

If the wrong initial choice is made, changing deployed systems will be hard because changes could require
major alterations in code. For example, methods in the first employee database design would no doubt rely on
the fact that a Manager object could be used as an Employee. This would no longer be true if we had to
change to the role-based design, and all the original code would break.

3.11. Designing a Class to Be Extended

The Attr class is an example of a well-designed classit follows the design principles that you learned in
Chapter 2. The fields of the class are private and accessible only through accessor methods, thereby
protecting them from modifications that violate the class's contract. The Attr class presents a clean interface
to users of the class and at the same time decouples itself from those classes to allow its own implementation
to change in the future.

Given that ColorAttr extends Attr, should we have designed Attr differently to make it more suitable
for extension? Should the name and value fields have been protected, instead of private, so that a
subclass could access them directly? Such decisions require careful thought and consideration of both the
benefits and consequences. Making the Attr fields protected would not benefit a subclass because all of the

113

113

actions that can be performed on those fields can be done via the public methods that Attr provides. On
the other hand, making the fields protected would prevent any future modifications to the implementation
of Attr because subclasses could depend on the existence and type of those fields, as well as direct access to
them. So in this case, Attr's current design is suited for extension as well as for general use.

In our linked-list queue class, SingleLinkQueue, we did make the head and tail fields protected.
In that case there was a great performance benefit in allowing the subclass to directly access cells of the linked
listit would be impractical to implement the override of add in PriorityQueue if the only tools available
to use were the original add and remove methods. The low-level nature of the SingleLinkQueue class
also means that we are not concerned about locking in implementation detailsit is after all a linked-list
implementation of a queue and that doesn't really leave much scope for change. If we had written a more
general queue class that just happened to be using a linked-list implementation, then it would be a different
story.

A non-final class has two interfaces. The public interface is for programmers using your class. The protected
interface is for programmers extending your class. Do not casually make fields of your classes protected: Both
interfaces are real contracts, and both should be designed carefully.

3.11.1. Designing an Extensible Framework

Suppose you want to provide a benchmarking harness for comparing varieties of sorting algorithms. Some
things can be said of all sorting algorithm benchmarks: They all have data on which they must operate; that
data must support an ordering mechanism; and the number of comparisons and swaps they require to do their
work is an important factor in the benchmark.

You can write an abstract class that helps you with these features, but you cannot write a general-purpose
sort methodthe actual operations of sorting are determined by each extended class. Here is a SortDouble
class that sorts arrays of double values, tracking the number of swaps, comparisons, and tests required in a
SortMetrics class we define later:

abstract class SortDouble {
 private double[] values;
 private final SortMetrics curMetrics = new SortMetrics();

 /** Invoked to do the full sort */
 public final SortMetrics sort(double[] data) {
 values = data;
 curMetrics.init();
 doSort();
 return getMetrics();
 }

 public final SortMetrics getMetrics() {
 return curMetrics.clone();
 }

 /** For extended classes to know the number of elements*/
 protected final int getDataLength() {
 return values.length;
 }

 /** For extended classes to probe elements */
 protected final double probe(int i) {
 curMetrics.probeCnt++;
 return values[i];
 }

 /** For extended classes to compare elements */
 protected final int compare(int i, int j) {

114

114

 curMetrics.compareCnt++;
 double d1 = values[i];
 double d2 = values[j];
 if (d1 == d2)
 return 0;
 else
 return (d1 < d2 ? -1 : 1);
 }

 /** For extended classes to swap elements */
 protected final void swap(int i, int j) {
 curMetrics.swapCnt++;
 double tmp = values[i];
 values[i] = values[j];
 values[j] = tmp;
 }

 /** Extended classes implement this -- used by sort */
 protected abstract void doSort();
}

This class defines fields to hold the array being sorted (values) and a reference to a metrics object
(curMetrics) to track the measured operations. To ensure that these counts are correct, SortDouble
provides routines to be used by extended sorting classes when they need to examine data or perform
comparisons and swaps.

When you design a class, you can decide whether to trust its extended classes. The SortDouble class is
designed not to trust them, and that is generally the best way to design classes for others to extend. A guarded
design not only prevents malicious use, it also prevents bugs.

SortDouble carefully restricts access to each member to the appropriate level. It uses final on all its
non-abstract methods. These factors are all part of the contract of the SortDouble class, which includes
protecting the measurement of the sort algorithm from tampering. Making the methods final ensures that
no extended class overrides these methods to change behavior, and also allows the compiler and runtime
system to make them as efficient as possible.

SortMetrics objects describe the cost of a particular sorting run. The class has three public fields. Its only
task is to communicate data, so there is no need to hide that data behind accessor methods.
SortDouble.getMetrics returns a copy of the data so that it doesn't give out a reference to its internal
data. This prevents both the code that creates SortDouble objects and the code in the extended classes from
changing the data. Here is the SortMetrics class:

final class SortMetrics implements Cloneable {
 public long probeCnt, // simple data probes
 compareCnt, // comparing two elements
 swapCnt; // swapping two elements

 public void init() {
 probeCnt = swapCnt = compareCnt = 0;
 }

 public String toString() {
 return probeCnt + " probes " +
 compareCnt + " compares " +
 swapCnt + " swaps";
 }

 /** This class supports clone */
 public SortMetrics clone() {
 try {

115

115

 // default mechanism works

 return (SortMetrics) super.clone();
 } catch (CloneNotSupportedException e) {
 // can't happen: this and Object both clone
 throw new InternalError(e.toString());
 }
 }
}

The following class extends SortDouble. The SimpleSortDouble class implements doSort with a
very slow but simple sort algorithm (a "selection sort") whose primary advantage is that it is easy to code and
easy to understand:

class SimpleSortDouble extends SortDouble {
 protected void doSort() {
 for (int i = 0; i < getDataLength(); i++) {
 for (int j = i + 1; j < getDataLength(); j++) {
 if (compare(i, j) > 0)
 swap(i, j);
 }
 }
 }
}

Now we can write a test harness for sort algorithms that must be changed only slightly to test a new sort
algorithm. Here it is shown as a driver for testing the class SimpleSortDouble:

public class TestSort {
 static double[] testData = {
 0.3, 1.3e-2, 7.9, 3.17
 };

 public static void main(String[] args) {
 SortDouble bsort = new SimpleSortDouble();
 SortMetrics metrics = bsort.sort(testData);
 System.out.println("Metrics: " + metrics);
 for (int i = 0; i < testData.length; i++)
 System.out.println("\t" + testData[i]);
 }
}

The main method shows how code that drives a test works: It creates an object of a class extended from
SortDouble, provides it with the data to be sorted, and invokes sort. The sort method stores the data,
initializes the metrics, and then invokes the abstract method doSort. Each extended class implements
doSort to do its sorting, invoking getdataLength, compare, and swap when it needs to. When
doSort returns, the counts reflect the number of each operation performed. To test a different algorithm, you
can simply change the class name after the new. Here is what one run of TestSort looks like:

Metrics: 0 probes 6 compares 2 swaps
 0.013
 0.3
 3.17
 7.9

116

116

Now with these classes as examples, let us return to the issue of designing a class to be extended. We
carefully designed the protected interface of SortDouble to allow extended classes more intimate access to
the data in the object but only to things we want them to manipulate. The access for each part of the class
design has been carefully chosen:

public The public part of the class is designed for use by the code that tests how expensive the
sorting algorithm is. An example of testing code is in TestSort.main. This code provides the data
to be sorted and gets the results of the test. For the test code, the metrics are read-only. The public
sort method we provide for the test code ensures that the metrics are initialized before they are
used.

Making the actual doSort method protected forces the test code to invoke it indirectly by the
public sort method; thus, we guarantee that the metrics are always initialized and so avoid another
possible error.

To the test code, the only available functionality of the class is to drive a test of a particular sorting
algorithm and provide the results. We used methods and access protection to hide the rest of the class,
which should not be exposed to the testing code.

•

protected The protected part of the class is designed for use by the sorting code to produce a
properly metered sort. The protected contract lets the sorting algorithm examine and modify the
data to produce a sorted list by whatever means the sort desires. It also gives the sorting algorithm a
context in which it will be properly driven so that it can be measured. This context is the doSort
method.

The extended class is not considered trustworthy, and that is why it can access the data only
indirectly, through methods that have access to the data. For example, to hide a comparison by
avoiding compare, the sort would have to use probe to find out what is in the array. Because calls
to probe are also metered, this would, in the end, hide nothing.

In addition, getMetrics returns a clone of the actual metrics, so a sorting implementation cannot
modify the values.

•

private The class keeps private to itself data that should be hidden from the outsidenamely, the data
being sorted and the metrics. Outside code cannot access these fields, directly or indirectly.

•

Recall that to prevent intentional cheating and accidental misuse, SortDouble is designed not to trust its
extended classes. For example, if SortDouble.values (the array being sorted) were protected instead
of private, we could eliminate the probe method because sort algorithms normally count only
comparisons and swaps. But if we eliminated it, the programmer writing an extended class could avoid using
swap to swap data. The results would be invalid in ways that might be hard to notice. Counting probes and
declaring the array private preclude some bugs as well as intentionally devious programming.

If a class is not designed to be extended, it often will be misused by subclasses. If your class will have
subclasses, you should design its protected parts carefully. The end result may be to have no protected
members if extended classes need no special access. If you do not design the protected part of your class,
the class should have no protected members, making subclasses rely on its public contract.

Exercise 3.11: Find at least one security hole in SortDouble that would let a sorting algorithm cheat on its
metrics without getting caught. Fix the security hole. Assume that the sorting algorithm author doesn't get to
write main.

Exercise 3.12: Write a general-purpose SortHarness class that can sort any object type. How would you
provide a way to represent ordering for the objects in a general way, given that you cannot use < to compare

117

117

them?

3.12. Single Inheritance versus Multiple Inheritance

A new class can extend exactly one superclass, a model known as single inheritance. Extending a class means
that the new class inherits not only its superclass's contract but also its superclass's implementation. Some
object-oriented languages employ multiple inheritance, in which a new class can have two or more
superclasses.

Multiple inheritance is useful when you want a new class to combine multiple contracts and inherit some, or
all, of the implementation of those contracts. But when there is more than one superclass, problems arise when
a superclass's behavior is inherited in two ways. Assume, for a moment, the following type tree:

This is commonly called diamond inheritance, and there is nothing wrong with it. Many legitimate designs
show this structure. The problems exist in the inheritance of implementation, when W's implementation stores
some state. If class W had, for example, a public field named goggin, and if you had a reference to an object
of type Z called zref, what would zref.goggin refer to? It might refer to X's copy of goggin, or it
might refer to Y's copy, or X and Y might share a single copy of goggin because Z is really only a W once
even though it is both an X and a Y. Resolving such issues is non-trivial and complicates the design and use of
class hierarchies. To avoid such issues, the Java programming language uses the single-inheritance model of
object-oriented programming.

Single inheritance precludes some useful and correct designs. The problems of multiple inheritance arise from
multiple inheritance of implementation, but in many cases multiple inheritance is used to inherit a number of
abstract contracts and perhaps one concrete implementation. Providing a means to inherit an abstract contract
without inheriting an implementation allows the typing benefits of multiple inheritance without the problems
of multiple implementation inheritance. The inheritance of an abstract contract is termed interface inheritance.
The Java pro gramming language supports interface inheritance by allowing you to declare an interface
typethe subject of the next chapter.

When we are planning for posterity, we ought to remember that virtue is not hereditary.

Thomas Paine

Chapter 4. Interfaces

"Conducting" is when you draw "designs" in the nowherewith your stick, or with your
handswhich are interpreted as "instructional messages" by guys wearing bow ties who wish
they were fishing.

Frank Zappa

The fundamental unit of programming in the Java programming language is the class, but the fundamental
unit of object-oriented design is the type. While classes define types, it is very useful and powerful to be able

118

118

to define a type without defining a class. Interfaces define types in an abstract form as a collection of methods
or other types that form the contract for that type. Interfaces contain no implementation and you cannot create
instances of an interface. Rather, classes can expand their own types by implementing one or more interfaces.
An interface is an expression of pure design, whereas a class is a mix of design and implementation.

A class can implement the methods of an interface in any way that the designer of the class chooses. An
interface thus has many more possible implementations than a class. Every major class in an application
should be an implementation of some interface that captures the contract of that class.

Classes can implement more than one interface. The Java programming language allows multiple inheritance
of interface but only single inheritance of implementationa class can extend only one other class. Classes can
use inheritance of interfaces to expand their type and then use, for example, composition to provide an
implementation for those interfaces. This design allows the typing flexibility of multiple inheritance while
avoiding the pitfalls of multiple implementation inheritance, at the cost of some additional work for the
programmer.

In a given class, the classes that are extended and the interfaces that are implemented are collectively called
the supertypes, and from the viewpoint of the supertypes, the new class is a subtype. The new class includes
all its supertypes, so a reference to an object of the subtype can be used polymorphically anywhere a reference
to an object of any of its supertypes (class or interface) is required. Interface declarations create type names
just as class declarations do; you can use the name of an interface as the type name of a variable, and any
object whose class implements that interface can be assigned to that variable.

4.1. A Simple Interface Example

Many simple interfaces define a property that is ascribable to a variety of different objects from different
classes. These properties are often defined in terms of an object being "able" to do something. For example, in
the standard packages there are a number of "ability" interfaces, such as:

Cloneable Objects of this type support cloning, as you learned in detail on page 101.•
Comparable Objects of this type have an ordering that allows them to be compared.•
Runnable Objects of this type represent a unit of work, that can often execute in an independent
thread of control (see Chapter 14).

•

Serializable Objects of this type can be written to an object byte stream for shipping to a new
virtual machine, or for storing persistently and then reconstituting into a live object (see "Object
Serialization" on page 549).

•

Let's look at the Comparable interface in more detail. This interface can be implemented by any class
whose objects can be compared to each other according to the class's "natural ordering." The interface
contains a single method:

public interface Comparable<T> {
 int compareTo(T obj);
}

An interface declaration is similar to a class declaration, except that the keyword interface is used instead
of class. There are also special rules concerning the members of an interface, as you will soon learn.

The compareTo method takes a single object argument of type T and compares it to the current object
(expected to also be of type T), returning a negative, zero, or positive integer if the current object is less than,
equal to, or greater than the argument, respectively.

119

119

Consider a variation of the Point class we introduced in Chapter 1. The natural ordering for points could be
their distance from the origin. We could then make Point objects Comparable:

class Point implements Comparable<Point> {

 /** Origin reference that never changes */
 private static final Point ORIGIN = new Point();

 private int x, y;

 // ... definition of constructors, setters and accessors

 public double distance(Point p) {
 int xdiff = x - p.x;
 int ydiff = y - p.y;
 return Math.sqrt(xdiff * xdiff + ydiff * ydiff);
 }

 public int compareTo(Point p) {
 double pDist = p.distance(ORIGIN);
 double dist = this.distance(ORIGIN);
 if (dist > pDist)
 return 1;
 else if (dist == pDist)
 return 0;
 else
 return -1;
 }
}

First we declare that Point is a Comparable class. A class identifies the interface types that it implements
by listing them after the keyword implements, before the class body is defined (and after any extends
clause). All such interfaces are the superinterfaces of the class. The class must provide an implementation for
all of the methods defined in its superinterfaces, or else the class must be declared abstract, thereby
requiring that any non-abstract subclass implement them.

The only method we need to implement for the Comparable interface is compareTo, and to actually
compare two points we simply compare their distance from the origin.

Interfaces introduce type names just as classes do, so you can declare variables of those types. For example:

Comparable<Point> p1;

In fact much of the power of interfaces comes from declaring and using only variables of interface type rather
than of some specific class type. For example, you can define a general-purpose sort routine that can sort
any array of Comparable objects without regard to what the class of those objects actually isall the objects
in the array should be the same type of course:[1]

[1] In Chapter 11 you learn about generic methods, and sort should really be defined as
such.

class Sorter {
 static Comparable<?>[] sort(Comparable<?>[] list) {
 // implementation details ...
 return list;
 }
}

120

120

References of interface type, however, can be used only to access members of that interface. For example, the
following will produce a compile-time error:

Comparable<Point> obj = new Point();
double dist = obj.distance(p1); // INVALID: Comparable has
 // no distance method

If you want to treat obj as a Point object you must explicitly cast it to that type.

You can invoke any of the Object methods using a reference of an interface type because no matter what
interfaces the object implements, it is always an Object and so has those methods. In fact, any interface that
does not extend some other interface implicitly has members matching each of the public methods of Object
(unless the interface explicitly overrides them). Hence, the following is legal:

String desc = obj.toString();

as is assigning an interface reference to an Object reference.

4.2. Interface Declarations

An interface is declared using the keyword interface, giving the interface a name and listing the interface
members between curly braces.

An interface can declare three kinds of members:

constants (fields)•
methods•
nested classes and interfaces•

All interface members are implicitly public, but, by convention, the public modifier is omitted. Having
non-public members in an interface would make little sense; where it does make sense you can use the
accessibility of the interface itself to control access to the interface members.

We defer a discussion of nested classes and interfaces until Chapter 5.

4.2.1. Interface Constants

An interface can declare named constants. These constants are defined as fields but are implicitly public,
static, and finalagain, by convention, the modifiers are omitted from the field declarations. These fields
must also have initializersblank finals are not permitted. Annotations can also be applied to the fieldssee
Chapter 15.

Because interfaces contain no implementation details, they cannot define normal fieldssuch a definition would
be dictating implementation policy to the classes that choose to implement the interface. Interfaces can define
named constants because these are useful in the design of types. For example, an interface that had differing
levels of verbosity in its contract might have the following:

121

121

interface Verbose {
 int SILENT = 0;
 int TERSE = 1;
 int NORMAL = 2;
 int VERBOSE = 3;

 void setVerbosity(int level);
 int getVerbosity();
}

SILENT, TERSE, NORMAL, and VERBOSE can be passed to the setVerbosity method, giving names to
constant values that represent specific meanings. In this particular case, the verbosity levels could be more
effectively represented as the constants of an enumeration type nested within the Verbose interface.
Enumeration types are discussed in Chapter 6.

If you need shared, modifiable data in your interface you can achieve this by using a named constant that
refers to an object that holds the data. A nested class is good for defining that object, so we defer an example
until Chapter 5.

4.2.2. Interface Methods

The methods declared in an interface are implicitly abstract because no implementation is, or can be,
given for them. For this reason the method body is simply a semicolon after the method header. By
convention, the abstract modifier on the method declaration is omitted.

No other method modifiers are permitted on an interface method declaration, except for annotationssee
Chapter 15. They are implicitly public and so can have no other access modifier. They cannot have
modifiers that define implementation characteristicssuch as native, synchronized, or
strictfpbecause an interface does not dictate implementation, and they cannot be final because they
haven't been implemented yet. Of course, the implementation of these methods within a specific class can
have any of these modifiers. Interface methods can never be static because static methods can't be
abstract.

4.2.3. Interface Modifiers

An interface declaration can be preceded by interface modifiers:

annotations Annotations and annotation types are discussed in Chapter 15.•
public A public interface is publicly accessible. Without this modifier an interface is only
accessible within its own package.

•

abstract All interfaces are implicitly abstract because their methods are all abstractthey have no
implementation. Again, by convention, the abstract modifier is always omitted.

•

strict floating point An interface declared strictfp has all floating-point arithmetic, defined within
the interface, evaluated strictly. This applies to initialization expressions for constants and to all
nested types declared in the interface. In contrast to classes, this does not imply that each method in
the interface is implicitly strictfp because that is an implementation detail. See Section 9.1.3 on
page 203 for details.

•

When multiple modifiers are applied to the same interface declaration, we recommend using the order listed
above.

122

122

4.3. Extending Interfaces

Interfaces can be extended using the extends keyword. Interfaces, unlike classes, can extend more than one
other interface:

public interface SerializableRunnable
 extends java.io.Serializable, Runnable
{
 // ...
}

The SerializableRunnable interface extends both java.io.Serializable and Runnable,
which means that all methods and constants defined by those interfaces are now part of the
SerializableRunnable contract, together with any new methods and constants it defines. The
interfaces that are extended are the superinterfaces of the new interface and the new interface is a subinterface
of its superinterfaces.

Because interfaces support multiple inheritance, the inheritance graph can contain multiple paths to the same
superinterface. This means that constants and methods can be accessed in different ways. However, because
interfaces define no implementation of methods, and provide no per-object fields, there are no issues
regarding the semantics of this form of multiple inheritance.

4.3.1. Inheriting and Hiding Constants

An extended interface inherits all the constants declared in its superinterfaces. If an interface declares a
constant of the same name as an inherited constant, regardless of their types, then the new constant hides the
inherited one; this is the same hiding of fields described in "Hiding Fields" on page 86. In the subinterface and
in any object implementing the subinterface, any reference to the constant using its simple name will refer to
the constant defined in the subinterface. The inherited constant can still be accessed with the qualified name of
the constant, that is, the interface name followed by dot and then the constant namethe usual way of referring
to static members.

interface X {
 int val = 1;
}
interface Y extends X {
 int val = 2;
 int sum = val + X.val;
}

Interface Y has two constants: val and sum. From inside Y, to refer to the hidden val in its superinterface
you must qualify it as X.val. Externally, you can access the constants of Y by using the normal static forms
of Y.val and Y.sum, and of course you can access X's val constant by using X.val.

These rules are, of course, identical to those concerning the inheritance of static fields in classes.

When a class implements Y you can access the constants in Y as though they were constants declared in the
class. For example, given

class Z implements Y { }

123

123

you can do

System.out.println("Z.val=" + Z.val + ", Z.sum=" + Z.sum);

but there is no way to refer to X.val via Z. However, given an instance of Z you can use an explicit cast to
access X.val:

Z z = new Z();
System.out.println("z.val=" + z.val +
 ", ((Y)z).val=" + ((Y)z).val +
 ", ((X)z).val=" + ((X)z).val);

which prints out

z.val=2, ((Y)z).val=2, ((X)z).val=1

as you would expect. Again these are the same rules that apply to static fields in extended classesit doesn't
matter whether a class inherits a static field from a superclass or a superinterface.

While all these rules are necessary from a language perspective, they have little practical consequencethere
are few reasons to hide existing fields, and all accesses to static fields, whether class or interface, should be
via the name of the type in which that field is declared.

If an interface inherits two or more constants with the same name, then any simple reference to the constant is
ambiguous and results in a compile-time error. For example, given the previous interface declarations and the
following:

interface C {
 String val = "Interface C";
}
interface D extends X, C { }

then the expression D.val is ambiguousdoes it mean the integer val or the String reference val? Inside
D you would have to explicitly use X.val or C.val.

A class that implements more than one interface, or that extends a class and implements one or more
interfaces, can experience the same hiding and ambiguity issues as an interface that extends more than one
interface. The class's own static fields can hide the inherited fields of the interfaces it implements or the class
it extends, and simple references to multiply-inherited non-hidden fields will be ambiguous.

4.3.2. Inheriting, Overriding, and Overloading Methods

A subinterface inherits all the methods declared in its superinterfaces. If a declared method in a subinterface
has the same signature (name and parameter list) as an inherited method and the same, or covariant, return
type, then the new declaration overrides any and all existing declarations. Overriding in interfaces, unlike
overriding in classes, has no semantic effectthe interface effectively contains multiple declarations of the same
method, but in any one implementing class there can only be one implementation of that method.

124

124

Similarly, if an interface inherits more than one method with the same signature, or if a class implements
different interfaces containing a method with the same signature, there is only one such method. The
implementation of this method is ultimately defined by the class implementing the interfaces, and there is no
ambiguity there. If the methods have the same signature but different return types, then one of the return types
must be a subtype of all the others, otherwise a compile-time error occurs. The implementation must define a
method that returns that common subtype.

The real issue is whether a single implementation of the method can honor all the contracts implied by that
method being part of the different interfaces. This may be an impossible requirement to satisfy in some
circumstances. For example:

interface CardDealer {
 void draw(); // flip top card
 void deal(); // distribute cards
 void shuffle();
}
interface GraphicalComponent {
 void draw(); // render on default device
 void draw(Device d); // render on 'd'
 void rotate(int degrees);
 void fill(Color c);
}
interface GraphicalCardDealer
 extends CardDealer, GraphicalComponent { }

Here it is difficult to write an implementation of draw() that can satisfy the two different contracts
independently. If you try to satisfy them simultaneously, you are unlikely to achieve the desired results:
flipping a card each time the screen gets repainted.

As with overriding in class extension, the overriding method is not permitted to throw more checked
exceptions than the method it overrides. If two or more method declarations are inherited, without overriding,
and differ in the exceptions they throw, then the implementation of that method must satisfy all the throws
clauses of those declarations. Again the main issue is whether such distinct methods can have a single
implementation that honors all contracts. We look further at the issues of overriding and exception throwing
in Chapter 12.

If a declared method has the same name but different parameters from an inherited method, then the declared
method is an overloaded form of the inherited method. The eventual class implementation will provide a
method body for each of the overloaded forms.

If a declared method differs only in return type from an inherited method, or if two inherited methods differ
only in return type where one type is not a subtype of the other, you will get a compile-time error.

4.4. Working with Interfaces

The previous chapter introduced the Attr class and showed how to extend it to make specialized types of
attribute objects. Now all you need is the ability to associate attributes with objects.

The first decision to make is whether having attributes is reflected in the type of the object. An object could, if
you chose, contain a set of attributes and allow programmers access to that set. Or you could say that being
able to store attributes on an object is a part of its type and so should be part of the type hierarchy. Both
positions are legitimate. We believe that representing the ability to hold attributes in the type hierarchy is most
useful. We will create an Attributed type to be used for objects that can be attributed by attaching Attr
objects to them.

125

125

To create an Attributed type you could define a class that would form the superclass for all attributed
objects. But then programmers must decide whether to inherit from Attributed or from some other useful
class. Instead we make Attributed into an interface:

public interface Attributed {
 void add(Attr newAttr);
 Attr find(String attrName);
 Attr remove(String attrName);
 java.util.Iterator<Attr> attrs();
}

This interface declares four methods: one for adding a new attribute to an Attributed object; one for
finding whether an attribute of a given name has been added to that object; one for removing an attribute from
an object; and one for accessing all of the attributes currently attached to the object.

When we add an attribute to an object, that object considers itself the owner of that Attr instance until it is
removed. If the attribute has its value changed or is shared among a number of objects, then the expectation is
that the programmer makes such changes and performs such sharing in a manner that makes sense to the
application. If the programmer is not to be trusted in this, then methods should specify that they make
defensive copies of parameters, and/or return values, such that no harmful changes can occur.

The attributes are accessed through an Iterator object returned from the attrs method. Iterator is a
generic interface defined in java.util for collection classes to use to provide access to their contents (see
"Iteration" on page 571). In effect, the Attributed interface defines a collection typea set of attributesso
we use the normal mechanism for accessing the contents of a collection, namely, the Iterator type. Using
Iterator has another benefit: It is easy to implement Attributed with a standard collection class (such
as HashMap) that uses Iterator, as you'll soon see.

Many classes that provide an Iterator declare that they implement the Iterable interface, which
defines the single method iterator to return an Iterator instance. Although an Attributed object
does provide an Iterator, it would be wrong to have Attributed extend Iterable or to rename
attrs as iterator, because that would restrict the ability of the class implementing Attributed to
control its own iteration behavior. For example, it would mean that an Attributed collection class would
not be able to provide an iterator for its elements rather than its attributes.

4.4.1. Implementing Interfaces

Interfaces describe contracts in a pure, abstract form, but an interface is interesting only if a class implements
it.

Some interfaces are purely abstractthey do not have any useful general implementation but must be
implemented afresh for each new class. Most interfaces, however, may have several useful implementations.
In the case of our Attributed interface, we can imagine several possible implementations that use various
strategies to store a set of attributes.

One strategy might be simple and fast when only a few attributes are in a set; another one might be optimized
for attribute sets that are queried more often than they are changed; yet another design might be optimized for
sets that change frequently. If there were a package of various implementations for the Attributed
interface, a class might choose to implement the Attributed interface through any one of them or through
its own implementation.

As an example, here is a simple implementation of Attributed that uses the utility
java.util.HashMap class. The class AttributedImpl declares that it implements the interface

126

126

Attributed, so the class must implement all the interface's methods. AttributedImpl implements the
methods using a HashMap, described in "HashMap" on page 590. Later, this implementation is used to
implement the Attributed interface for a specific set of objects to which you would want to add attributes.
First, here is the AttributedImpl class:

import java.util.*;

class AttributedImpl implements Attributed, Iterable<Attr> {
 protected Map<String, Attr> attrTable =
 new HashMap<String, Attr>();

 public void add(Attr newAttr) {
 attrTable.put(newAttr.getName(), newAttr);
 }

 public Attr find(String name) {
 return attrTable.get(name);
 }

 public Attr remove(String name) {
 return attrTable.remove(name);
 }

 public Iterator<Attr> attrs() {
 return attrTable.values().iterator();
 }

 public Iterator<Attr> iterator() {
 return attrs();
 }
}

The initializer for attrTable creates a HashMap object to hold attributes. This HashMap object does
most of the actual work. The HashMap class uses the key object's hashCode method to hash any object it is
given as a key. No explicit hash method is needed since String already provides a good hashCode
implementation.

When a new attribute is added, the Attr object is stored in the hash map under its name, and then you can
easily use the hash map to find and remove attributes by name. The attrs method returns the Iterator
for the hash map's values, giving access to all the attributes of the current object.

We chose to make this implementation of Attributed also implement Iterable<Attr>, as the
attributes are the only things an AttributedImpl contains. To do this, we had to define the iterator
method to return the same value as the attrs method.

4.4.2. Using an Implementation

You can use an implementing class like AttributedImpl by simply extending the class. This is the
simplest tool when it is available because all the methods and their implementations are inherited. But if you
need to support more than one interface or extend a different class, you must use a different approach. The
most common approach is to create an object of an implementing class and forward all the methods of the
interface to that object, returning any valuesthis is often called composition.

In composition and forwarding, each method in the class that is inherited from the interface invokes the
implementation from another object and returns the result. Here is an implementation of the Attributed
interface that uses an AttributedImpl object to build an attributed version of our previously defined

127

127

celestial body class Body:

import java.util.Iterator;

class AttributedBody extends Body
 implements Attributed
{
 private AttributedImpl attrImpl = new AttributedImpl();

 public AttributedBody() {
 super();
 }

 public AttributedBody(String name, Body orbits) {
 super(name, orbits);
 }

 // Forward all Attributed methods to the attrImpl object

 public void add(Attr newAttr)
 { attrImpl.add(newAttr); }
 public Attr find(String name)
 { return attrImpl.find(name); }
 public Attr remove(String name)
 { return attrImpl.remove(name); }
 public Iterator<Attr> attrs()
 { return attrImpl.attrs(); }
}

The declaration that AttributedBody extends Body and implements Attributed defines the contract
of AttributedBody. The implementations of all Body's methods are inherited from the Body class itself.
Each method of Attributed is implemented by forwarding the invocation to the AttributedImpl
object's equivalent method, returning its value (if any). This also means that you must add a field of type
AttributedImpl to use in the forwarding methods and initialize that field to refer to an
AttributedImpl object.

Forwarding is both straightforward and much less work than implementing Attributed from scratch.
Forwarding also enables you to quickly change the implementation you use, should a better implementation of
Attributed become available at some future date. However, forwarding must be set up manually and that
can be tedious and sometimes error prone.

4.5. Marker Interfaces

Some interfaces do not declare any methods but simply mark a class as having some general property. The
Cloneable interface is such a marker interfaceit has neither methods nor constants, but marks a class as
partaking in the cloning mechanism (see page 101).

Marker interfaces are the degenerate case of a contract because they define no language-level behaviorno
methods or values. All their contract is in the documentation that describes the expectations you must satisfy
if your class implements that interface. The interfaces Serializable and Externalizable (described
in "Object Serialization" on page 549) are marker interfaces, as are both java.rmi.Remote (see "java.rmi
Remote Method Invocation" on page 727) and java.util.EventListener (see "java.awt The Abstract
Window Toolkit" on page 717).

Marker interfaces can have a profound impact on the behavior of the classes that implement themconsider
Cloneable. Do not be fooled into thinking that they are unimportant merely because they have no methods.

128

128

4.6. When to Use Interfaces

An interface defines a type with an abstract contract. An abstract class also defines a type with an abstract
contract. Which should you use and when?

There are two major differences between interfaces and abstract classes:

Interfaces provide a form of multiple inheritance, because you can implement multiple interfaces. A
class can extend only one other class, even if that class has only abstract methods.

•

An abstract class can have a partial implementation, protected parts, static methods, and so on,
whereas interfaces are limited to public constants and public methods with no implementation.

•

These differences usually direct the choice of which tool is best to use in a particular implementation. If
multiple inheritance is important or even useful, interfaces are used. However, an abstract class enables you to
provide some or all of the implementation so that it can be inherited easily, rather than by explicit forwarding.
Additionally, an abstract class can control the implementation of certain methods by making them finalfor
example, our SortDouble class in Chapter 3 ensures that sorting is done correctly. However, if you find
yourself writing an abstract class with all abstract methods, you're really writing an interface.

Any major class you expect to be extended, whether abstract or not, should be an implementation of an
interface. Although this approach requires a little more work on your part, it enables a whole category of use
that is otherwise precluded. For example, suppose we had created an Attributed class instead of an
Attributed interface with an AttributedImpl implementation class. In that case, programmers who
wanted to create new classes that extended other existing classes could never use Attributed, since you
can extend only one classthe class AttributedBody could never have been created. Because
Attributed is an interface, programmers have a choice: They can extend AttributedImpl directly and
avoid the forwarding, or, if they cannot extend, they can at least use composition and forwarding to implement
the interface. And if the general implementation provided is incorrect, they can write their own
implementation. You can even provide multiple possible implementations of the interface to prospective
users. Whatever implementation strategy programmers prefer, the objects they create are Attributed.

Exercise 4.1: Rewrite your solution to Exercise 3.6 on page 99 using an interface for EnergySource
instead of an abstract class.

Exercise 4.2: Rewrite your solution to Exercise 3.12 on page 114 using an interface if you didn't write it that
way in the first place.

Exercise 4.3: Should the LinkedList class from previous exercises be an interface? Rewrite it that way
with an implementation class before you decide.

Exercise 4.4: Design a collection class hierarchy using only interfaces.

Exercise 4.5: Think about whether the following types should be represented as interfaces, abstract classes, or
concrete classes: (a) treeNode to represent nodes in an N-ary tree; (b) treeWalker to walk the tree in a
particular order (such as depth-first or breadth-first); (c) Drawable for objects that can be drawn by a
graphics system; (d) Application for programs that can be run from a graphical desktop.

Exercise 4.6: What changes in your assumptions about each of the problems in Exercise 4.5 would make you
change your answers?

There are two ways of constructing a software design: one way is to make it so simple that
there are obviously no deficiencies; the other is to make it so complicated that there are no

129

129

obvious deficiencies.

C.A.R. Hoare

Chapter 5. Nested Classes and Interfaces

Every nonzero finite-dimensional inner product space has an orthonormal basis. It makes
sense when you don't think about it.

Math Professor, U.C. Berkeley

Classes and interfaces can be declared inside other classes and interfaces, either as members or within blocks
of code. These nested classes and nested interfaces can take a number of different forms, each with its own
properties.

The ability to define nested types serves two main purposes. First, nested classes and nested interfaces allow
types to be structured and scoped into logically related groups. Second, and more important, nested classes
can be used to connect logically related objects simply and effectively. This latter capability is used
extensively by event frameworks, such as the one used in AWT (see "java.awt The Abstract Window Toolkit"
on page 717) and the JavaBeans™ component architecture (see "java.beans Components" on page 721).

A nested type is considered a part of its enclosing type and the two share a trust relationship in which each can
access all members of the other. Differences between nested types depend on whether the nested type is a
class or an interface, and whether the enclosing type is a class or an interface. Nested types are either static or
not: The former allows simple structuring of types; the latter defines a special relationship between a nested
object and an object of the enclosing class. Static nested types are more basic, so we cover them first.

5.1. Static Nested Types

A nested class or interface that is declared as a static member of its enclosing class or interface acts just
like any non-nested, or top-level, class or interface, except that its name and accessibility are defined by its
enclosing type. The name of a nested type is expressed as EnclosingName.NestedName. The nested
type is accessible only if the enclosing type is accessible.

Static nested types serve as a structuring and scoping mechanism for logically related types. However, static
nested types are members of their enclosing type and as such can access all other members of the enclosing
type including private onesthrough an appropriate object reference of course. This gives the nested type a
special, privileged relationship with the enclosing type.

Because static nested types are members of their enclosing type, the same accessibility rules apply to them as
for other members. For classes this means that a static nested class or interface can have private, package,
protected, or public access, while for interfaces, nested types are implicitly public.

5.1.1. Static Nested Classes

The static nested class is the simplest form of nested class. You declare one by preceding the class declaration
with the static modifier. When nested in an interface, a class declaration is always static and the modifier
is, by convention, omitted. A static nested class acts just like any top-level class. It can extend any other class
(including the class it is a member of),[1] implement any interface and itself be used for further extension by
any class to which it is accessible. It can be declared final or abstract, just as a top-level class can, and
it can have annotations applied to it.

130

130

[1] This is a very common structuring idiom.

Static nested classes serve as a mechanism for defining logically related types within a context in which that
type makes sense. For example, on page 62 we showed a Permissions class that bears information about a
BankAccount object. Because the Permissions class is related to the contract of the BankAccount
classit is how a BankAccount object communicates a set of permissionsit is a good candidate to be a nested
class:

public class BankAccount {
 private long number; // account number
 private long balance; // current balance (in cents)

 public static class Permissions {
 public boolean canDeposit,
 canWithdraw,
 canClose;
 }
 // ...
}

The Permissions class is defined inside the BankAccount class, making it a member of that class.
When permissionsFor returns a Permissions object, it can refer to the class simply as
Permissions in the same way it can refer to balance without qualification: Permissions is a member
of the class. The full name of the class is BankAccount.Permissions. This full name clearly indicates
that the class exists as part of the BankAccount class, not as a stand-alone type. Code outside the
BankAccount class must use the full name, for example:

BankAccount.Permissions perm = acct.permissionsFor(owner);

If BankAccount were in a package named bank, the full name of the class would be
bank.BankAccount.Permissions (packages are discussed in Chapter 18). In your own code, you
could import the class BankAccount.Permissions and then use the simple name Permissions, but
you would lose the important information about the subsidiary nature of the class.

Static nested classes are members of their enclosing type. Static nested classes enclosed in an interface are
implicitly public; if enclosed by a class, you can declare them to be accessible in any way you like. You can,
for example, declare a class that is an implementation detail to be private. We declare Permissions to
be public because programmers using BankAccount need to use the class.

Since Permissions is a member of BankAccount, the Permissions class can access all other
members of BankAccount, including all inherited members. For example, if Permissions declared a
method that took a BankAccount object as an argument, that method would be able to directly access both
the number and balance fields of that account. In this sense the nested class is seen as part of the
implementation of the enclosing class and so is completely trusted.

There is no restriction on how a static nested class can be extendedit can be extended by any class to which it
is accessible. Of course, the extended class does not inherit the privileged access that the nested class has to
the enclosing class.

Nested enum classes are always static, although by convention the static modifier is omitted from the
enum declaration. Enum classes are described in Chapter 6.

131

131

5.1.2. Nested Interfaces

Nested interfaces are also always static and again, by convention the static modifier is omitted from the
interface declaration. They serve simply as a structuring mechanism for related types. When we look at
non-static nested classes you will see that they are inherently concerned with implementation issues. Since
interfaces do not dictate implementation they cannot be non-static.

Exercise 5.1: Consider the Attr class and Attributed interface from Chapter 4. Should one of these be a
nested type of the other? If so, which way makes the most sense?

5.2. Inner Classes

Non-static nested classes are called inner classes. Non-static class members are associated with instances of a
classnon-static fields are instance variables and non-static methods operate on an instance. Similarly, an inner
class is also (usually) associated with an instance of a class, or more specifically an instance of an inner class
is associated with an instance of its enclosing classthe enclosing instance or enclosing object.

You often need to closely tie a nested class object to a particular object of the enclosing class. Consider, for
example, a method for the BankAccount class that lets you see the last action performed on the account,
such as a deposit or withdrawal:

public class BankAccount {
 private long number; // account number
 private long balance; // current balance (in cents)
 private Action lastAct; // last action performed

 public class Action {
 private String act;
 private long amount;
 Action(String act, long amount) {
 this.act = act;
 this.amount = amount;
 }
 public String toString() {
 // identify our enclosing account
 return number + ": " + act + " " + amount;
 }
 }

 public void deposit(long amount) {
 balance += amount;
 lastAct = new Action("deposit", amount);
 }

 public void withdraw(long amount) {
 balance -= amount;
 lastAct = new Action("withdraw", amount);
 }
 // ...
}

The class Action records a single action on the account. It is not declared static, and that means its
objects exist relative to an object of the enclosing class.

The relationship between an Action object and its BankAccount object is established when the Action

132

132

object is created, as shown in the deposit and withdraw methods. When an inner class object is created,
it must be associated with an object of its enclosing class. Usually, inner class objects are created inside
instance methods of the enclosing class, as in deposit and withdraw. When that occurs the current object
this is associated with the inner object by default. The creation code in deposit is the same as the more
explicit

lastAct = this.new Action("deposit", amount);

Any BankAccount object could be substituted for this. For example, suppose we add a transfer operation
that takes a specified amount from one account and places it in the current accountsuch an action needs to
update the lastAct field of both account objects:

public void transfer(BankAccount other, long amount) {
 other.withdraw(amount);
 deposit(amount);
 lastAct = this.new Action("transfer", amount);
 other.lastAct = other.new Action("transfer", amount);
}

In this case we bind the second Action object to the otherBankAccount object and store it as the last
action of the other account. Each BankAccount object should only refer to Action objects for which that
BankAccount object is the enclosing instance. It would make no sense above, for example, to store the
same Action object in both the current lastAct field and other.lastAct.

An inner class declaration is just like a top-level class declaration except for one restrictioninner classes
cannot have static members (including static nested types), except for final static fields that are initialized to
constants or expressions built up from constants. The rationale for allowing constants to be declared in an
inner class is the same as that for allowing them in interfacesit can be convenient to define constants within
the type that uses them.

As with top-level classes, inner classes can extend any other classincluding its enclosing class[2] implement
any interface and be extended by any other class. An inner class can be declared final or abstract, and
can have annotations applied to it.

[2] It is hard to think of a reason why you would want to do this, and easy to get a headache
reasoning about what it means.

Exercise 5.2: Create a version of BankAccount that records the last ten actions on the account. Add a
history method that returns a History object that will return Action objects one at a time via a next
method, returning null at the end of the list. Should History be a nested class? If so, should it be static or
not?

5.2.1. Accessing Enclosing Objects

The toString method of Action directly uses the number field of its enclosing BankAccount object.
A nested class can access all members of its enclosing classincluding private fields and methodswithout
qualification because it is part of the enclosing class's implementation. An inner class can simply name the
members of its enclosing object to use them. The names in the enclosing class are all said to be in scope. The
enclosing class can also access the private members of the inner class, but only by an explicit reference to an
inner class object such as lastAct. While an object of the inner class is always associated with an object of
the enclosing class, the converse is not true. An object of the enclosing class need not have any inner class

133

133

objects associated with it, or it could have many.

When deposit creates an Action object, a reference to the enclosing BankAccount object is
automatically stored in the new Action object. Using this saved reference, the Action object can always
refer to the enclosing BankAccount object's number field by the simple name number, as shown in
toString. The name of the reference to the enclosing object is this preceded by the enclosing class
namea form known as qualified-this. For example, toString could reference the number field of the
enclosing BankAccount object explicitly:

return BankAccount.this.number + ": " + act + " " + amount;

The qualified-this reference reinforces the idea that the enclosing object and the inner object are tightly
bound as part of the same implementation of the enclosing class. This is further reinforced by the
qualified-super reference, which allows access to members of the enclosing instance's superclass that have
been hidden, or overridden, by the enclosing class. For example, given a class T that extends S, within T we
can invoke the superclass implementation of a method m, by using super.m() in an expression. Similarly,
in an inner class of T, we can invoke the same implementation of m using T.super.m() in an expressiona
qualified-super referenceand similarly for fields of S hidden by fields in T.

A nested class can have its own nested classes and interfaces. References to enclosing objects can be obtained
for any level of nesting in the same way: the name of the class and this. If class X encloses class Y which
encloses class Z, code in Z can explicitly access fields of X by using X.this.

The language does not prevent you from deeply nesting classes, but good taste should. A doubly nested class
such as Z has three name scopes: itself, its immediate enclosing class Y, and outermost class X. Someone
reading the code for Z must understand each class thoroughly to know in which context an identifier is bound
and which enclosing object was bound to which nested object. We recommend nesting only one level under
most circumstances. Nesting more than two levels invites a readability disaster and should probably never be
attempted.

5.2.2. Extending Inner Classes

An inner class can be extended just as any static nested class or top-level class can. The only requirement is
that objects of the extended class must still be associated with objects of the original enclosing class or a
subclass. Usually this is not a problem because the extended inner class is often declared within an extension
of the outer class:

class Outer {
 class Inner { }
}

class ExtendedOuter extends Outer {
 class ExtendedInner extends Inner { }
 Inner ref = new ExtendedInner();
}

The ref field is initialized when an ExtendedOuter object is created. The creation of the
ExtendedInner instance uses the default no-arg constructor of ExtendedInner, which in turn
implicitly invokes the default no-arg constructor of Inner by using super. The constructor for Inner
requires an object of Outer to bind to, which in this case is implicitly the current object of
ExtendedOuter.

134

134

If the enclosing class of the inner subclass is not a subclass of Outer, or if the inner subclass is not itself an
inner class, then an explicit reference to an object of Outer must be supplied when the Inner constructor is
invoked via super. For example:

class Unrelated extends Outer.Inner {
 Unrelated(Outer ref) {
 ref.super();
 }
}

When the construction of an Unrelated object reaches the point where the superclass constructor is
invoked, there must be an object of class Outer to which the superclass object can be bound. Since
Unrelated is not itself an inner class of Outer, there is no implicit enclosing object. Similarly, because
Unrelated is not a subclass of Outer, the current object of Unrelated is not a valid enclosing object.
We must provide an explicit reference to an Outer object for the superclass object to bind to. We chose to
supply that reference using an argument to the Unrelated constructor, which uses it as an explicit binding
reference in the invocation of the superclass constructor.

Note that you cannot use the inner class creation syntax to externally provide an Outer object, as in

Outer ref = new Outer();
Unrelated u = ref.new Unrelated(); // INVALID

because this syntax supplies an enclosing object for the Unrelated class and Unrelated is not an inner
class.

An inner class can extend another, unrelated, inner class provided an appropriate enclosing instance is
supplied to the superclass, as just described. The resulting inner class then has two enclosing instancesone for
the extended class and one for the superclass. Such designs are convoluted, however, and are best avoided.

5.2.3. Inheritance, Scoping, and Hiding

Within an inner class, all names declared within the enclosing class are said to be in scopethey can be used as
if the inner class code were declared in the outer class. An inner class's own fields and methods (and nested
types) can hide those of the enclosing object. There are two ways in which this can occur:

a field or method is declared in the inner class•
a field or method is inherited by the inner class•

In both cases any use of the simple name refers to the member of the inner class, whether declared or
inherited. The enclosing object's field or method must be accessed explicitly using a qualified-this
expression.

In the second case, the use of the simple name can mislead a reader of the code. Consider the following:

class Host {
 int x;

 class Helper extends Unknown {
 void increment() { x++; } // Not what you think!
 }
}

135

135

The increment method appears to increment the x field of the enclosing Host instance. In fact, Unknown
also declares a field x and that field is inherited by Helper. The inherited x field hides the x field from the
enclosing scope, and so it is the inherited x field that is incremented not the field that is seen in the source
code! To avoid giving the reader the wrong impression about what the code is doing, you should avoid the use
of simple names in this situation. Instead, the reference to x should be explicitly qualified as either this.x
or Host.this.x, depending on which field it is meant to refer to.

An inner class method with the same name as an enclosing class method hides all overloaded forms of the
enclosing class method, even if the inner class itself does not declare those overloaded forms. For example:

class Outer {
 void print() { }
 void print(int val) { }

 class Inner {
 void print() { }
 void show() {
 print();
 Outer.this.print();
 print(1); // INVALID: no Inner.print(int)
 }
 }
}

Here the declaration of Inner.print hides all forms of Outer.print. When Inner.show invokes
print(1), the compiler reports that Inner has no method print that takes an integer argument. The
show method must explicitly qualify the method invocation with Outer.this. There is a good reason to do
this. Normally, a set of overloaded methods within a class have the same basic contractthey just operate on
different parameter types. If an inner class method happens to have the same name as an enclosing class
method, there is no reason to assume that it supports the same contractconsequently, the hiding of the
enclosing class's overloaded forms prevents a completely unrelated method from being accidentally invoked.
As usual, there are few reasons to hide fields or methods in this way, so the issue is best avoided in the first
place. The details of how method invocations are resolved are discussed in "Finding the Right Method" on
page 224.

5.3. Local Inner Classes

You can define inner classes in code blocks, such as a method body, constructor, or initialization block. These
local inner classes are not members of the class of which the code is a part but are local to that block, just as a
local variable is. Such classes are completely inaccessible outside the block in which they are definedthere is
simply no way to refer to them. But instances of such classes are normal objects that can be passed as
arguments and returned from methods, and they exist until they are no longer referenced. Because local inner
classes are inaccessible, they can't have access modifiers, nor can they be declared static because, well,
they are local inner classes. All of the other class modifiers, including annotations, can be applied, though
only strictfp and annotations have practical applications.

A local inner class can access all the variables that are in scope where the class is definedlocal variables,
method parameters, instance variables (assuming it is a non-static block), and static variables. The only
restriction is that a local variable or method parameter can be accessed only if it is declared final. The
reason for this restriction relates mainly to multithreading issues (see Chapter 14) and ensures that all such
variables have well-defined values when accessed from the inner class. Given that the method accessing the

136

136

local variable or parameter could be invoked after the completion of the method in which the local class was
definedand hence the local variables and parameters no longer existthe value of those variables must be frozen
before the local class object is created. If needed, you can copy a non-final variable into a final one that is
subsequently accessed by the local inner class.

Consider the standard interface Iterator defined in the java.util package. This interface defines a way
to iterate through a group of objects. It is commonly used to provide access to the elements in a container
object but can be used for any general-purpose iteration:

package java.util;

public interface Iterator<E> {
 boolean hasNext();
 E next() throws NoSuchElementException;
 void remove() throws UnsupportedOperationException,
 IllegalStateException;
}

The hasNext method returns true if next has more elements to return. The remove method removes
from the collection the last element returned by next. But remove is optional, which means an
implementation is allowed to throw UnsupportedOperationException. If remove is invoked before
next, or is invoked multiple times after a single call to next, then IllegalStateException is thrown.
NoSuchElementExceptionalso part of the java.util packageis thrown if next is invoked when
there are no more elements. See "Iteration" on page 571 for more details.

Here is a simple method that returns an Iterator to walk through an array of Object instances:

public static Iterator<Object>
 walkThrough(final Object[] objs) {

 class Iter implements Iterator<Object> {
 private int pos = 0;
 public boolean hasNext() {
 return (pos < objs.length);
 }
 public Object next() throws NoSuchElementException {
 if (pos >= objs.length)
 throw new NoSuchElementException();
 return objs[pos++];
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 }
 return new Iter();
}

The Iter class is local to the walkThrough method; it is not a member of the enclosing class. Because
Iter is local to the method, it has access to all the final variables of the methodin particular the parameter
objs. It defines a pos field to keep track of where it is in the objs array. (This code assumes that
Iterator and NoSuchElementException are imported from java.util in the source that contains
walkThrough.)

Members of local inner classes can hide the local variables and parameters of the block they are declared in,
just as they can hide instance fields and methods. The rules discussed on page 140 apply in all cases. The only

137

137

difference is that once a local variable or parameter has been hidden it is impossible to refer to it.

5.3.1. Inner Classes in Static Contexts

We stated that an inner class is usually associated with an instance of the enclosing class. It is possible to
declare a local inner class, or an anonymous inner class (see next section), in a static context: within a static
method, a static initialization block, or as part of a static initializer. In these static contexts there is no
corresponding instance of the enclosing class, and so the inner class instance has no enclosing class instance.
In these circumstances, any attempt to use a qualified-this expression to refer to an enclosing class's
instance fields or methods will result in a compile-time error.

5.4. Anonymous Inner Classes

When a local inner class seems too much for your needs, you can declare anonymous classes that extend a
class or implement an interface. These classes are defined at the same time they are instantiated with new. For
example, consider the walkThrough method. The class Iter is fairly lightweight and is not needed outside
the method. The name Iter doesn't add much value to the codewhat is important is that it is an Iterator
object. The walkThrough method could use an anonymous inner class instead:

public static Iterator<Object>
 walkThrough(final Object[] objs) {

 return new Iterator<Object>() {
 private int pos = 0;
 public boolean hasNext() {
 return (pos < objs.length);
 }
 public Object next() throws NoSuchElementException {
 if (pos >= objs.length)
 throw new NoSuchElementException();
 return objs[pos++];
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 };
}

Anonymous classes are defined in the new expression itself, as part of a statement. The type specified to new
is the supertype of the anonymous class. Because Iterator is an interface, the anonymous class in
walkThrough implicitly extends Object and implements Iterator. An anonymous class cannot have
an explicit extends or implements clause, nor can it have any modifiers, including annotations.

Anonymous inner classes cannot have explicit constructors declared because they have no name to give the
constructor. If an anonymous inner class is complex enough that it needs explicit constructors then it should
probably be a local inner class. In practice, many anonymous inner classes need little or no initialization. In
either case, an anonymous inner class can have initializers and initialization blocks that can access the values
that would logically have been passed as a constructor argument. The only construction problem that remains
is the need to invoke an explicit superclass constructor. To solve this problem the new expression is written as
if a superclass instance were being constructed, and that constructor is invoked as the superclass constructor.
For example, the following anonymous subclass of Attr (see page 76) invokes the single-argument Attr
constructor and overrides setValue to print out the new value each time it is changed:

Attr name = new Attr("Name") {

138

138

 public Object setValue(Object nv) {
 System.out.println("Name set to " + nv);
 return super.setValue(nv);
 }
};

In the Iterator example we invoked the no-arg superclass constructor for Objectthe only constructor
that can ever be used when an anonymous inner class has an interface type.

Anonymous classes are simple and direct but can easily become very hard to read. The further they nest, the
harder they are to understand. The nesting of the anonymous class code that will execute in the future inside
the method code that is executing now adds to the potential for confusion. You should probably avoid
anonymous classes that are longer than about six lines, and you should use them in only the simplest of
expressions. We stretch this rule in the walkThrough example because the sole purpose of the method is to
return that object, but when a method does more, anonymous classes must be kept quite small or the code
becomes illegible. When anonymous classes are used properly, they are a good tool for keeping simple classes
simple. When misused, they create impenetrable inscrutability.

5.5. Inheriting Nested Types

Nested types, whether static classes, interfaces, or inner classes, are inherited the same way that fields are
inherited. A declaration of a nested type with the same name as that of an inherited nested type hides the
definition of the inherited type. The actual type referred to is determined by the type of the reference used.
Within a given class, the actual nested type referred to is the one defined in the current class or inherited in the
current class.

Consider a framework that models devices that can be connected by different ports. The class Device is an
abstract class that captures some common behavior of all devices. A port also has some common generic
behavior so it is also modeled as an abstract class and, because ports exist only within devices, the Port class
is made an inner class of Device. A concrete device class defines the state for the device and the concrete
inner port classes for that device. During construction of a concrete device class, references to the concrete
ports of that class are initialized:

abstract class Device {
 abstract class Port {
 // ...
 }
 // ...
}
class Printer extends Device {
 class SerialPort extends Port {
 // ...
 }
 Port serial = new SerialPort();
}

A concrete device can itself be extended, as can the concrete inner port classes, to specialize their behavior.

class HighSpeedPrinter extends Printer {
 class SerialPort extends Printer.SerialPort {
 // ...
 }

139

139

}

The intent is that the class HighSpeedPrinter.SerialPort overrides the class
Printer.SerialPort so that serial is set to refer to the correct type of object. But the class
Printer is not affected by the new subclass of SerialPort defined inside HighSpeedPrinter, even
though the new subclass seems to have the same name.

One solution to this design problem is to abstract construction of the inner class objects into a factory method
which can then be overridden in a subclass to construct the right kind of inner class. For example:

class Printer extends Device {
 class SerialPort extends Port {
 // ...
 }
 Port serial = createSerialPort();
 protected Port createSerialPort() {
 return new SerialPort();
 }
}

The HighSpeedPrinter class now defines its specialized inner class and overrides the factory method to
construct an instance of that class. Now that we realize that nested type definitions hide and don't override, we
aren't tempted to use the same name for the inner class, for we know that hiding is usually a bad thing.

class HighSpeedPrinter extends Printer {
 class EnhancedSerialPort extends SerialPort {
 // ...
 }
 protected Port createSerialPort() {
 return new EnhancedSerialPort();
 }
}

Now when a HighSpeedPrinter is constructed and the initializers in Printer execute, we invoke the
overriding createSerialPort method that returns an instance of EnhancedSerialPort.

This is one example of a situation in which a method of the subclass is invoked before the subclass object has
been fully constructed and so care must be taken to ensure that things work correctly. For example, if
EnhancedSerialPort initializes a field using a field from the enclosing HighSpeedPrinter
instance, then at the time the EnhancedSerialPort object is constructed, the fields of the enclosing
object will have the default "zero" values for their type.

An alternative design would have the constructor for HighSpeedPrinter simply reassign serial to
refer to an EnhancedSerialPort object. However, that approach causes the unnecessary construction of
the original SerialPort object, and that construction may be non-trivial and undesirablein this example it
may involve configuring hardware.

5.6. Nesting in Interfaces

You declare nested classes and interfaces in an interface for the same reason that you declare nested classes

140

140

and interfaces in a class: nested classes and interfaces allow you to associate types that are strongly related to
an interface inside that interface. For example, a class that was used only to return multiple values from an
interface's method could be represented as a nested class in that interface:

interface Changeable {
 class Record {
 public Object changer;
 public String changeDesc;
 }

 Record getLastChange();
 // ...
}

The method getLastChange returns a Changeable.Record object that contains the object that made
the change and a string describing the change. This class has meaning relative only to the Changeable
interface, so making a top-level class not only is unnecessary but would also separate it from the context of its
use. As a nested class it is tightly bound to its origin and context, but it is a normal class in every other regard.

Another use for a nested class within an interface is to define a (partial or complete) default implementation
for that interface. A class that implements the interface could then choose to extend the default
implementation class or to forward method invocations to an instance of that class.

Any class or interface nested inside an interface is public and static.

5.6.1. Modifiable Variables in Interfaces

We mentioned on page 121 that if you need shared, modifiable data in an interface, then a nested class is a
simple way of achieving this. Declare a nested class whose fields hold the shared data, and whose methods
provide access to that data, then maintain a reference to an instance of that class. For example:

interface SharedData {
 class Data {
 private int x = 0;
 public int getX() { return x; }
 public void setX(int newX) { x = newX; }
 }
 Data data = new Data();
}

Now all implementors and users of SharedData can share common state via the data reference.

5.7. Implementation of Nested Types

How the compiler and runtime system deal with nested types would ideally be transparent to the programmer.
Unfortunately, this is not quite the case. Nested types were added as a language extension, and that extension
had to maintain compatibility with older Java virtual machines. Consequently, nested types are implemented
in terms of a source code transformation that the compiler applies.

141

141

As a programmer, the only thing you should need to know about this process is the naming conventions that
are used. Consider a static, or non-local, nested type defined as Outer.Inner. This is the source name for
the class. At the virtual machine level the class is renamed as Outer$Innerin essence, dots in a nested
name are converted to dollar signs. For local inner classes, the transformation is less specific because these
classes are inaccessible, hence their name is less importantsuch classes are named Outer$NInner, where
Inner is the name of the local class and N is a sequence of one or more digits. For anonymous inner classes
the names have the form Outer$N, where N is a sequence of one or more digits.

These issues have to be dealt with in two main cases. First, when bundling the class files for your applications
you have to recognize all the strange files with $ in their name. Second, if you use the reflection mechanism
discussed in Chapter 16 to create nested class instances, you'll need to know the transformed name. But in
most programming the transformed name is something you can blissfully ignore.

"A power so great, it can only be used for Good or Evil!"

Firesign Theatre, "The Giant Rat of Summatra"

Chapter 6. Enumeration Types

Four be the things I am wiser to know: Idleness, sorrow, a friend, and a foe. Four be the
things I'd been better without: Love, curiosity, freckles, and doubt. Three be the things I shall
never attain: Envy, content, and sufficient champagne. Three be the things I shall have till I
die: Laughter and hope and a sock in the eye.

Dorothy Parker, "Inventory"

An enumeration typesometimes known as an enumerated type, or more simply as an enumis a type for which
all values for the type are known when the type is defined. For example, an enum representing the suits in a
deck of cards would have the possible values hearts, diamonds, clubs, and spades; and an enum for the days of
the week would have the values Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

In some programming languages, enums are nothing more than a set of named integer values, but in the Java
programming language an enum is a special kind of class, with an instance that represents each value of the
enum.

6.1. A Simple Enum Example

An enum for the suits in a deck of cards can be declared as follows:

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

In this basic form, an enum declaration consists of the keyword enum, an identifier that names the enum, and
a body that simply names each of the values, or constants, of the enum.[1] By convention, enum constants
always have uppercase names. The enum constants are static fields of the class:

[1] The term enum constant refers to those values, like CLUBS and DIAMONDS, declared in
the enum type. Enum types can also have normal constants, just like other classes, that are
static final fields of various types. We always use "enum constant" to refer to the former, and

142

142

plain "constant" to refer to the latter.

Suit currentSuit = ... ;
if (currentSuit == Suit.DIAMONDS) ... ;

Each enum constant actually refers to an instance of the enum class. You cannot construct an instance of an
enum by using newit is as if the enum had no accessible constructors. You may only use those objects created
for the enum constants.

While this simple usage appears little different from declaring a set of named integer constants, it has the
significant difference of being completely type-safe: It is impossible to assign anything to a reference of type
Suit except one of the four defined Suit enum constants or null. As you will see, enums also provide
much more sophisticated usage than can be achieved with named integer constants.

Exercise 6.1: Define simple enums for the days of the week and traffic light colors.

Exercise 6.2: Redo your solution to Exercise 2.17 to use an enum to represent the TURN_LEFT and
TURN_RIGHT constants. What advantage is there to using the enum?

Exercise 6.3: Redefine the Verbose interface from Section 4.2.1 on page 121 to use an enum for the
verbosity level instead of integer constants.

6.2. Enum Declarations

An enum is a special kind of class, but an enum declaration has restrictions on its form and use that are
different from those of a normal class. An enum declaration is like a class declaration with two exceptions:
The keyword enum is used instead of class, and before declaring any class members (or initialization
blocks) an enum must first declare all of its enum constants. If an enum does declare anything other than its
enum constants, then the list of enum constants must be termi ated by a semicolon. For example, this variation
of Suit provides a method to tell you how many suits there are:

enum Suit {
 CLUBS, DIAMONDS, HEARTS, SPADES;

 public static int getSize() { return 4; }
}

For convenience, you're allowed to have a comma after the last enum constant (but before the semicolon if
present), whether or not any other class declarations follow. This is useful for declaring an enum constant per
line:

enum Suit {
 CLUBS,
 DIAMONDS,
 HEARTS,
 SPADES,
}

Being able to keep the extraneous comma allows you to reorder lines without having to remember to add the
comma to the old last line or remove it from the new last line. (Array initialization lists have the same

143

143

featuresee page 175.)

An enum cannot be declared to extend another type because all enums implicitly extend
java.lang.Enum, which we discuss a little later. Nor can any other type extend an enum (not even another
enum), because all enum types act as if they are implicitly final. An enum can declare that it implements
one or more interfacesin fact all enums are implicitly Serializable (see "Object Serialization" on page
549) and Comparable.

The possible members of an enum include all the class members: fields, methods, and nested types, including
nested enumsthough it should be rare to require such sophistication: The main attraction of enums is their
simplicity. The enum constants themselves are implicitly static fields with the same type as the enum.

Every enum type E has two static methods that are automatically generated for it by the compiler:

public static E[] values()

Returns an array containing each of the enum constants in the order in which
they were declared.

public static E valueOf(String name)

Returns the enum constant with the given name. If the name does not match
an enum constant name exactly then an IllegalArgumentException
is thrown.

Note that the length of the array returned by values tells you how many enum constants there are in the
enum, so the getSize method we demonstrated is not needed in practice.

An enum type is not allowed to override the finalize method from Object. Enum instances may never
be finalized (see "Finalization" on page 449).

6.2.1. Enum Modifiers

An enum declaration can be preceded by certain modifiers:

annotations Annotations and annotation types are discussed in Chapter 15.•
access modifiers Nested enum declarations can have any of the access modifiers, while a top-level
enum, as for a top-level class, is either public or in the absence of an access modifier, accessible
only within its own package.

•

static All nested enums are implicitly static because they contain static members. By convention,
the static modifier is always omitted.

•

strict floating point All floating-point arithmetic within an enum declared to be strictfp is
evaluated strictly. See Section 9.1.3 on page 203 for details.

•

When multiple modifiers are applied to the same interface declaration, we recommend using the order listed
above.

An enum cannot be declared abstract because you cannot extend it to provide missing method
implementationshowever, an enum can declare abstract methods. You'll shortly see how this apparent
contradiction is resolved.

An enum also cannot be explicitly declared final, though it acts as if it were final. You'll shortly see why
this is so, too.

144

144

6.3. Enum Constant Declarations

The simplest enum constant declaration just gives a name for each enum constant, as you have seen. Such
enum constants implicitly define a public, static, and final field with the given name and of the same type as
the enum. These implicit fields are initialized by constructing an instance of the enum as described below. An
enum constant declaration cannot have modifiers applied to it, except for annotations (see Chapter 15).

6.3.1. Construction

An enum constant declaration that consists of only a name causes an object of the enum type to be created
with the (implicit or explicit) no-arg constructor. An enum can declare arbitrary constructors, just like any
other class. You select which constructor should be used for a particular enum constant by supplying
arguments that match the constructor parameter types:

enum Suit {
 CLUBS("CLUBS"),
 DIAMONDS("DIAMONDS"),
 HEARTS("HEARTS"),
 SPADES("SPADES");

 String name;
 Suit(String name) { this.name = name; }

 public String toString() { return name; }
}

Here each Suit value has a name field set by the constructor that takes a String, and in each enum
constant declaration we provide the desired name argument. This is such a common thing to want with enum
constants, however, that this functionality has been built-in so you don't have to write the name strings
yourselfinvoking thename method on an enum constant will return its name as a String.

You can get a feel for how an enum is internally defined from the following pseudo-code, which shows a
mock class definition for the above Suit enum:

class Suit extends Enum<Suit> // pseudo-code only
 implements Comparable<Suit>, Serializable {

 public static final Suit CLUBS = new Suit("CLUBS");
 public static final Suit DIAMONDS = new Suit("DIAMONDS");
 public static final Suit HEARTS = new Suit("HEARTS");
 public static final Suit SPADES = new Suit("SPADES");

 String name;

 Suit(String name) { this.name = name; }
 public String toString() { return name; }

 // ... compiler generated methods ...
}

There is a bit more to the detail, but the above gives you the general idea.

145

145

The constructor to invoke is determined according to the usual rules for matching argument types with
constructor parameter typessee "Finding the Right Method" on page 224.

There are three restrictions on the definition of an enum constructor:

All enum constructors are private. While you can use the private access modifier in the constructor
declaration, by convention it is omitted. Private constructors ensure that an enum type cannot be
instantiated directly.

•

The constructor cannot explicitly invoke a superclass constructor. The chaining to the super
constructor is handled automatically by the compiler.

•

An enum constructor cannot use a non-constant static field of the enum.•

This last restriction requires a little explanation. Because each enum constant is a static field of the enum type,
the constructors are executed during static initialization of the enum class. The enum constant declarations
must be the first declarations in the type, so the constructors for these values will always be the first code
executed during static initialization. Any other static fields will be initialized afterward. So if a constructor
were to refer to a static (non-constant) field of the enum, it would see the default uninitialized value. This
would nearly always be an error, and so it is simply disallowed.

The work-around is quite straight-forward: Declare a static initialization block that does what the constructor
would like to have done. This block can refer to any enum constant or can iterate through all of them because
all will have been constructed before the block can execute.

Exercise 6.4: Expand your traffic light color enum from Exercise 6.1 on page 152 so that each enum constant
has a suitable Color object that can be retrieved with getColor.

6.3.2. Constant Specific Behavior

Many enums define simple, passive types whose sole purpose is to provide the named enum constantsan enum
like Suit is a good example. Occasionally, enum constants will have state associated with them that will be
set by a constructor and accessed with a method on the enum. For example, consider an enum that defined the
nine planets of our solar system, and that allowed the mass of each planet to be set and queried. In some
circumstances, the enum may represent an entity with inherent behavior that varies between the different
enum constantsthis is known as constant-specific behavior.

Suppose you were writing a computer chess program[2] and you wanted to represent the different kinds of
chess pieces, you might use a simple enum like this:

[2] This example is based on an example given by Tim Peierls.

enum ChessPiece {
 PAWN, ROOK, BISHOP, KNIGHT, KING, QUEEN;
}

The rules for manipulating the different chess pieces could be defined in a class ChessRules, which might
then have a method that returns the set of reachable positions for a given kind of piece, given its current
position:

Set<Position> reachable(ChessPiece type, Position current) {
 if (type == ChessPiece.PAWN)
 return pawnReachable(current);
 else if (type == ChessPiece.ROOK)
 return rookReachable(current);

146

146

 // ...
 else if (type == ChessPiece.QUEEN)
 return queenReachable(current);
 else
 throw new Error("Unknown type");
}

The job of reachable is to dispatch actual calculations to methods that know how to handle specific chess
pieces, so it has to consider all the possible values of the chess piece type that was passed to it. Whenever you
see a chain of ifelse statements, as above, or equivalently a switch statement (which you'll learn about in
Chapter 10) that distinguishes different objects or types of object, ask yourself if there is a way to have the
object decide what needs to be doneafter all, each object knows what it is. In this case, why can't you ask the
chess piece for its set of reachable positions? It turns out you canby adding constant-specific behavior to the
enum:

enum ChessPiece {
 PAWN {
 Set<Position> reachable(Position current) {
 return ChessRules.pawnReachable(current);
 }
 },
 ROOK {
 Set<Position> reachable(Position current) {
 return ChessRules.rookReachable(current);
 }
 },
 // ...
 QUEEN {
 Set<Position> reachable(Position current) {
 return ChessRules.queenReachable(current);
 }
 };

 // declare the methods defined by this enum
 abstract Set<Position> reachable(Position current);
}

This time each named enum constant is followed by a class body that defines the methods for that enum
constantin this case dispatching to the appropriate ChessRules method as before. The advantage of
dispatching in the enum constants themselves is that you can't forget to handle the case for a specific value.
Looking at the original code for reachable you can see that it would be easy to leave out one of the values,
only realizing this at runtime when the error is thrown. Also note that even though we have covered all the
possible values in reachable, we still must have that final else clause because the compiler won't check
to see if we have covered all possible values and the method must either return a value or throw an exception.
By using constant-specific methods we moved the checking for completeness to compile time, which is
always a good thing, and we avoided writing code that should never get executed.

The classes that are defined for each enum constant are effectively anonymous inner classes that extend the
enclosing enum typewhich is why you can't actually declare an enum to be final: Even though it can't be
directly extended, it can be implicitly extended by these anonymous inner classes.

As with other anonymous inner classes, the enum constant class body can define arbitrary instance fields, and
methods, but it can't declare static members or define constructors. Also note that because enum constants are
implicitly static fields, these anonymous inner classes have no enclosing instance.

147

147

To be directly accessible, the methods defined for each enum constant must be declared as methods of the
enum type itselfeither explicitly, as above for reachable, or implicitly by an interface the enum
implements. An enum type is allowed to declare an abstract method, only if there is an implementation of
that method for each and every enum constant.

Exercise 6.5: Redo Exercise 6.4 making getColor an abstract method and defining constant-specific
methods for each enum constant to return the correct Color object. Would you recommend using
constant-specific methods to do this?

6.4. java.lang.Enum

All enum types implicitly extend java.lang.Enum,[3] but no class is allowed to extend Enum directly.
Although Enum does provide some methods that can be useful for working with enums, its main role is to
establish some useful properties for all enum types:

[3] Enum is actually a generic class defined as Enum<T extends Enum<T>>. This
circular definition is probably the most confounding generic type definition you are likely to
encounter. We're assured by the type theorists that this is quite valid and significant, and that
we should simply not think about it too much, for which we are grateful.

The clone method is overridden to be declared final and to throw
CloneNotSupportedExceptionmaking it impossible to ever clone an enum instance.

•

The hashCode and equals methods are overridden and declared finalensuring consistent and
efficient hashing for enums, and ensuring that equivalence is the same as identity.

•

The compareTo method of interface java.lang.Comparable is implemented and defined such
that enum constants have a natural ordering based on their order of declarationthe first declared enum
constant has the lowest position in the ordering.

•

Enum also provides a toString implementation that returns the name of the enum constant, as we have
mentioned, but which you can chose to override. It also provides a finalname method that also returns the
name of the enum constant as a String. The difference between these two methods is that name will return
the exact name of the enum constant, while toString may be overridden to return a more "user friendly"
version of the namefor example, returning "Diamonds" instead of "DIAMONDS".

The additional methods of Enum are:

public final int ordinal()

Returns the ordinal value of an enum constant. Enum constants are given
ordinal values based on the order they are declared: the first declared constant
has an ordinal value of zero, the second has an ordinal value of one, etc.

public final Class<E> geTDeclaringClass()

Returns the Class object representing the enum type of this enum constant.
This will be different from the value returned by Object.getClass for
any enum constant that is set to an anonymous inner class object.

The Enum class also provides a static utility method, valueOf, that takes a class object for an enum type,
and a name, and returns the named enum constant from the given enum. If the enum doesn't have a enum
constant by that name then IllegalArgumentException is thrown.

148

148

In addition to the Enum class, there are two highly efficient enum-specific collection classes: EnumSet
defines a set for use with enum values, and EnumMap is a specialized map for which keys are enum values.
These specialized collection classes are described further in Chapter 21.

6.5. To Enum or Not

The more sophisticated the type you are considering defining as an enum, the more thought you must give to
whether enum is the right way to express that type. For simple uses like card suits, days of the week, and even
the simple chess piece enum, all that is necessary is that you have a closed set of well-known instancesthe
decision to define an enum takes almost no thought.

When an enum declares enum constants with constant-specific behavior, additional considerations need to be
made. The more sophisticated the behavior of a type, the more likely an application might need to specialize
that behavior. Specialization of behavior is done through subclassing, and you cannot subclass an enum. Even
something as innocuous as defining a logging, or profiling version of a given enum type is precluded. The
same considerations that go into declaring a class final apply to choosing whether to declare a sophisticated
enum.

There is little an enum can do that you couldn't do by declaring distinct classes. But the packaging that enum
provides is far more convenient to use, though with some restrictions, as you've seen. Additionally, enums are
a part of the language and are recognized by other parts of the language. For example, enum constants can be
used directly with a switch statement (see page 232) whereas normal object references can not. Unless you
need specialization through subclassing, it will almost always be better to use an enum type than to define
your own classes.

CENSUS TAKER TO HOUSEWIFE: Did you ever have the measles, and, if so, how many?

Chapter 7. Tokens, Values, and Variables

There's nothing remarkable about it. All one has to do is hit the right keys at the right time
and the instrument plays itself.

Johann Sebastian Bach

A program starts as a sequence of characters contained in a filethe source code. Interpreting those characters,
according to the rules of a given language, is the job of the compiler, or interpreter. Some characters will
represent the names of variables, others will be special keywords used by the language, still others will be
operators or "punctuation" characters used to separate the other elements. All of these textual constructs form
the lexical elements of the program. These lexical elements must be identified as keywords, comments,
literals, variables, operators, or whatever else is appropriate for the given language. In this chapter we look at
the basic lexical elements of a Java program, the literal values that can be expressed and the different kinds of
variables that can hold those values.

149

149

7.1. Lexical Elements

One of the first phases of compilation is the scanning of the lexical elements into tokens. This phase ignores
whitespace and comments that appear in the textso the language must define what form whitespace and
comments take. The remaining sequence of characters must then be parsed into tokens.

7.1.1. Character Set

Most programmers are familiar with source code that is prepared using one of two major families of character
representations: ASCII and its variants (including Latin-1) and EBCDIC. Both character sets contain
characters used in English and several other Western European languages.

The Java programming language, on the other hand, is written in a 16-bit encoding of Unicode. The Unicode
standard originally supported a 16-bit character set, but has expanded to allow for up to 21-bit characters with
a maximum value of 0x10ffff. The characters above the value 0x00ffff are termed the supplementary
characters. Any particular 21-bit value is termed a code point. To allow all characters to be represented by
16-bit values, Unicode defines an encoding format called UTF-16, and this is how the Java programming
language represents text. In UTF-16 all the values between 0x0000 and 0xffff map directly to Unicode
characters. The supplementary characters are encoded by a pair of 16-bit values: The first value in the pair
comes from the high-surrogates range, and the second comes from the low-surrogates range. Methods that
want to work with individual code point values can either accept a UTF-16 encoded char[] of length two, or
a single int that holds the code point directly. An individual char in a UTF-16 sequence is termed a code
unit.

The first 256 characters of Unicode are the Latin-1 character set, and most of the first 128 characters of
Latin-1 are equivalent to the 7-bit ASCII character set. Current environments read ASCII or Latin-1 files,
converting them to Unicode on the fly.[1]

[1] The Java programming language tracks the Unicode standard. See "Further Reading" on
page 755 for reference information. The currently supported Unicode version is listed in the
documentation of the Character class.

Few existing text editors support Unicode characters, so you can use the escape sequence \uxxxx to encode
Unicode characters, where each x is a hexadecimal digit (09, and af or AF to represent decimal values 1015).
This sequence can appear anywhere in codenot only in character and string constants but also in identifiers.

More than one u may appear at the beginning; thus, the character can be written as \u0b87 or
\uuu0b87.[2] Also note that if your editor does support Unicode characters (or a subset), you may need to
tell your compiler if your source code contains any character that is not part of the default character encoding
for your systemsuch as through a command-line option that names the source character set.

[2] There is a good reason to allow multiple u's. When translating a Unicode file into an
ASCII file, you must translate Unicode characters that are outside the ASCII range into an

escape sequence. Thus, you would translate into \u0b87. When translating back, you
make the reverse substitution. But what if the original Unicode source had not contained
but had used \u0b87 instead? Then the reverse translation would not result in the original
source (to the parser, it would be equivalent, but possibly not to the reader of the code). The
solution is to have the translator add an extra u when it encounters an existing \uxxxx, and
have the reverse translator remove a u and, if there aren't any left, replace the escape
sequence with its equivalent Unicode character.

Exercise 7.1: Just for fun, write a "Hello, World" program entirely using Unicode escape sequences.

150

150

7.1.2. Comments

Comments within source code exist for the convenience of human programmers. They play no part in the
generation of code and so are ignored during scanning. There are three kinds of comments:

// comment. Characters from // to the end of the line are ignored

/* comment
*/

All characters between /* and the next */ are ignored.

/** comment
*/

All characters between /** and the next */ are ignored.

These documentation comments come immediately before identifier declarations and are
included in automatically generated documentation. These comments are described in
Chapter 19.

Comments can include any valid Unicode character, such as yin-yang (\u262f), asterism (\u2042),
interrobang (\u203d), won (\u20a9), scruple (\u2108), or a snowman (\u2603).[3]

[3] These characters are , , , , , and , respectively.

Comments do not nest. This following tempting code does not compile:

/* Comment this out for now: not implemented
 /* Do some really neat stuff */
 universe.neatStuff();
*/

The first /* starts a comment; the very next */ ends it, leaving the code that follows to be parsed; and the
invalid, stand-alone */ is a syntax error. The best way to remove blocks of code from programs is either to
put a // at the beginning of each line or use if(false) like this:

if (false) {
 // invoke this method when it works
 dwim();
}

This technique requires that the code to be removed is complete enough to compile without error. In this case
we assume that the dwim method is defined somewhere.

7.1.3. Tokens

The tokens of a language are its basic words. A parser breaks source code into tokens and then tries to figure
out which statements, identifiers, and so forth make up the code. Whitespace (spaces, tabs, newlines, and form
feeds) is not significant except to separate tokens or as the contents of character or string literals. You can take
any valid code and replace any amount of intertoken whitespace (whitespace outside strings and characters)
with a different amount of whitespace (but not none) without changing the meaning of the program.

Whitespace must be used to separate tokens that would otherwise constitute a single token. For example, in
the statement

151

151

return 0;

you cannot drop the space between return and 0 because that would create

return0;

consisting of the single identifier return0. Use extra whitespace appropriately to make your code
human-readable, even though the parser ignores it. Note that the parser treats comments as whitespace.

The tokenizer is a "greedy" tokenizer. It grabs as many characters as it can to build up the next token, not
caring if this creates an invalid sequence of tokens. So because ++ is longer than +, the expression

j = i+++++i; // INVALID

is interpreted as the invalid expression

j = i++ ++ +i; // INVALID

instead of the valid

j = i++ + ++i;

7.1.4. Identifiers

Identifiers, used for names of declared entities such as variables, constants, and labels, must start with a letter,
followed by letters, digits, or both. The terms letter and digit are broad in Unicode: If something is considered
a letter or digit in a human language, you can probably use it in identifiers. "Letters" can come from
Armenian, Korean, Gurmukhi, Georgian, Devanagari, and almost any other script written in the world today.

Thus, not only is kitty a valid identifier, but , , , , and are, too.
[4]

Letters also include any currency symbol (such as $, ¥, and £) and connecting punctuation (such as _).

[4] These are the word "cat" or "kitty" in English, Serbo-Croatian, Russian, Persian, Tamil,
and Japanese, respectively.

Any difference in characters within an identifier makes that identifier unique. Case is significant: A, a, á, À,
Å, and so on are different identifiers. Characters that look the same, or nearly the same, can be confused. For
example, the Latin capital letter n "N" and the Greek capital ν """ look alike but are different characters
(\u004e and \u039d, respectively). The only way to avoid confusion is to write each identifier in one
languageand thus in one known set of charactersso that programmers trying to type the identifier will know
whether you meant E or E.[5]

[5] One is a Cyrillic letter, the other is ASCII. Guess which is which and win a prize.

152

152

Identifiers can be as long as you like, but use some taste. Identifiers that are too long are hard to use correctly
and actually obscure your code.

7.1.5. Keywords

Language keywords cannot be used as identifiers because they have special meaning within the language. The
following table lists the keywords (keywords marked with a are reserved but currently unused):

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected tHRow

byte else import public tHRows

case enum instanceof return transient

catch extends int short TRy

char final interface static void

class finally long strictfp volatile

const float native super while

Although they appear to be keywords, null, TRue, and false are formally literals, just like the number
12, so they do not appear in the above table. However, you cannot use null, true, or false as identifiers,
just as you cannot use 12 as an identifier. These words can be used as parts of identifiers, as in annulled,
construe, and falsehood.

7.2. Types and Literals

Every expression has a type that determines what values the expression can produce. The type of an
expression is determined by the types of values and variables used within that expression. Types are divided
into the primitive types and the reference types.

The primitive data types are:

boolean either true or false

char 16-bit Unicode UTF-16 code unit (unsigned)

byte 8-bit signed two's-complement integer

short 16-bit signed two's-complement integer

int 32-bit signed two's-complement integer

long 64-bit signed two's-complement integer

float 32-bit IEEE 754 floating-point number

153

153

double 64-bit IEEE 754 floating-point number

Each primitive data type has a corresponding class type in the java.lang package. These wrapper
classesBoolean, Character, Byte, Short, Integer, Long, Float, and Doublealso define useful
constants and methods. For example, most wrapper classes declare constants MIN_VALUE and MAX_VALUE
that hold the minimum and maximum values for the associated primitive type.

The Float and Double classes also have NaN, NEGATIVE_INFINITY, and POSITIVE_INFINITY
constants. Both also provide an isNaN method that tests whether a floating-point value is "Not a
Number"that is, whether it is the result of a floating-point expression that has no valid result, such as dividing
zero by zero. The NaN value can be used to indicate an invalid floating-point value; this is similar to the use
of null for object references that do not refer to anything. The wrapper classes are covered in detail in
Chapter 8.

There is no unsigned integer type. If you need to work with unsigned values originating outside your program,
they must be stored in a larger signed type. For example, unsigned bytes produced by an analog-to-digital
converter, can be read into variables of type short.

The reference types are class types, interface types, and array types. Variables of these types can refer to
objects of the corresponding type.

Each type has literals, which are the way that constant values of that type are written. The next few
subsections describe how literal (unnamed) constants for each type are specified.

7.2.1. Reference Literals

The only literal object reference is null. It can be used anywhere a reference is expected. Conventionally,
null represents an invalid or uncreated object. It has no class, not even Object, but null can be assigned
to any reference variable.

7.2.2. Boolean Literals

The boolean literals are true and false.

7.2.3. Character Literals

Character literals appear with single quotes: 'Q'. Any valid Unicode character can appear between the
quotes. You can use \uxxxx for Unicode characters inside character literals just as you can elsewhere.
Certain special characters can be represented by an escape sequence:

\n newline (\u000A)

\t tab (\u0009)

\b backspace (\u0008)

\r return (\u000D)

\f form feed (\u000C)

\\ backslash itself (\u005C)

154

154

\' single quote (\u0027)

\" double quote (\u0022)

\ddd a char by octal value, where each d is one of 07

Octal character constants can have three or fewer digits and cannot exceed \377 (\u00ff)for example, the
character literal '\12' is the same as '\n'. Supplemental characters can not be represented in a character
literal.

7.2.4. Integer Literals

Integer constants are strings of octal, decimal, or hexadecimal digits. The start of a constant declares the
number's base: A 0 (zero) starts an octal number (base 8); a 0x or 0X starts a hexadecimal number (base 16);
and any other digit starts a decimal number (base 10). All the following numbers have the same value:

29 035 0x1D 0X1d

Integer constants are long if they end in L or l, such as 29L; L is preferred over l because l (lowercase L)
can easily be confused with 1 (the digit one). Otherwise, integer constants are assumed to be of type int. If
an int literal is directly assigned to a short, and its value is within the valid range for a short, the integer
literal is treated as if it were a short literal. A similar allowance is made for integer literals assigned to
byte variables. In all other cases you must explicitly cast when assigning int to short or byte (see
"Explicit Type Casts" on page 219).

7.2.5. Floating-Point Literals

Floating-point constants are expressed in either decimal or hexadecimal form. The decimal form consists of a
string of decimal digits with an optional decimal point, optionally followed by an exponentthe letter e or E,
followed by an optionally signed integer. At least one digit must be present. All these literals denote the same
floating-point number:

18. 1.8e1 .18E+2 180.0e-1

The hexadecimal form consists of 0x (or 0X), a string of hexadecimal digits with an optional hexadecimal
point, followed by a mandatory binary exponentthe letter p or P, followed by an optionally signed integer.
The binary exponent represents scaling by two raised to a power. All these literals also denote the same
floating-point number (decimal 18.0):

0x12p0 0x1.2p4 0x.12P+8 0x120p-4

Floating-point constants are of type double unless they are specified with a trailing f or F, which makes
them float constants, such as 18.0f. A trailing d or D specifies a double constant. There are two zeros:
positive (0.0) and negative (-0.0). Positive and negative zero are considered equal when you use == but
produce different results when used in some calculations. For example, if dividing by zero, the expression
1d/0d is + , whereas 1d/-0d is - . There are no literals to represent either infinity or NaN, only the

155

155

symbolic constants defined in the Float and Double classessee Chapter 8.

A double constant cannot be assigned directly to a float variable, even if the value of the double is
within the valid float range. The only constants you may directly assign to float variables and fields are
float constants.

7.2.6. String Literals

String literals appear with double quotes: "along". Any character can be included in string literals, with the
exception of newline and " (double quote). Newlines are not allowed in the middle of strings. If you want to
embed a newline character in the string, use the escape sequence \n. To embed a double quote use the escape
sequence \". A string literal references an object of type String. To learn more about strings, see Chapter
13.

Characters in strings can be specified with the octal digit syntax, but all three octal digits should be used to
prevent accidents when an octal value is specified next to a valid octal digit in the string. For example, the
string "\0116" is equivalent to "\t6", whereas the string "\116" is equivalent to "N".

7.2.7. Class Literals

Every type (primitive or reference) has an associated instance of class Class that represents that type. These
instances are often referred to as the class object for a given type. You can name the class object for a type
directly by following the type name with ".class", as in

String.class
java.lang.String.class
java.util.Iterator.class
boolean.class

The first two of these class literals refer to the same instance of class Class because String and
java.lang.String are two different names for the same type. The third class literal is a reference to the
Class instance for the Iterator interface mentioned on page 129. The last is the Class instance that
represents the primitive type boolean.

Since class Class is generic, the actual type of the class literal for a reference type T is Class<T>, while
for primitive types it is Class<W> where W is the wrapper class for that primitive type. But note, for
example, that boolean.class and Boolean.class are two different objects of type
Class<Boolean>. Generic types are discussed in Chapter 11, and the class Class is discussed in Chapter
16.

Exercise 7.2: Write a class that declares a field for each of the primitive numeric types, and try to assign
values using the different literal formsfor example, try to assign 3.5f to an int field. Which literals can be
used with which type of field? Try changing the magnitude of the values used to see if that affects things.

7.3. Variables

A variable is a storage location[6] something that can hold a valueto which a value can be assigned. Variables
include fields, local variables in a block of code, and parameters. A variable declaration states the identifier
(name), type, and other attributes of a variable. The type part of a declaration specifies which kinds of values

156

156

and behavior are supported by the declared entity. The other attributes of a variable include annotations and
modifiers. Annotations can be applied to any variable declaration and are discussed in Chapter 15.

[6] Type variables are not storage locations and are excluded from this discussion. They apply
only to generic type declarations and are discussed in Chapter 11.

7.3.1. Field and Local Variable Declarations

Fields and local variables are declared in the same way. A declaration is broken into three parts: modifiers,
followed by a type, followed by a list of identifiers. Each identifier can optionally have an initializer
associated with it to give it an initial value.

There is no difference between variables declared in one declaration or in multiple declarations of the same
type. For example:

float x, y;

is the same as

float x;
float y;

Any initializer is expressed as an assignment (with the = operator) of an expression of the appropriate type.
For example:

float x = 3.14f, y = 2.81f;

is the same as the more readable

float x = 3.14f,
 y = 2.81f;

is the same as the preferred

float x = 3.14f;
float y = 2.81f;

Field variables are members of classes, or interfaces, and are declared within the body of that class or
interface. Fields can be initialized with an initializer, within an initialization block, or within a constructor, but
need not be initialized at all because they have default initial values, as discussed on page 44. Field
initialization and the modifiers that can be applied to fields were discussed in Chapter 2.

Local variables can be declared anywhere within a block of statements, not just at the start of the block, and
can be of primitive or reference type. As a special case, a local variable declaration is also permitted within
the initialization section of a for loopsee "for" on page 236. A local variable must be assigned a value before

157

157

it is used.[7] There is no default initialization value for local variables because failure to assign a starting value
for one is usually a bug. The compiler will refuse to compile code that doesn't ensure that assignment takes
place before a variable is used:

[7] In technical terms there is a concept of a variable being "definitely assigned." The compiler
won't allow the use of a local variable unless it can determine that it has been definitely
assigned a value.

int x; // uninitialized, can't use
int y = 2;
x = y * y; // now x has a value
int z = x; // okay, safe to use x

Local variables cease to exist when the flow of control reaches the end of the block in which they were
declaredthough any referenced object is subject to normal garbage collection rules.

Apart from annotations, the only modifier that can be applied to a local variable is final. This is required
when the local variable will be accessed by a local or anonymous inner classsee also the discussion of final
variables below.

7.3.2. Parameter Variables

Parameter variables are the parameters declared in methods, constructors, or catch blockssee "try, catch, and
finally" on page 286. A parameter declaration consists of an optional modifier, a type name, and a single
identifier.

Parameters cannot have explicit initializers because they are implicitly initialized with the value of the
argument passed when the method or constructor is invoked, or with a reference to the exception object
caught in the catch block. Parameter variables cease to exist when the block in which they appear
completes.

As with local variables, the only modifiers that can be applied to a parameter are annotations, or the final
modifier.

7.3.3. final Variables

The final modifier declares that the value of the variable is set exactly once and will thereafter always have
the same valueit is immutable. Any variablefields, local variables, or parameterscan be declared final.
Variables that are final must be initialized before they are used. This is typically done directly in the
declaration:

final int id = nextID++;

You can defer the initialization of a final field or local variable. Such a final variable is called a blank final. A
blank final field must be initialized within an initialization block or constructor (if it's an instance field) while
a blank final local variable, like any local variable, must be initialized before it is used.

Blank final fields are useful when the value of the field is determined by a constructor argument:

class NamedObj {

158

158

 final String name;

 NamedObj(String name) {
 this.name = name;
 }
}

or when you must calculate the value in something more sophisticated than an initializer expression:

static final int[] numbers = numberList();
static final int maxNumber; // max value in numbers

static {
 int max = numbers[0];
 for (int num : numbers) {
 if (num > max)
 max = num;
 }
 maxNumber = max;
}

static int[] numberList() {
 // ...
}

The compiler will verify that all static final fields are initialized by the end of any static initializer blocks, and
that non-static final fields are initialized by the end of all construction paths for an object. A compile-time
error will occur if the compiler cannot determine that this happens.

Blank final local variables are useful when the value to be assigned to the variable is conditional on the value
of other variables. As with all local variables, the compiler will ensure that a final local variable is initialized
before it is used.

Local variables and parameters are usually declared final only when they will be accessed by a local, or
anonymous inner, classthough some people advocate always making parameters final, both as a matter of
style, and to avoid accidentally assigning a value to a parameter, when a field or other variable was intended.
Issues regarding when you should, and should not, use final on fields were discussed on page 46.

7.4. Array Variables

Arrays provide ordered collections of elements. Components of an array can be primitive types or references
to objects, including references to other arrays. Arrays themselves are objects and extend Object. The
declaration

int[] ia = new int[3];

declares an array named ia that initially refers to an array of three int values.

Array dimensions are omitted in the type declaration of an array variable. The number of components in an
array is determined when it is created using new, not when an array variable is declared. An array object's
length is fixed at its creation and cannot be changed. Note that it is the length of the array object that is fixed.

159

159

In the example, a new array of a different size could be assigned to the array variable ia at any time.

You access array elements by their position in the array. The first element of an array has index 0 (zero), and
the last element has index length1. You access an element by using the name of the array and the index
enclosed between [and]. In our example, the first element of the array is ia[0] and last element of the
array is ia[2]. Every index use is checked to ensure that it is within the proper range for that array, throwing
an ArrayIndexOutOfBoundsException if the index is out of bounds.[8] The index expression must be
of type intthis limits the maximum size of an array.

[8] The range check can often be optimized away when, for example, it can be proved that a
loop index variable is always within range, but you are guaranteed that an index will never be
used if it is out of range.

The length of an array is available from its length field (which is implicitly public and final). In our
example, the following code would loop over the array, printing each value:

for (int i = 0; i < ia.length; i++)
 System.out.println(i + ": " + ia[i]);

An array with length zero is said to be an empty array. There is a big difference between a null array
reference and a reference to an empty arrayan empty array is a real object, it simply has no elements. Empty
arrays are useful for returning from methods instead of returning null. If a method can return null, then
users of the method must explicitly check the return value for null before using it. On the other hand, if the
method returns an array that may be empty, no special checking is needed provided the user always uses the
array length to check valid indices.

If you prefer, you can put the array brackets after the variable name instead of after the type:

int ia[] = new int[3];

This code is equivalent to the original definition of ia. However, the first style is preferable because it places
the type declaration entirely in one place.

7.4.1. Array Modifiers

The normal modifiers can be applied to array variables, depending on whether the array is a field or local
variable. The important thing to remember is that the modifiers apply to the array variable not to the elements
of the array the variable references. An array variable that is declared final means that the array reference
cannot be changed after initialization. It does not mean that array elements cannot be changed. There is no
way to apply any modifiers (specifically final and volatile) to the elements of an array.

7.4.2. Arrays of Arrays

You can have arrays of arrays. The code to declare and print a two-dimensional matrix, for example, might
look like this:

float[][] mat = new float[4][4];
setupMatrix(mat);
for (int y = 0; y < mat.length; y++) {
 for (int x = 0; x < mat[y].length; x++)

160

160

 System.out.print(mat[y][x] + " ");
 System.out.println();
}

The first (left-most) dimension of an array must be specified when the array is created. Other dimensions can
be left unspecified, to be filled in later. Specifying more than the first dimension is a shorthand for a nested set
of new statements. Our new creation could have been written more explicitly as:

float[][] mat = new float[4][];
for (int y = 0; y < mat.length; y++)
 mat[y] = new float[4];

One advantage of arrays of arrays is that each nested array can have a different size. You can emulate a 4x4
matrix, but you can also create an array of four int arrays, each of which has a different length sufficient to
hold its own data.

7.4.3. Array Initialization

When an array is created, each element is set to the default initial value for its typezero for the numeric types,
'\u0000' for char, false for boolean, and null for reference types. When you declare an array of a
reference type, you are really declaring an array of variables of that type. Consider the following code:

Attr[] attrs = new Attr[12];

for (int i = 0; i < attrs.length; i++)
 attrs[i] = new Attr(names[i], values[i]);

After the initial new of the array, attrs has a reference to an array of 12 variables that are initialized to
null. The Attr objects themselves are created only when the loop is executed.

You can initialize arrays with comma separated values inside braces following their declaration. The
following array declaration creates and initializes an array:

String[] dangers = { "Lions", "Tigers", "Bears" };

The following code gives the same result:

String[] dangers = new String[3];

dangers[0] = "Lions";
dangers[1] = "Tigers";
dangers[2] = "Bears";

When you initialize an array within its declaration, you don't have to explicitly create the array using newit is
done implicitly for you by the system. The length of the array to create is determined by the number of
initialization values given. You can use new explicitly if you prefer, but in that case you have to omit the

161

161

array length, because again it is determined from the initializer list.

String[] dangers = new String[]{"Lions", "Tigers", "Bears"};

This form of array creation expression allows you to create and initialize an array anywhere. For example, you
can create and initialize an array when you invoke a method:

printStrings(new String[] { "one", "two", "many" });

An unnamed array created with new in this way is called an anonymous array.

The last value in the initializer list is also allowed to have a comma after it. This is a convenience for multiline
initializers so you can reorder, add, or remove values, without having to remember to add a comma to the old
last line, or remove it from the new last line.

Arrays of arrays can be initialized by nesting array initializers. Here is a declaration that initializes an array to
the top few rows of Pascal's triangle, with each row represented by its own array:

int[][] pascalsTriangle = {
 { 1 },
 { 1, 1 },
 { 1, 2, 1 },
 { 1, 3, 3, 1 },
 { 1, 4, 6, 4, 1 },
 };

Indices in an array of arrays work from the outermost inward. For example, in the above array,
pascalsTriangle[0] refers to the int array that has one element, pascalsTriangle[1] refers to
the int array that has two elements, and so forth.

For convenience, the System class provides an arraycopy method that allows you to assign the values
from one array into another, instead of looping through each of the array elementsthis is described in more
detail in "Utility Methods" on page 665.

7.4.4. Arrays and Types

Arrays are implicit extensions of Object. Given a class X, classes Y and Z that extend X, and arrays of each,
the class hierarchy looks something like this:

162

162

This class relationship allows polymorphism for arrays. You can assign an array to a variable of type Object
and cast it back. An array of objects of type Y is usable wherever an array of objects of its supertype X is
required. This seems natural but can require a run time check that is sometimes unexpected. An array of X can
contain either Y or Z references, but an array of Y cannot contain references to X or Z objects. The following
code would generate an ArrayStoreException at run time on either of its final two lines, which violate
this rule:

Y[] yArray = new Y[3]; // a Y array
X[] xArray = yArray; // valid: Y is assignable to X
xArray[0] = new Y();
xArray[2] = new X(); // INVALID: can't store X in Y[]
xArray[1] = new Z(); // INVALID: can't store Z in Y[]

If xArray were a reference to a real X[] object, it would be valid to store both an X and a Z object into it.
But xArray actually refers to a Y[] object so it is not valid to store either an X reference or a Z reference in
it. Such assignments are checked at run time if needed to ensure that no improper reference is stored into an
array.

Like any other object, arrays are created and are subject to normal garbage collection mechanisms. They
inherit all the methods of Object and additionally implement the Cloneable interface (see page 101) and
the Serializable interface (see "Object Serialization" on page 549). Since arrays define no methods of
their own, but just inherit those of Object, the equals method is always based on identity, not
equivalence. The utility methods of the java.util.Arrays classsee "The Arrays Utility Class" on page
607allow you to compare arrays for equivalence, and to calculate a hash code based on the contents of the
array.

The major limitation on the "object-ness" of arrays is that they cannot be extended to add new methods. The
following construct is not valid:

class ScaleVector extends double[] { // INVALID
 // ...
}

In a sense, arrays behave like final classes.

Exercise 7.3: Write a program that calculates Pascal's triangle to a depth of 12, storing each row of the triangle
in an array of the appropriate length and putting each of the row arrays into an array of 12 int arrays. Design
your solution so that the results are printed by a method that prints the array of arrays using the lengths of
each array, not a constant 12. Now change the code to use a constant other than 12 without modifying your
printing method.

7.5. The Meanings of Names

Identifiers give names to a range of things within our programstypes, variables, fields, methods, and so forth.
When you use a particular name in your program, the compiler has to determine what that name refers to, so
that it can decide if you are using the name correctly and so that it can generate the appropriate code. The
rules for determining the meaning of a name trade off convenience with complexity. At one extreme the
language could require that every name in a program be uniquethis makes things simple for the compiler but
makes life very inconvenient for the programmer. If names are interpreted based on the context in which they
are used, the programmer gets the convenience of reusing names (such as always using the name i for a for

163

163

loop counter), but the compiler has to be able to determine what each name meansand so does any human
being reading the code.

Name management is achieved with two mechanisms. First, the namespace is partitioned to give different
namespaces for different kinds of names. Second, scoping is used to control the visibility of names declared in
one part of a program to other parts. Different namespaces allow you to give the same name to a method and a
field (not that we recommend doing this), and scoping allows you to use the same name for all your for loop
counters.

There are six different namespaces:

package names,•
type names,•
field names,•
method names,•
local variable names (including parameters), and•
labels•

When a name is used in a program, its context helps determine what kind of name it is. For example, in the
expression x.f= 3, we know that f must be a fieldit can't be a package, type, method, or label because we
are assigning a value to it, and it can't be a local variable because we are accessing it as a member of x. We
know that x must be a typename, or a field, or a local variable that is an object referenceexactly which one is
determined by searching the enclosing scope for an appropriate declaration, as you will see.

The use of separate namespaces gives you greater flexibility when writing code (especially when combining
code from different sources) but can be abused. Consider this pathological, but perfectly valid, piece of code:

package Reuse;
class Reuse {
 Reuse Reuse(Reuse Reuse) {
 Reuse:
 for (;;) {
 if (Reuse.Reuse(Reuse) == Reuse)
 break Reuse;
 }
 return Reuse;
 }
}

Every declaration of a name has a scope in which that name can be used. The exact rules differ depending on
the kind of nametype name, member name, local variable, and so on. For example, the scope of a parameter in
a method is the entire body of that method; the scope of a local variable is the block in which the local
variable is declared; the scope of a loop variable declared in the initialization section of a for loop is the rest
of that for loop.

A name cannot be used outside its scopefor example, one method in a class cannot refer to the parameter of
another method. However, scopes also nest and an inner scope has access to all names declared in the outer
scope before the inner scope is entered. For example, the body of a for loop can access the local variables of
the method in which it was declared.

When a name that could be a variable is used, the meaning of the name is determined by searching the current
and enclosing scopes for declarations of that name in the different namespaces. The search order is:

Local variables declared in the code block, for loop, or as parameters to the catch clause of a try1.

164

164

statement. Then local variables declared in any enclosing code block. This applies recursively up to
the method containing the block, or until there is no enclosing block (as in the case of an initialization
block).
If the code is in a method or constructor, the parameters to the method or constructor.2.
A field of the class or interface, including any accessible inherited fields.3.
If the type is a nested type, a variable in the enclosing block or field of the enclosing class. If the type
is a static nested type, only static fields of an enclosing type are searched. This search rule is applied
successively to any enclosing blocks and types further out.

4.

A static field of a class, or interface, specifically declared in a static import statement.5.
A static field of a class, or interface, declared in a static import on demand statement.6.

For method names a similar process as for fields is followed, but starting at step 3, searching for methods in
the current class or interface. There are special rules for determining how members of a class are accessed, as
you'll see in "Member Access" on page 223.

The order of searching determines which declaration will be found. This implies that names declared in outer
scopes can be hidden by names declared in inner scopes. And that means, for example, that local variable
names can hide class member names, that nested class members can hide enclosing instance members, and
that locally declared class members can hide inherited class membersas you have already seen.[9]

[9] Technically, the term hiding is reserved for this last casewhen an inherited member is
hidden by a locally declared memberand the other situations are referred to as shadowing.
This distinction is not significant for this book so we simply refer to "hiding."

Hiding is generally bad style because a human reading the code must check all levels of the hierarchy to
determine which variable is being used. Yet hiding is permitted in order to make local code robust. If hiding
outer variables were not allowed, adding a new field to a class or interface could break existing code in
subtypes that used variables of the same name. Scoping is meant as protection for the system as a whole rather
than as support for reusing identifier names.

To avoid confusion, hiding is not permitted in nested scopes within a code block. This means that a local
variable in a method cannot have the same name as a parameter of that method; that a for loop variable
cannot have the same name as a local variable or parameter; and that once there is a local variable called, say,
über, you cannot create a new, different variable with the name über in a nested block.

{
 int über = 0;
 {
 int über = 2; // INVALID: already defined
 // ...
 }
}

However, you can have different (non-nested) for loops in the same block, or different (non-nested) blocks
in the same method, that do declare variables with the same name.

If a name appears in a place where a type name is expected, then the different type scopes must be searched
for that name. Type scopes are defined by packages. The search order is as follows:

The current type including inherited types.1.
A nested type of the current type.2.
Explicitly named imported types.3.
Other types declared in the same package.4.
Implicitly named imported types.5.

165

165

Again, hiding of type names is possible, but a type can always be explicitly referred to by its fully qualified
name, which includes package information, such as java.lang.String. Packages and type imports are
discussed in Chapter 18.

In order to make an apple pie from scratch, you must first create the universe.

Carl Sagan, Cosmos

Chapter 8. Primitives as Types

I'm gonna wrap myself in paper, I'm gonna dab myself with glue, Stick some stamps on top of
my head! I'm gonna mail myself to you.

Woody Guthrie, Mail Myself to You

The separation of primitive types (byte, float, and so on) and reference types (classes and interfaces) is a
trade-off between efficiency and familiarity versus expressiveness and consistency. An object may incur too
much overhead where a plain int will do, while an int may be fast and convenient until you need to store it
into a hashtable. To smooth this separation, the Java programming language provides a wrapper class
corresponding to each of the primitive types. Instances of a given wrapper class contain a value of the
corresponding primitive type. The type hierarchy for these classes looks like this:

The language provides automatic conversion between primitives and their wrappers in many contexts,
specifically when assigning values or passing arguments. For example, you can write:

Integer val = 3;

And val will be assigned a reference to an instance of the Integer class that holds the value 3.

Converting a primitive value to a wrapper object is known as a boxing conversion; unsurprisingly, extracting
a primitive value from a wrapper object is known as an unboxing conversion.[1] The details of these
conversions are discussed in "Boxing Conversions" on page 198. These automated conversions make it easy
to write general purposes classes that are written in terms of Object references, but that can handle either
reference types or primitive types. The HashMap class, for example, stores only references, not primitive
typessee "HashMap" on page 590but an int can be passed as a key because it will be converted to an
Integer instance:

[1] This difference in terminology ("wrap" versus "box") is an historical artifact.

int key = ... ;
map.put(key, value);

166

166

The efficiency and convenience of using an int can be maintained, while an object can still be obtained
when necessarythe best of both worlds.

A second purpose of the wrapper classes is to provide a home for methods and variables related to the type
(such as string conversions and value range constants). Here, for example, is how you might check whether
you could use a faster float calculation on a particular value or whether the value requires a larger range
than a float provides and so must be performed as a double calculation:

double aval = Math.abs(value);
if (Float.MAX_VALUE >= aval && aval >= Float.MIN_VALUE)
 return fasterFloatCalc((float) value);
else
 return slowerDoubleCalc(value);

The following sections cover methods and constants specific to each particular wrapper class, but first let's
look at some things that are common to most of the wrapper classes.

8.1. Common Fields and Methods

Except where individually noted, the following sections define constructors, constants, and methods that are
defined for each of the wrapper classes. The general exception is the Void class which supports almost
nothingsee page 187.

For the constructors and methods that convert strings into values, each class defines the valid form that the
string can take, and these are described in the section for each class. For the numeric types, an invalid string
format results in NumberFormatException being thrown.

The term radix, used in several places in the wrapper classes, is another word for numeric base. For example,
decoding a long in radix 8 means the same as decoding it in base 8. The allowable range for a radix is 2
through 36.

In the following, Type refers to the wrapper class, and type is the corresponding primitive type.

8.1.1. Construction

Each wrapper class defines an immutable object for the primitive value that it is wrapping. This means that
once a wrapper object has been created, the value represented by that object can never be changed. So, for
example, the object created by newInteger(1) will always have the value 1, and no methods of class
Integer allow you to modify this value.

Each wrapper class has the following constructors:

A constructor that takes a value of the primitive type and creates an object of the corresponding
wrapper class. The constructors Character(char) and Integer(int) are examples.

•

A constructor that converts a single String parameter into the object's initial value (except
Character, which has no such constructor)for example, newFloat("6.02e23") .

•

Each wrapper class, Type, also has the following methods:

public static Type valueOf(type t)

167

167

Returns an object of the specified Type with the value t.

public static Type valueOf(String str)

Returns an object of the specified Type with the value parsed from str.
Float.valueOf("6.02e23") and Integer.valueOf("16") are
examples. Character does not have this method just as it does not have the
string-converting constructor.

These methods may return a newly constructed instance or a cached instance. For efficiency, you should
always use one of the valueOf methods, in preference to direct construction, unless you really need distinct
instances that have the same value.

8.1.2. Constants

Each of the wrapper classes, with the exception of Boolean define the following three fields:

public static final type MIN_VALUE

The minimum value representable by this data type. For example, for
Integer this is 231.

public static final type MAX_VALUE

The maximum value representable by this data type. For example, for
Integer this is 2311.

public static final int SIZE

The number of bits used to represent a value of this type. For example, for
Integer this is 32.

All the wrapper classes define the following field:

public static final Class<Type> TYPE

A reference to the Class object that represents primitives of this type. These
fields are equivalent to the Class objects you can obtain from .class
class literal expressions as described in "Class Literals" on page 169. For
example, Integer.TYPE is the same Class object you will get from the
expression int.class. Note that int.class and Integer.class
yield two different Class instances, both of type Class<Integer>.

8.1.3. Common Methods

Each of the wrapper classes implements the Comparable<T> interface and so defines:

public int compareTo(Type other)

Returns a value less than, equal to, or greater than zero as the object on which
it is invoked is less than, equal to, or greater than the object (of the same type
Type) passed as a parameter.

168

168

For the numeric types, comparison follows the normal arithmetic rules; however, the Float and Double
classes have specific ordering properties that differ from float and doublesee page 191. For Boolean,
the value true is considered greater than falsein contrast to boolean for which the relational operators <
and > are not defined. For Character, the comparison is strictly numerical, with no consideration of
alphabetic, or locale specific ordering.

Each class provides a method to extract the wrapped value:

public type typeValue()

Returns the primitive value corresponding to the current wrapper object. For
example, Integer.valueOf(6).intValue() returns 6.

And each class overrides the following members of Object:

public String toString()

Provides a string representation of the wrapper object's value. For the
numeric classes base 10 is always used.

public boolean equals(Object obj)

Returns true if the two objects are the same type and wrap the same value.
For example, for two Integer objects x and y, x.equals(y) is true if
and only if, x.intValue()== y.intValue(). If obj is not of the
same type as the current object, or is null, false is returned.

public int hashCode()

Returns a value-based hash code for use in hashtables.

The following additional methods convert primitive values to and from strings:

public static type parseType(String str)

Converts the string str to a value of the specified primitive type. For
example, Integer.parseInt("10") returns the value 10. This is
equivalent to invoking the string-converting constructor, and extracting the
resulting value with typeValue(), but without constructing an object.
Character does not have this method just as it does not have the
string-converting constructor.

public static String toString(type val)

Returns a string representation of the given primitive value of type type.
For example, Double.toString(0.3e2) returns the string "30.0".

All wrapper classes have these methods so we do not list them in each class's description. The wrapper class's
system property fetch-and-decode methods, described in "System Properties" on page 663, are not discussed
in this chapter.

169

169

8.2. Void

The Void class is the exception to all the preceding rules because it has no values to wrap, provides no
methods, and cannot be instantiated. It has only a static TYPE field containing a reference to the Class
object void.class. The language has no void typevoid is a placeholder indicating no return type. The
Void class represents that lack of an actual return type and is only used in reflection (see "The Method Class"
on page 420).

8.3. Boolean

The Boolean class represents the boolean type as a class. Both the constructor that decodes a string, the
valueOf method and the parseBoolean method understand "TRue", with any mixture of uppercase and
lowercase characters, to be TRue. Any other string is interpreted as false.

The Boolean class has two static references to objects corresponding to each of the primitive boolean
values: Boolean.TRUE and Boolean.FALSE.

8.4. Number

The Number class is an abstract class extended by all wrapper classes that represent primitive numeric types:
Byte, Short, Integer, Long, Float, and Double.

The abstract methods of Number return the value of the object converted to any of the numeric types:

public byte byteValue()
public short shortValue()
public int intValue()
public long longValue()
public float floatValue()
public double doubleValue()

Each extended Number class overrides these methods to convert its own type to any of the others under the
same rules used for an explicit cast. For example, given a Float object with the value 32.87, the return
value of intValue on the object would be 32, just as "(int)32.87 " would be 32.

8.4.1. The Integer Wrappers

The classes Byte, Short, Integer, and Long extend Number to represent the corresponding integer
types as classes. In addition to the standard Number methods, each of the integer wrapper classes supports
the following methods:

public static type parseType(String str, int radix)

Converts the string str into a numeric value of the specified type, using
the given radix. For example, Integer.parseInt("1010",2) returns
10, and Integer.parseInt("-1010",2) returns 10. The characters in
the string must all be valid digits for the given radix, except that the first
character may be a minus sign to indicate a negative value. A
NumberFormatException is thrown if str contains any other

170

170

characters (including leading or trailing whitespace), the value is out of range
for this type, or radix is out of range.

public static Type valueOf(String str, int radix)

Returns a wrapper object of class Type with the value obtained by decoding
str using the specified radix. Note that there are no equivalent constructors
with this form. This is equivalent to the two-step process of parsing the string
and using that value to construct a new wrapper object. For example,
Integer.valueOf("1010",2) is equivalent to the more verbose
expression newInteger(Integer.parseInt("1010", 2)).

public static Type decode(String str)

Returns a wrapper object of class Type with the value obtained by decoding
str. A leading character indicates a negative value. The base of the number
is encoded in str: Hexadecimal numbers start with #, 0x, or 0X, while octal
numbers are indicated by a leading 0; otherwise, the number is presumed to
be decimal. This is in contrast to the parseType and valueOf methods,
to which you pass the radix as an argument. For example,
Long.decode("0xABCD") returns a Long with the value 43981, while
Long.decode("ABCD") tHRows a NumberFormatException.
Conversely, Long.parseLong("0xABCD", 16) throws a
NumberFormatException, while Long.parseLong("ABCD", 16)
returns a Long with the value 43981. (The character # is used in many
external data formats for hexadecimal numbers, so it is convenient that
decode understands it.)

For each class, the string-based constructor, parseType(String str) method, and valueOf methods
work like parseType(String str, intradix) , with a radix of 10 if none is specified

In addition, the Integer and Long classes each have the following methods, where type is either int or
long, respectively:

public static String toString(type val, int radix)

Returns a string representation of the given value in the given radix. If radix
is out of range then a radix of 10 is used.

public static String toBinaryString(type val)

Returns a string representation of the two's complement bit pattern of the
given value. For positive values this is the same as toString(value,2) .
For negative values the sign of the value is encoded in the bit pattern, not as a
leading minus character. For example,
Integer.toBinaryString(-10) returns
"11111111111111111111111111110110". These string
representations for negative values cannot be used with corresponding
parseType methods because the magnitude represented by the string will
always be greater than MAX_VALUE for the given type.

public static String toOctalString(type val)

Returns a string representation of the given value in an unsigned base 8

171

171

format. For example, Integer.toOctalString(10) returns "12".
Negative values are treated as described in toBinaryString. For
example, Integer.toOctalString(-10) returns "37777777766".

public static String toHexString(type val)

Returns a string representation of the given value in an unsigned base 16
format. For example, Integer.toHexString(10) returns "a".
Negative values are treated as described in toBinaryString. For
example, Integer.toHexString(-10) returns "fffffff6".

Note that none of the string formats include information regarding the radix in that formatthere is no leading 0
for octal, or 0x for hexadecimal. If radix information is needed then you must construct it yourself.

The Short, Integer, and Long classes have a method reverseBytes that returns a value with its
constituent bytes in the reverse order to the value passed in. For example,
Integer.reverseBytes(0x0000ABCD) returns an int value with the hexadecimal representation of
0xCDAB0000. The Integer and Long classes also provide a family of bit-querying methods:

public static int bitCount(type val)

Returns the number of one-bits in the two's complement binary
representations of val.

public static type highestOneBit(type val)

Returns a value consisting of all zero-bits, except for a single one-bit, in the
same position as the highest-order (left-most) one-bit in val.

public static type lowestOneBit(type val)

Returns a value consisting of all zero-bits, except for a single one-bit, in the
same position as the lowest-order (right-most) one-bit in val.

public static int numberOfLeadingZeros(type val)

Returns the number of zero-bits preceding the highest-order one-bit in val.

public static int numberOfTrailingZeros(type val)

Returns the number of zero-bits following the lowest-order one-bit in val.

public static type reverse(type val)

Returns the value obtained by reversing the order of the bits in val.

public static type rotateLeft(type val, int distance)

Returns the value obtained by rotating the bits in val to the left. In a left
rotation the high-order bit moved out on the left becomes the lowest-order bit
on the right. Rotating to the left by a negative distance is the same as rotating
to the right by a positive distance.

public static type rotateRight(type val, int distance)

172

172

Returns the value obtained by rotating the bits in val to the right. In a right
rotation the low-order bit moved out on the right becomes the highest-order
bit on the left. Rotating to the right by a negative distance is the same as
rotating to the left by a positive distance.

Finally, the Integer and Long classes also define the mathematical signum function. This function takes
a value and returns 1, 0, or +1 as the value is negative, zero, or positive, respectively.

8.4.2. The Floating-Point Wrapper Classes

The Float and Double classes extend Number to represent the float and double types as classes.
With only a few exceptions, the names of the methods and constants are the same for both types. In the
following list, the types for the Float class are shown, but Float and float can be changed to Double
and double, respectively, to get equivalent fields and methods for the Double class. In addition to the
standard Number methods, Float and Double have the following constants and methods:

public final static float POSITIVE_INFINITY

The value for + .

public final static float NEGATIVE_INFINITY

The value for - .

public final static float NaN

Not-a-Number. This constant gives you a way to get a NaN value, not to test
one. Surprising as it may be, NaN== NaN is always false because a NaN
value, not being a number, is equal to no value, not even itself. To test
whether a number is NaN, you must use the isNaN method.

public static boolean isNaN(float val)

Returns true if val is a Not-a-Number (NaN) value.

public static boolean isInfinite(float val)

Returns true if val is either positive or negative infinity.

public boolean isNaN()

Returns true if this object's value is a Not-a-Number (NaN) value.

public boolean isInfinite()

Returns true if this object's value is either positive or negative infinity.

In addition to the usual constructor forms, Float has a constructor that takes a double argument to use as
its initial value after conversion to float.

Comparison of Float and Double objects behaves differently than float and double values. Each
wrapper class defines a sorting order that treats 0 less than +0, NaNs greater than all values (including +),
and all NaNs equal to each other.

173

173

When converting to a string, NaN values return the string "NaN", + returns "Infinity" and - returns
"-Infinity". The string-taking constructor, and the parseType method are defined in terms of the
valueOf method, which accepts strings in the following form:

The values "NaN" or "Infinity" with an optional leading + or - character•
A floating-point literal•
A hexadecimal floating-point literal•

In contrast to the integer wrapper classes, the string is first stripped of leading and trailing whitespace. If the
literal forms contain a trailing float or double specifier, such as "1.0f", the specifier is ignored and the
string is converted directly to a value of the requested type.

To let you manipulate the bits inside a floating-point value's representation, Float provides methods to get
the bit pattern as an int, as well as a way to convert a bit pattern in an int to a float value (according to
the appropriate IEEE 754 floating-point bit layout). The Double class provides equivalent methods to turn a
double value into a long bit pattern and vice versa:

public static int floatToIntBits(float val)

Returns the bit representation of the float value as an int. All NaN values
are always represented by the same bit pattern.

public static int floatToRawIntBits(float val)

Equivalent to floatToIntBits except that the actual bit pattern for a
NaN is returned, rather than all NaNs being mapped to a single value.

public static float intBitsToFloat(int bits)

Returns the float corresponding to the given bit pattern.

8.5. Character

The Character class represents the char type as a class. It provides methods for determining the type of a
character (letter, digit, uppercase, and so forth) and for converting between uppercase and lowercase.

Since a char is a 16-bit value, and Unicode allows for 21-bit characters, known as code points, many of the
methods of Character are overloaded to take either a char or an int that represents an arbitrary code
point. Such methods are described in combination below and the pseudo-type codePoint is used to
represent either a char or an int code point value.

In addition to MIN_VALUE and MAX_VALUE constants, Character provides the constants MIN_RADIX
and MAX_RADIX, which are the minimum and maximum radices understood by methods that translate
between digit characters and integer values or vice versa,. The radix must be in the range 236; digits for
values greater than 9 are the letters A tHRough Z or their lowercase equivalents. Three methods convert
between characters and integer values:

public static int digit(codePoint ch, int radix)

Returns the numeric value of ch considered as a digit in the given radix. If
the radix is not valid or if ch is not a digit in the radix, 1 is returned. For
example, digit('A',16) returns 10 and digit('9',10) returns 9,

174

174

while digit('a',10) returns 1.

public static int getNumericValue(codePoint ch)

Returns the numeric value of the digit ch. For example, the character
\u217F is the Roman numeral digit M, so
getNumericValue('\u217F') returns the value 1000. These numeric
values are non-negative. If ch has no numeric value, 1 is returned; if it has a
value but is not a non-negative integer, such as the fractional value ¼
('\u00bc'), getNumericValue returns 2.

public static char forDigit(int digit, int radix)

Returns the character value for the specified digit in the specified radix. If the
digit is not valid in the radix, the character '\u0000' is returned. For
example, forDigit(10,16) returns 'a' while forDigit(16,16)
returns '\u0000'.

There are three character cases in Unicode: upper, lower, and title. Uppercase and lowercase are familiar to
most people. Titlecase distinguishes characters that are made up of multiple components and are written
differently when used in titles, where the first letter in a word is traditionally capitalized. For example, in the
string "ljepotica",[2] the first letter is the lowercase letter lj(\u01C9 , a letter in the Extended Latin
character set that is used in writing Croatian digraphs). If the word appeared in a book title, and you wanted
the first letter of each word to be in uppercase, the correct process would be to use toTitleCase on the
first letter of each word, giving you "Ljepotica" (using Lj, which is \u01C8). If you incorrectly used
toUpperCase, you would get the erroneous string "LJepotica" (using LJ, which is \u01C7).

[2] "Ljepotica" is a Croatian diminutive of "beauty," often used as a term of endearment and
admiration.

All case issues are handled as defined in Unicode. For example, in Georgian, uppercase letters are considered
archaic, and translation into uppercase is usually avoided. Therefore, toUpperCase will not change
lowercase Georgian letters to their uppercase equivalents, although toLowerCase will translate uppercase
Georgian letters to lowercase. Because of such complexities, you cannot assume that converting characters to
either lower or upper case and then comparing the results will give you a proper case-ignoring comparison.
However, the expression

Character.toUpperCase(Character.toLowerCase(ch));

leaves you with a character that you can compare with another similarly constructed character to test for
equality ignoring case distinctions. If the two resulting characters are the same, then the original characters
were the same except for possible differences in case. The case conversion methods are:

public static codePoint toLowerCase(codePoint ch)

Returns the lowercase character equivalent of ch. If there is no lowercase
equivalent, ch is returned.

public static codePoint toUpperCase(codePoint ch)

Returns the uppercase character equivalent of ch. If there is no uppercase
equivalent, ch is returned.

public static codePoint toTitleCase(codePoint ch)

175

175

Returns the titlecase character equivalent of ch. If there is no titlecase
equivalent, the result of toUpperCase(ch) is returned.

The Character class has many methods to test whether a given character is of a particular type in any
Unicode character set (for example, isDigit recognizes digits in Ethiopic and Khmer). The methods are
passed a char or int code point and return a boolean that answers a question. These methods are:

Method Is the Character…

isDefined a defined Unicode character?

isDigit a digit?

isIdentifierIgnorable ignorable in any identifier (such as a direction control directive)?

isISOControl an ISO control character?

isJavaIdentifierStart valid to start a source code identifier?

isJavaIdentifierPart valid after the first character of a source code identifier?

isLetter a letter?

isLetterOrDigit a letter or digit?

isLowerCase a lowercase letter?

isSpaceChar a space?

isTitleCase a titlecase letter?

isUnicodeIdentifierStart valid to start a Unicode identifier?

isUnicodeIdentifierPart valid after the first character of a Unicode identifier?

isUpperCase an uppercase letter?

isWhitespace a source code whitespace character?

You can also ask whether a char value isLowSurrogate or isHighSurrogate, a specific int code
point isSupplementaryCodePoint or isValidCodePoint, or if a pair of char values
isSurrogatePair.

Unicode identifiers are defined by the Unicode standard. Unicode identifiers must start with a letter
(connecting punctuation such as _ and currency symbols such as ¥ are not letters in Unicode, although they
are in the Java programming language) and must contain only letters, connecting punctuation (such as _),
digits, numeric letters (such as Roman numerals), combining marks, nonspacing marks, or ignorable control
characters (such as text direction markers).

All these types of characters, and several others, are defined by the Unicode standard. The static method
getType returns an int that defines a character's Unicode type. The return value is one of the following
constants:

COMBINING_SPACING_MARK MODIFIER_LETTER

CONNECTOR_PUNCTUATION MODIFIER_SYMBOL

CONTROL NON_SPACING_MARK

176

176

CURRENCY_SYMBOL OTHER_LETTER

DASH_PUNCTUATION OTHER_NUMBER

DECIMAL_DIGIT_NUMBER OTHER_PUNCTUATION

ENCLOSING_MARK OTHER_SYMBOL

END_PUNCTUATION` PARAGRAPH_SEPARATOR

FINAL_QUOTE_PUNCTUATION PRIVATE_USE

FORMAT SPACE_SEPARATOR

INITIAL_QUOTE_PUNCTUATION START_PUNCTUATION

LETTER_NUMBER SURROGATE

LINE_SEPARATOR TITLECASE_LETTER

LOWERCASE_LETTER UNASSIGNED

MATH_SYMBOL UPPERCASE_LETTER

Unicode is divided into blocks of related characters. The static nested class Character.Subset is used to
define subsets of the Unicode character set. The static nested class Character.UnicodeBlock extends
Subset to define a set of standard Unicode character blocks, which are available as static fields of
UnicodeBlock. The static method UnicodeBlock.of returns the UnicodeBlock object representing
the Unicode character block for a particular character. The UnicodeBlock class also defines constants for
all the blocks, such as GREEK, KATAKANA, TELUGU, and COMBINING_MARKS_FOR_SYMBOLS. The of
method will return one of these values, or null if the character is not in any block. For example, the code

boolean isShape =
 (Character.UnicodeBlock.of(ch) ==
 Character.UnicodeBlock.GEOMETRIC_SHAPES);

tests to see if a character is in the GEOMETRIC_SHAPES block.

Two Subset objects define the same Unicode subset if they are the same object, a semantic enforced in
Subset by declaring equals and hashCode to be final, and defining them to have the default Object
behavior for these methods. If you define your own subsets for some reason, you should give people a way
analogous to of to get a single Subset object for each different kind of Subset you define.

8.5.1. Working with UTF-16

Working with sequences of characters, whether arrays of char, strings, or other types that implement
CharSequence (see Chapter 13), is complicated by the fact that supplementary characters need to be
encoded as a pair of char values. To assist with this, the Character class defines a range of methods that
help with the encoding and decoding of surrogate pairs, and accounting for their existence in a sequence of
character values:

public static int charCount(int codePoint)

177

177

Returns the number of char values needed to encode the given code point.
This returns 2 for supplementary characters, otherwise 1.

public static int codePointAt(char[] seq, int index)

Returns the code point defined at the given index in seq, taking into account
that it may be a supplementary character represented by the pair
seq[index] and seq[index+1]. There is a variant that takes an
additional limit argument that restricts the use of index+1 to be less than
a specified value.

public static int codePointAt(CharSequence seq, int index)

Returns the code point defined at the given index in seq, taking into account
that it may be a supplementary character represented by the pair
seq.charAt(index) and seq.charAt(index+1).

public static int codePointBefore(char[] seq, int index)

Returns the code point defined preceding the given index in seq, taking into
account that it may be a supplementary character represented by the pair
seq[index-2] and seq[index-1]. There is a variant that takes an
additional start argument, that restricts the use of index-1 and
index-2 to be greater than or equal to the specified start position.

public static int codePointBefore(CharSequence seq, int index)

Returns the code point defined at the given index in seq, taking into account
that it may be a supplementary character represented by the pair
seq.charAt(index-2) and seq.charAt(index-1).

public static int codePointCount(char[] seq, int start, int
count)

Returns the number of code points defined in seq[start] to
seq[start+length], taking into account surrogate pairs. Any unpaired
surrogate values count as one code point each.

public static int codePointCount(CharSequence seq, int start,
int end)

Returns the number of code points defined in seq.charAt(start) to
seq.charAt(end), taking into account surrogate pairs. Any unpaired
surrogate values count as one code point each.

public static int offsetByCodePoints(char[] seq, int start, int
count, int index, int numberOfCodePoints)

Returns the index into the array, that is numberOfCodePoints away from
index, considering only the subarray from seq[start] to
seq[start+length], taking into account surrogate pairs. This allows
you to skip a given number of code points, without having to manually loop
through the array, keeping track of surrogate pairs. If any unpaired surrogates
are found, they count as one code point.

178

178

public static int offsetByCodePoints(CharSequence seq, int
index, int numberOfCodePoints)

Returns the index into the CharSequence, that is
numberOfCodePoints away from index, taking into account surrogate
pairs.

public static char[] toChars(int codePoint)

Converts a code point to its UTF-16 representation as a one- or two-char
array. If codePoint is not valid, IllegalArgumentException is
thrown.

public static int toChars(int codePoint, char[] dst, int
dstBegin)

Converts a code point to its UTF-16 representation, storing it in dst starting
at dst[dstBegin] and returning the number of characters written (either
1 or 2). If codePoint is not valid, IllegalArgumentException is
thrown.

public static int toCodePoint(char high, char low)

Converts the given surrogate pair of char values to their supplementary
code point value. This method does not check that high and low form a
valid surrogate pair, so you must check that yourself by using
isSurrogatePair.

All of these methods that use indices can throw IndexOutOfBoundsException, if you cause them to try
to index outside the given array, or CharSequence, accounting for any imposed limits on the valid range of
indices.

8.6. Boxing Conversions

The automatic conversion of a variable of primitive type into an instance of its wrapper class, is termed a
boxing conversionthe wrapper object acts like a "box" in which the primitive value is held. The opposite
conversion, from an instance of a wrapper class to a primitive value, is termed an unboxing conversion.

A boxing conversion replaces any primitive value v with a wrapper object of the same value. The wrapper
object's type corresponds to the type of v. For example, given

Integer val = 3;

val will refer to an Integer object because 3 is an int value; val.intValue() will return the value 3.

An unboxing conversion takes a reference to a wrapper object and extracts its primitive value. Building on the
previous example,

int x = val;

179

179

is equivalent to the explicit

int x = val.intValue();

and the value of x is 3. If val was a Short reference, the unboxing of val would invoke
val.shortValue(), and so forth. If a wrapper reference is null, an unboxing conversion will throw a
NullPointerException.

The boxing and unboxing conversions are applied automatically in many contexts, such as assignment and
argument passing, so primitives and reference types can be used almost interchangeably. However, the
conversions do not apply everywhere, and in particular you cannot directly dereference a primitive variable,
or value, as if it were an object. For example, given the int variable x, as above, the expression
x.toString() will not compile. You can, however, apply a cast to the primitive first, such as:

((Object) x).toString()

The exact contexts in which boxing and unboxing automatically occur are discussed in "Type Conversions"
on page 216.

Ideally, you would rely on boxing conversions wherever necessary, without giving it a second thought. In
practice, you need to be aware that a boxing conversion may need to allocate an instance of a wrapper class,
which consumes memory and which may fail if insufficient memory is available. Given that the wrapper
classes are immutable, two objects with the same value can be used interchangeably, and there is no need to
actually create two distinct objects. This fact is exploited by requiring that boxing conversions for certain
value ranges of certain types always yield the same object. Those types and value ranges are:

Type Range

boolean true, false

byte all values

char \u0000 to \u00ff

short -128 to 127

int -128 to 127

So given the method

static boolean sameArgs(Integer a, Integer b) {
 return a == b;
}

the following invocation returns TRue:

sameArgs(3, 3)

180

180

while this invocation returns false:

sameArgs(3, new Integer(3))

An implementation of the virtual machine may choose to expand on these types and ranges, and is free to
determine when instances of the wrapper classes are first created: They could be created eagerly and all stored
in a lookup table, or they could be created as needed.

Dare to be naïve.

R. Buckminster Fuller

Chapter 9. Operators and Expressions

Work is of two kinds: first, altering the position of matter at or near the earth's surface relative
to other matter; second, telling other people to do so.

Bertrand Russell

This chapter teaches you about the fundamental computational building blocks of the programming
languagenamely, operators and expressions. You have already seen a lot of code and have gained familiarity
with its components. This chapter describes these basic elements in detail.

Each operator is described in terms of its basic operation, upon operands of the base expected typesuch as a
numeric primitive type or a reference type. The actual evaluation of an expression in a program may involve
type conversions as described in Section 9.4 on page 216.

9.1. Arithmetic Operations

There are several binary arithmetic operators that operate on any of the primitive numerical types:

+ addition

- subtraction

* multiplication

/ division

% remainder

You can also use unary - for negation. The sign of a number can be inverted with code like this:

val = -val;

For completeness there is also a unary +, as in +2.0.

181

181

The exact actions of the binary arithmetic operators depend on the types of operands involved. The following
sections look at the different rules for integer and floating-point arithmetic.

9.1.1. Integer Arithmetic

Integer arithmetic is modular two's-complement arithmeticthat is, if a value exceeds the range of its type (int
or long), it is reduced modulo the range. So integer arithmetic never overflows or underflows but only
wraps.

Integer division truncates toward zero (7/2 is 3, and -7/2 is -3). For integer types, division and remainder
obey the rule

(x/y)*y + x%y == x

So 7%2 is 1, and -7%2 is 1. Dividing by zero or remainder by zero is invalid for integer arithmetic and
throws ArithmeticException.

Character arithmetic is integer arithmetic after the char is implicitly converted to intsee "Expression Type"
on page 215.

9.1.2. Floating-Point Arithmetic

Floating-point arithmetic can overflow to infinity (become too large for a double or float) or underflow
(become too small for a double or float). Underflow results in a loss of precision, possibly enough to
yield a zero value.[1] The result of an invalid expression, such as dividing infinity by infinity, is a NaN
valuefor "Not-a-Number."

[1] Detecting non-zero underflows is a non-trivial task that is beyond the scope of this book.

Arithmetic with finite operands performs as expected, within the limits of precision of double or float.
Signs of floating-point arithmetic results are also as expected. Multiplying two numbers having the same sign
results in a positive value; multiplying two numbers having opposite signs results in a negative value.

Adding two infinities results in the same infinity if their signs are the same, and NaN if their signs differ.
Subtracting infinities of the same sign produces NaN; subtracting infinities of opposite signs produces an
infinity of the same sign as the left operand. For example, (- (-)) is . Arithmetic operations involving
any value that is NaN have a result that is also NaN. Overflows result in a value that is an infinity of the
proper sign. Underflows also result in values of the proper sign. Floating-point arithmetic has a negative zero
-0.0, which compares equal to +0.0. Although they compare equal, the two zeros can produce different
results. For example, the expression 1f/0f yields positive infinity and 1f/-0f yields negative infinity.

If the result of an underflow is -0.0 and if -0.0== 0.0, how do you test for a negative zero? You must use
the zero in an expression where sign matters and then test the result. For example, if x has a zero value, the
expression 1/x will yield negative infinity if x is negative zero, or positive infinity if x is positive zero.

The rules for operations on infinities match normal mathematical expectations. Adding or subtracting any
number to or from either infinity results in that infinity. For example, (- + x) is - for any finite number x.

You can get an infinity value from the constants POSITIVE_INFINITY and NEGATIVE_INFINITY in
the wrapper classes Float and Double. For example, Double.NEGATIVE_INFINITY is the double
value of minus infinity.

182

182

Multiplying infinity by zero yields NaN. Multiplying infinity by a non-zero finite number produces an infinity
of the appropriate sign.

Floating-point division and remainder can produce infinities or NaN but never throw an exception. This table
shows the results of the various combinations:

x y x/y x%y

Finite ±0.0 ± NaN

Finite ± ±0.0 x

±0.0 ±0.0 NaN NaN

± Finite ± NaN

± ± NaN NaN

Otherwise, floating-point remainder (%) acts analogously to integer remainder as described earlier. See the
IEEEremainder method in "Math and StrictMath" on page 657 for a different remainder calculation.

Exercise 9.1: Write a program that uses the operators +, , *, and /, on two infinite operands and show the
result. Ensure that you try both same signed and opposite-signed infinity values.

9.1.3. Strict and Non-Strict Floating-Point Arithmetic

Floating-point arithmetic can be executed in one of two modes: FP-strict or not FP-strict. For simplicity, we
refer to these as strict and non-strict, respectively. Strict floating-point evaluation follows constrained rules
about exact floating-point operations: When you execute strict floating-point code you will always get exactly
equivalent results on all Java virtual machine implementations. Floating-point arithmetic that is non-strict can
be executed with somewhat relaxed rules. These rules allow the use of floating-point representations that may
avoid some overflows or underflows that would occur if the arithmetic were executed strictly. This means that
some applications may run differently on different virtual machines when under non-strict floating point.
Non-strict floating point might also execute faster than strict floating point, because the relaxed rules may
allow the use of representations that are supported directly by the underlying hardware.

The strictness of floating-point arithmetic is determined by the presence of the modifier strictfp, which
can be applied to a class, interface, or method. When you declare a method strictfp, all the code in the
method will be executed according to strict constraints. When you use strictfp on a class or interface, all
code in the class, including initializers and code in nested types, will be evaluated strictly. To determine if an
expression is strict, all methods, classes, and interfaces within which the expression is contained are
examined; if any of them is declared strictfp then the expression is strict. For example, an inner class
declared within a strict outer class, or within a strict method, is also strict. However, strictness is not
inheritedthe presence of strictfp on a class or interface declaration does not cause extended classes or
interfaces to be strict.

Constant expressions that require floating point are always evaluated strictly. Otherwise, any code that is not
marked as strictfp can be executed under rules that do not require repeatable results. If you want to
guarantee bit-for-bit exact results across all Java virtual-machine implementations, you should use
strictfp on relevant methods, classes, and interfaces. You should also note that a virtual machine can
satisfy the rules for non-strict floating point by always acting strictly: Non-strict floating point does not
require the virtual machine to act differently, it offers the virtual machine a degree of freedom to optimize
code where repeatable results are not required.

183

183

Non-strict floating-point execution allows intermediate results within expressions to take on values with a
greater range than allowed by the usual float or double representations. These extended range
representations avoid some underflows and overflows that can happen with the standard representations.
Fields, array elements, local variables, parameters, and return values always use the standard representations.
When an extended range representation is converted to a standard representation, the closest representable
value is used.

If you need a complete understanding of these issues, you should consult The Java™ Language Specification,
Third Edition.

9.2. General Operators

In addition to the main arithmetic operators, there are other useful operators for comparing and manipulating
values. Member access operators, method invocation and type conversion operators are discussed in following
sections.

9.2.1. Increment and Decrement Operators

The ++ and -- operators are the increment and decrement operators, respectively, and can only be applied to
numeric variables or numeric array elements. The expression i++ is equivalent to i= i+ 1 except that i is
evaluated only once. For example, the statement

++arr[where()];

invokes where only once and uses the result as an index into the array only once. On the other hand, in the
statement

arr[where()] = arr[where()] + 1;

the where method is called twice: once to determine the index on the right-hand side, and a second time to
determine the index on the left-hand side. If where returns a different value each time it is invoked, the
results will be quite different from those of the ++ expression. To avoid the second invocation of where you
would have to store its result in a temporaryhence the increment (and decrement) operator allows a simpler,
succinct expression of what you want to do.

The increment and decrement operators can be either prefix or postfix operatorsthey can appear either before
or after what they operate on. If the operator comes before (prefix), the operation is applied before the value
of the expression is returned. If the operator comes after (postfix), the operation is applied after the original
value is used. For example:

class IncOrder {
 public static void main(String[] args) {
 int i = 16;
 System.out.println(++i + " " + i++ + " " + i);
 }
}

184

184

The output is

17 17 18

The expression ++i preincrements the value of i to 17 and evaluates to that value (17); the expression i++
evaluates to the current value of i (17) and postincrements i to have the value 18; finally the expression i is
the value of i after the postincrement from the middle term. Modifying a variable more than once in an
expression makes code hard to understand, and should be avoided.

The increment and decrement operators ++ and -- can also be applied to char variables to get to the next or
previous Unicode character.

9.2.2. Relational and Equality Operators

The language provides a standard set of relational and equality operators, all of which yield boolean values:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

Both the relational and equality operators can be applied to the primitive numeric types, with the usual
mathematical interpretation applying.

Floating-point values follow normal ordering (1.0 is less than 0.0 is less than positive infinity) except that
NaN is an anomaly. All relational and equality operators that test a number against NaN return false, except
!=, which always returns true. This is true even if both values are NaN. For example,

Double.NaN == Double.NaN

is always false. To test whether a value is NaN, use the type-specific NaN testers: the static methods
Float.isNaN(float) and Double.isNaN(double).[2]

[2] There is one other way to test for NaN: If x has a NaN value, then x != x is true. This is
interesting but very obscure, so you should use the methods instead.

Only the equality operators == and != are allowed to operate on boolean values.

These operators can be combined to create a "logical XOR" test. The following code invokes sameSign only
if both x and y have the same sign (or zero); otherwise, it invokes differentSign:

if ((x < 0) == (y < 0))
 sameSign();
else

185

185

 differentSign();

The equality operators can also be applied to reference types. The expression ref1==ref2 is true if the two
references refer to the same object or if both are null, even if the two references are of different declared
types. Otherwise, it is false.

The equality operators test for reference identity, not object equivalence. Two references are identical if they
refer to the same object; two objects are equivalent if they logically have the same value. Equivalence is tested
with the equals method defined by Object, which you should override in classes for which equivalence
and identity are different. Object.equals assumes an object is equal only to itself. For example, the
String class overrides equals to test whether two String objects have the same contentssee Chapter 13.

9.2.3. Logical Operators

The logical operators combine boolean expressions to yield boolean values and provide the common
operations of boolean algebra:

& logical AND

| logical inclusive OR

^ logical exclusive or (XOR)

! logical negation

&& conditional AND

|| conditional OR

A "logical AND" is true if and only if both its operands are true, while a "logical OR" is true if and only if
either of its operands are true. The "exclusive OR" operator yields true if either, but not both, of its operands is
truewhich is the same as testing the equality of the two operands, so we can rewrite our earlier example as:

if ((x < 0) ^ (y < 0))
 differentSign();
else
 sameSign();

The unary operator ! negates, or inverts, a boolean, so !true is the same as false and !false is the
same as true.

Boolean values are normally tested directlyif x and y are booleans, the code

if (x || !y) {
 // ...
}

is considered cleaner than the equivalent, but more verbose

186

186

if (x == true || y == false) {
 // ...
}

The && ("conditional AND") and || ("conditional OR") operators perform the same logical function as the
simple & and | operators, but they avoid evaluating their right operand if the truth of the expression is
determined by the left operandfor this reason they are sometimes referred to as "short-circuit operators." For
example, consider:

if (w && x) { // outer "if"
 if (y || z) { // inner "if"
 // ... inner "if" body
 }

}

The inner if is executed only if both w and x are TRue. If w is false then x will not be evaluated because
the expression is already guaranteed to be false. The body of the inner if is executed if either y or z is
TRue. If y is TRue, then z will not be evaluated because the expression is already guaranteed to be TRue.

A lot of code relies on this rule for program correctness or efficiency. For example, the evaluation shortcuts
make the following code safe:

if (0 <= ix && ix < array.length && array[ix] != 0) {
 // ...
}

The range checks are done first. The value array[ix] will be accessed only if ix is within bounds. There
is no "conditional XOR" because the truth of XOR always depends on the value of both operands.

9.2.4. instanceof

The instanceof operator evaluates whether a reference refers to an object that is an instance of a particular
class or interface. The left-hand side is a reference to an object, and the right-hand side is a class or interface
name. You learned about instanceof on page 92.

9.2.5. Bit Manipulation Operators

The binary bitwise operators are:

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive or (XOR)

The bitwise operators apply only to integer types (including char) and perform their operation on each pair
of bits in the two operands. The AND of two bits yields a 1 if both bits are 1, the OR of two bits yields a 1 if

187

187

either bit is 1, and the XOR of two bits yields a 1 only if the two bits have different values. For example:

0xf00f & 0x0ff0 yields 0x0000
0xf00f | 0x0ff0 yields 0xffff
0xaaaa ^ 0xffff yields 0x5555

There is also a unary bitwise complement operator ~, which toggles each bit in its operand. An int with
value 0x00003333 has a complemented value of 0xffffcccc.

Although the same characters are used for the bitwise operators and the logical operators, they are quite
distinct. The types of the operands determine whether, for example, & is a logical or a bitwise AND. Since
logical operators only apply to booleans and bitwise operators only apply to integer types, any expression
involving operands of the different types, such as TRue& 0xaaaa, is a compile-time error.

There are other bit manipulation operators to shift bits within an integer value:

<< Shift bits left, filling with zero bits on the right-hand side

>> Shift bits right, filling with the highest (sign) bit on the left-hand side

>>> Shift bits right, filling with zero bits on the left-hand side

The left-hand side of a shift expression is what is shifted, and the right-hand side is how much to shift. For
example, var>>> 2 will shift the bits in var two places to the right, dropping the bottom two bits from the
end and filling the top two bits with zero.

The two right-shift operators provide for an arithmetic shift (>>) and a logical shift (>>>). The arithmetic
shift preserves the sign of the value by filling in the highest bit positions with the original sign bit (the bit in
the highest position). The logical shift inserts zeroes into the high-order bits. It is often used when extracting
subsets of bits from a value. For example, in binary coded decimal (BCD) each decimal digit is represented by
four bits (0x00 to 0x09the remaining bit patterns are invalid) and so every byte can encode two decimal
digits. To extract the low-order digit you AND the byte with a mask of 0x0f to zero out the high-order digit.
To extract the high-order digit you logically right-shift the value by four positions, moving the valid bits down
to the least significant positions and filling the new high-order bits with zero:

class BCD {
 static int getBCDLowDigit(byte val) {
 return (val & 0x0f);
 }
 static int getBCDHighDigit(byte val) {
 return val >>> 4 ;
 }
}

Shift operators have a slightly different type rule from most other binary integer operations. For shift
operators, the resulting type is the type of the left-hand operandthat is, the value that is shifted. If the left-hand
side of the shift is an int, the result of the shift is an int, even if the shift count is provided as a long.

If the shift count is larger than the number of bits in the word, or if it is negative, the actual count will be
different from the provided count. The actual count used in a shift is the count you provide, masked by the
size of the type minus one. For a 32-bit int, for example, the mask used is 0x1f (31), so both (n<< 35)
and (n<< -29) are equivalent to (n<< 3).

188

188

Shift operators can be used only on integer types. In the rare circumstance when you actually need to
manipulate the bits in a floating-point value, you can use the conversion methods on the classes Float and
Double, as discussed in "The Floating-Point Wrapper Classes" on page 191.

Exercise 9.2: Write a method that determines the number of 1 bits in a passed-in int, by using just the bit
manipulation operators (that is, don't use Integer.bitCount). Compare your solution with published
algorithms for doing thissee the related reading for "General Programming Techniques" on page 758 for one
source.

9.2.6. The Conditional Operator ?:

The conditional operator provides a single expression that yields one of two values based on a boolean
expression. The statement

value = (userSetIt ? usersValue : defaultValue);

is equivalent to

if (userSetIt)
 value = usersValue;
else
 value = defaultValue;

The primary difference between the if statement and the ?: operator is that the latter has a value and so can
be used as part of an expression. The conditional operator results in a more compact expression, but
programmers disagree about whether it is clearer. We use whichever seems clearer at the time. When to use
parentheses around a conditional operator expression is a matter of personal style, and practice varies widely.
Parentheses are not required by the language.

The conditional operator expression has a type that is determined by the types of the second and third
expressions (usersValue and defaultValue in the above example). If the types of these expressions
are the same then that is the type of the overall expression. Otherwise, the rules get somewhat complicated:

If one expression is a primitive type and the other can be unboxed to become a compatible primitive
type, then the unboxing occurs and the expressions are reconsidered.

•

If both expressions are numeric primitive types then the resulting type is also a numeric primitive
type, obtained by numeric promotion if needed. For example, in

double scale = (halveIt ? 0.5 : 1);

the two expressions are of type double (0.5) and type int (1). An int is assignable to a
double, so the 1 is promoted to 1.0 and the type of the conditional operator is double.

•

If one expression is an int constant, and the other is byte, short, or char, and the int value can
fit in the smaller type, then the resulting type is that smaller type.

•

If one of the expressions is a primitive type and the other is a reference type that can't be unboxed to
get a compatible value, or both expressions are primitive but incompatible, then the primitive type is
boxed so that we have two reference types.

•

Given two reference types that are different, the type of the expression is the first common parent
type. For example, if both expressions were unrelated class types that implemented Cloneable then

•

189

189

Cloneable would be the type of the expression; if one expression was int while the other was
String, then Object would be the resulting type.

Note that if either expression has a type of void (possible if the expression invokes a method with the void
return type) then a compile-time error occurs.

This operator is also called the question/colon operator because of its form, and the ternary operator because it
is the only ternary (three-operand) operator in the language.

9.2.7. Assignment Operators

The assignment operator = assigns the value of its right-operand expression to its left operand, which must be
a variable (either a variable name or an array element). The type of the expression must be assignment
compatible with the type of the variablean explicit cast may be neededsee Section 9.4 on page 216.

An assignment operation is itself an expression and evaluates to the value being assigned. For example, given
an intz , the assignment

z = 3;

has the value 3. This value can be assigned to another variable, which also evaluates to 3 and so that can be
assigned to another variable and so forth. Hence, assignments can be chained together to give a set of
variables the same value:

x = y = z = 3;

This also means that assignment can be performed as a side effect of evaluating another expressionthough
utilizing side effects in expressions is often considered poor style. An acceptable, and common, example of
this is to assign and test a value within a loop expression. For example:

while ((v = stream.next()) != null)
 processValue(v);

Here the next value is read from a stream and stored in the variable v. Provided the value read was not null,
it is processed and the next value read. Note that as assignment has a lower precedence than the inequality test
(see "Operator Precedence and Associativity" on page 221), you have to place the assignment expression
within parentheses.

The simple = is the most basic form of assignment operator. There are many other assignment forms. Any
binary arithmetic, logical, or bit manipulation operator can be concatenated with = to form another assignment
operatora compound assignment operator. For example,

arr[where()] += 12;

is the same as

arr[where()] = arr[where()] + 12;

190

190

except that the expression on the left-hand side of the assignment is evaluated only once. In the example,
arr[where()] is evaluated only once in the first expression, but twice in the second expressionas you
learned earlier with the ++ operator.

Given the variable var of type T, the value expr, and the binary operator op, the expression

var op= expr

is equivalent to

var = (T) ((var) op (expr))

except that var is evaluated only once. This means that op= is valid only if op is valid for the types
involved. You cannot, for example, use <<= on a double variable because you cannot use << on a double
value.

Note the parentheses used in the expanded form you just saw. The expression

a *= b + 1

is analogous to

a = a * (b + 1)

and not to

a = a * b + 1

Although a+= 1 is the same as ++a and a++, using ++ is considered idiomatic and is preferred.

Exercise 9.3: Review your solution to Exercise 7.3 to see if it can be written more clearly or succinctly with
the operators you've learned about in this chapter.

9.2.8. String Concatenation Operator

You can use + to concatenate two strings. Here is an example:

String boo = "boo";
String cry = boo + "hoo";
cry += "!";
System.out.println(cry);

191

191

And here is its output:

boohoo!

The + operator is interpreted as the string concatenation operator whenever at least one of its operands is a
String. If only one of the operands is a String then the other is implicitly converted to a String as
discussed in "String Conversions" on page 220.

9.2.9. new

The new operator is a unary prefix operatorit has one operand that follows the operator. Technically, the use
of new is known as an instance creation expressionbecause it creates an instance of a class or array. The value
of the expression is a reference to the object created. The use of new and the associated issue of constructors
was discussed in detail on page 50.

9.3. Expressions

An expression consists of operators and their operands, which are evaluated to yield a result. This result may
be a variable or a value, or even nothing if the expression was the invocation of a method declared void. An
expression may be as simple as a single variable name, or it may be a complex sequence of method
invocations, variable accesses, object creations, and the combination of the results of those subexpressions
using other operators, further method invocations, and variable accesses.

9.3.1. Order of Evaluation

Regardless of their complexity, the meanings of expressions are always well-defined. Operands to operators
will be evaluated left-to-right. For example, given x+y+z, the compiler evaluates x, evaluates y, adds the
values together, evaluates z, and adds that to the previous result. The compiler does not evaluate, say, y
before x, or z before either y or x. Similarly, argument expressions for method, or constructor, invocations
are evaluated from left to right, as are array index expressions for multidimensional arrays.

Order of evaluation matters if x, y, or z has side effects of any kind. If, for instance, x, y, or z are invocations
of methods that affect the state of the object or print something, you would notice if they were evaluated in
any other order. The language guarantees that this will not happen.

Except for the operators &&, ||, and ?:, every operand of an operator will be evaluated before the operation
is performed. This is true even for operations that throw exceptions. For example, an integer division by zero
results in an ArithmeticException, but it will do so only after both operands have been fully evaluated.
Similarly, all arguments for a method or constructor invocation are evaluated before the invocation occurs.

If evaluation of the left operand of a binary operator causes an exception, no part of the right-hand operand is
evaluated. Similarly, if an expression being evaluated for a method, or constructor, argument causes an
exception, no argument expressions to the right of it will be evaluatedand likewise for array index
expressions. The order of evaluation is very specific and evaluation stops as soon as an exception is
encountered.

One further detail concerns object creation with new. If insufficient memory is available for the new object,
an OutOfMemoryError exception is thrown. This occurs before evaluation of the constructor arguments

192

192

occursbecause the value of those arguments is not needed to allocate memory for the objectin which case
those arguments won't be evaluated. In contrast, when an array is created, the array dimension expressions
must be evaluated first to find out how much memory to allocateconsequently, array creation throws the
OutOfMemoryError after the dimension expressions are evaluated.

9.3.2. Expression Type

Every expression has a type. The type of an expression is determined by the types of its component parts and
the semantics of operators.

If an arithmetic or bit manipulation operator is applied to integer values, the result of the expression is of type
int unless one or both sides are long, in which case the result is long. The exception to this rule is that the
type of shift operator expressions are not affected by the type of the right-hand side. All integer operations are
performed in either int or long precision, so the smaller byte and short integer types are always
promoted to int before evaluation.

If either operand of an arithmetic operator is floating point, the operation is performed in floating-point
arithmetic. Such operations are done in float unless at least one operand is a double, in which case
double is used for the calculation and result.

A + operator is a String concatenation when either operand to + is of type String or if the left-hand side
of a += is a String.

When used in an expression, a char value is converted to an int by setting the top 16 bits to zero. For
example, the Unicode character \uffff would be treated as equivalent to the integer 0x0000ffff. This
treatment is different from the way a short with the value 0xffff would be treatedsign extension makes
the short equivalent to -1, and its int equivalent would be 0xffffffff.

The above are all examples of different type conversions that can occur within an expression, to determine the
type of that expression. The complete set of conversions is discussed next.

9.4. Type Conversions

The Java programming language is a strongly typed language, which means that it checks for type
compatibility at compile time in almost all cases. Incompatible assignments are prevented by forbidding
anything questionable. It also provides cast operations for times when the compatibility of a type can be
determined only at run time, or when you want to explicitly force a type conversion for primitive types that
would otherwise lose range, such as assigning a double to a float. You learned about type compatibility
and conversion for reference types on page 90. In this section you will learn about conversions as a whole, for
both primitive and reference types, and the contexts in which those conversions are automatically applied.

9.4.1. Implicit Type Conversions

Some kinds of conversions happen automatically, without any work on your partthese are implicit
conversions.

Any numeric value can be assigned to any numeric variable whose type supports a larger range of valuesa
widening primitive conversion. A char can be used wherever an int is valid. A floating-point value can be
assigned to any floating-point variable of equal or greater precision.

193

193

You can also use implicit widening conversion of integer types to floating-point, but not vice versa. There is
no loss of range going from integer to floating point, because the range of any floating-point type is larger
than the range of any integer.

Preserving magnitude is not the same as preserving the precision of a value. You can lose precision in some
implicit conversions. Consider, for example, assigning a long to a float. The float has 32 bits of data
and the long has 64 bits of data. A float stores fewer significant digits than a long, even though a
float stores numbers of a larger range. You can lose data in an assignment of a long to a float. Consider
the following:

long orig = 0x7effffff00000000L;
float fval = orig;
long lose = (long) fval;

System.out.println("orig = " + orig);
System.out.println("fval = " + fval);
System.out.println("lose = " + lose);

The first two statements create a long value and assign it to a float value. To show that this loses
precision, we explicitly cast fval to a long and assign it to another variable (explicit casts are covered
next). If you examine the output, you can see that the float value lost some precision: The long variable
orig that was assigned to the float variable fval has a different value from the one generated by the
explicit cast back into the long variable lose:

orig = 9151314438521880576
fval = 9.1513144E18
lose = 9151314442816847872

As a convenience, compile-time constants of integer type can be assigned to smaller integer types, without a
cast, provided the value of the constant can actually fit in the smaller type and the integer type is not long.
For example, the first two assignments are legal while the last is not:

short s1 = 27; // implicit int to short
byte b1 = 27; // implicit int to byte
short s3 = 0x1ffff; // INVALID: int value too big for short

Such a conversion, from a larger type to a smaller type, is a narrowing primitive conversion.

In all, seven different kinds of conversions might apply when an expression is evaluated:

Widening or narrowing primitive conversions•
Widening or narrowing reference conversions•
Boxing or unboxing conversions•
String conversions•

You have previously seen all of these. There are then five different contexts in which these conversions might
be applied, but only some conversions apply in any given context:

Assignment This occurs when assigning the value of an expression to a variable and can involve the
following: a widening primitive conversion; a widening reference conversion; a boxing conversion

•

194

194

optionally followed by a widening reference conversion; or an unboxing conversion optionally
followed by a widening primitive conversion.

If the resulting expression is of type byte, char, short, or int, and is a constant expression, then
a narrowing primitive conversion can be applied if the variable is of type byte, short, or char and
the value will fit in that typefor example, the assignment of the int literal 27 to a short variable
that we saw previously. If the type of the variable is Byte, Short, or Character, then after the
narrowing primitive conversion a boxing conversion can be applied:

 Short s1 = 27; // implicit int to short to Short

Method invocation This occurs when the type of an expression being passed as an argument to a
method invocation is checked. Basically, the same conversions apply here as they do for assignment,
with the exception that the narrowing primitive conversions are not applied. This means, for example,
that a method expecting a short parameter will not accept the argument 27 because it is of type
intan explicit cast must be used. This restriction makes it easier to determine which method to
invoke when overloaded forms of it existfor example, if you try to pass a short to a method that
could take an int or a byte, should the short get widened to an int, or narrowed to a byte?

•

Numeric promotion Numeric promotion, as discussed in Section 9.1 on page 201, ensures that all the
operands of an arithmetic expression are of the appropriate type by performing widening primitive
conversions, preceded if necessary by unboxing conversions.

•

Casts Casts potentially allow for any of the conversions, but may fail at runtimethis is discussed in the
next section.

•

String conversions String conversions occur when the string concatenation operation is used (see page
214) and are discussed further in "String Conversions" on page 220.

•

9.4.2. Explicit Type Casts

When one type cannot be assigned to another type with implicit conversion, often it can be explicitly cast to
the other typeusually to perform a narrowing conversion. A cast requests a new value of a new type that is the
best available representation of the old value in the old type. Some casts are not allowedfor example, a
boolean cannot be cast to an intbut explicit casting can be used to assign a double to a long, as in this
code:

double d = 7.99;
long l = (long) d;

When a floating-point value is cast to an integer, the fractional part is lost by rounding toward zero; for
instance, (int)-72.3 is -72. Methods available in the Math and StrictMath classes round
floating-point values to integers in other ways. See "Math and StrictMath" on page 657 for details. A
floating-point NaN becomes the integer zero when cast. Values that are too large, or too small, to be
represented as an integer become MAX_VALUE or MIN_VALUE for the types int and long. For casts to
byte, short, or char, the floating-point value is first converted to an int or long (depending on its
magnitude), and then to the smaller integer type by chopping off the upper bits as described below.

A double can also be explicitly cast to a float, or an integer type can be explicitly cast to a smaller integer
type. When you cast from a double to a float, three things can go wrong: you can lose precision, you can
get a zero, or you can get an infinity where you originally had a finite value outside the range of a float.

Integer types are converted by chopping off the upper bits. If the value in the larger integer fits in the smaller
type to which it is cast, no harm is done. But if the larger integer has a value outside the range of the smaller

195

195

type, dropping the upper bits changes the value, including possibly changing sign. The code

short s = -134;
byte b = (byte) s;

System.out.println("s = " + s + ", b = " + b);

produces the following output because the upper bits of s are lost when the value is stored in b:

s = -134, b = 122

A char can be cast to any integer type and vice versa. When an integer is cast to a char, only the bottom 16
bits of data are used; the rest are discarded. When a char is cast to an integer type, any additional upper bits
are filled with zeros.

Once those bits are assigned, they are treated as they would be in any other value. Here is some code that casts
a large Unicode character to both an int (implicitly) and a short (explicitly). The int is a positive value
equal to 0x0000ffff, because the upper bits of the character were set to zero. But the same bits in the
short are a negative value, because the top bit of the short is the sign bit:

class CharCast {
 public static void main(String[] args) {
 int i = '\uffff';
 short s = (short) '\uffff';

 System.out.println("i = " + i);
 System.out.println("s = " + s);
 }
}

And here is the program's output:

i = 65535
s = -1

9.4.3. String Conversions

One special type of implicit conversion involves both the primitive and reference types: string conversion.
Whenever a + operator has at least one String operand, it is interpreted as the string concatenation operator
and the other operand, if not a String, is implicitly converted into a String. Such conversions are
predefined for all primitive types. Objects are converted via the toString method, which is either inherited
from Object or overridden to provide a meaningful string representation. For example, the following
method brackets a string with the guillemet characters used for quotation marks in many European languages:

public static String guillemete(String quote) {
 return '«' + quote + '»';
}

196

196

This implicit conversion of primitive types and objects to strings happens only when you're using + or += in
expressions involving strings. It does not happen anywhere else. A method, for example, that takes a String
parameter must be passed a String. You cannot pass it an object or primitive type and have it converted
implicitly.

When a null reference is converted to a String, the result is the string "null", hence a null reference
can be used freely within any string concatenation expression.

9.5. Operator Precedence and Associativity

Operator precedence is the "stickiness" of operators relative to each other. Operators have different
precedences. For example, relational operators have a higher precedence than boolean logic operators, so you
can say

if (min <= i && i <= max)
 process(i);

without any confusion. Because * (multiply) has a higher precedence than - (minus), the expression

3 - 3 * 5

has the value 12, not zero. Precedence can be overridden with parentheses; if zero were the desired value, for
example, the following would do the trick:

(3 - 3) * 5

When two operators with the same precedence appear next to each other, the associativity of the operators
determines which is evaluated first. Because + (add) is left-associative, the expression

a + b + c

is equivalent to

(a + b) + c

The following table lists all the operators in order of precedence from highest to lowest. All the operators are
binary, except those shown as unary with expr, the creation and cast operators (which are also unary), and
the conditional operator (which is ternary). Operators with the same precedence appear on the same line of the
table:

postfix operators [] . (params) expr++ expr--

unary operators ++expr --expr +expr -expr ~ !

197

197

creation or cast new (type)expr

multiplicative * / %

additive + -

shift << >> >>>

relational < > >= <= instanceof

equality == !=

AND &

exclusive OR ^

inclusive OR |

conditional AND &&

conditional OR ||

conditional ?:

assignment = += -= *= /= %= >>= <<= >>>= &= ^= |=

All binary operators except assignment operators are left-associative. Assignment is right-associative. In other
words, a=b=c is equivalent to a=(b=c), so it is convenient to chain assignments together. The conditional
operator ?: is right-associative.

Parentheses are often needed in expressions in which assignment is embedded in a boolean expression, or in
which bitwise operations are used. For an example of the former, examine the following code:

while ((v = stream.next()) != null)
 processValue(v);

Assignment operators have lower precedence than equality operators; without the parentheses, it would be
equivalent to

while (v = (stream.next() != null)) // INVALID
 processValue(v);

and probably not what you want. It is also likely to be invalid code since it would be valid only in the unusual
case in which v is boolean.

Many people find the precedence of the bitwise and logical operators &, ^, and | hard to remember. In
complex expressions you should parenthesize these operators for readability and to ensure correct precedence.

Our use of parentheses is sparsewe use them only when code seems otherwise unclear. Operator precedence is
part of the language and should be generally understood. Others inject parentheses liberally. Try not to use
parentheses everywherecode becomes illegible, looking like LISP with none of LISP's saving graces.

Exercise 9.4: Using what you've learned in this chapter but without writing code, figure out which of the
following expressions are invalid and what the type and values are of the valid expressions:

198

198

3 << 2L - 1
(3L << 2) - 1
10 < 12 == 6 > 17
10 << 12 == 6 >> 17
13.5e-1 % Float.POSITIVE_INFINITY
Float.POSITIVE_INFINITY + Double.NEGATIVE_INFINITY
Double.POSITIVE_INFINITY - Float.NEGATIVE_INFINITY
0.0 / -0.0 == -0.0 / 0.0
Integer.MAX_VALUE + Integer.MIN_VALUE
Long.MAX_VALUE + 5
(short) 5 * (byte) 10
(i < 15 ? 1.72e3f : 0)
i++ + i++ + --i // i = 3 at start

9.6. Member Access

You use the dot (.) operatoras in ref.method()to access both instance members or static members of
types. Because types can inherit members from their supertypes, there are rules regarding which member is
accessed in any given situation. Most of these rules were covered in detail in Chapter 2 and Chapter 3, but we
briefly recap them.

You access static members by using either the type name or an object reference. When you use a type name,
the member referred to is the member declared in that type (or inherited by it if there was no declaration in
that type). When you use an object reference, the declared type of the reference determines which member is
accessed, not the type of the object being referred to. Within a class, reference to a static member always
refers to the member declared in, or inherited by, that class.

Non-static members are accessed through an object referenceeither an explicit reference or implicitly this
(or one of the enclosing objects) if the non-static member is a member of the current object (or enclosing
object). Fields and nested types are accessed based on the declared type of the object reference. Similarly,
within a method, a reference to a field or nested type always refers to the declaration within that class or else
the inherited declaration. In contrast, methods are accessed based on the class of the object being referred to.
Further, the existence of method overloading means that the system has to determine which method to invoke
based on the compile-time type of the arguments used in the invocation; this process is described in detail in
the next section. The only operator that can be applied to a method member is the method invocation operator
().

You will get a NullPointerException if you use . on a reference with the value null, unless you are
accessing a static member. In that case the value of the reference is never considered, because only the type of
the reference determines the class in which to locate the member.

9.6.1. Finding the Right Method

For an invocation of a method to be correct, you must provide arguments of the proper number and type so
that exactly one matching method can be found in the class. If a method is not overloaded, determining the
correct method is simple, because only one parameter count is associated with the method name. When
overloaded methods are involved choosing the correct method is more complex. The compiler uses a "most
specific" algorithm to do the match, the general form of which is as follows:

Determine which class or interface to search for the method. Exactly how this is done depends on the
form of the method invocation. For example, if the invocation is of a static method using a class
namesuch as Math.expthen the class to search for exp is Math. On the other hand, if the method
name is not qualified in any waysuch as exp(n)then there must be a method by that name in scope

1.

199

199

at the point where the code invokes the method. That method will be defined in a particular class or
interface, and that is the class or interface that will be searched in step 2. You should note that it is
only the name of the method that is used to determine where to search.
Find all the methods in that class or interface that could possibly apply to the invocationnamely, all
accessible methods that have the correct name, can take the number of arguments being passed, and
whose parameters are of types that can be assigned the values of all the arguments. This matching
process occurs in three phases:[3]

[3] These phases were introduced to maintain backwards compatibility with older
versions of the Java programming language.

The match is attempted without performing any boxing conversions, and without considering
the possibility of a variable number of argumentsthat is, the compiler looks for a method
whose declared number of parameters matches the number of arguments, and whose kinds of
parameters (either primitive or reference types) match the corresponding arguments provided.

i.

If no matches have been found, the match is attempted again, but this time boxing
conversions are considered, so primitives can be passed for objects and vice-versa.

ii.

If no matches have been found, the match is attempted again, but this time the possibility of a
variable number of arguments is considered, so now the number of arguments might exceed
the number of declared parameters.

iii.

2.

If any method in the set has parameter types that are all assignable to the corresponding parameters of
any other method in the set, that other method is removed from the set because it is a less specific
method. For example, if the set has a method that takes an Object parameter and another that takes
a String parameter, the Object method is removed because a String can be assigned to an
Object, and therefore the method that takes a String is more specific. If you pass a String
argument you want it handled by the method that specializes in strings, not the general one that works
with any object.

3.

If exactly one method remains, that method is the most specific and will be invoked. If more than one
method remains, and they have different signatures, then the invocation is ambiguous and the
invoking code invalid because there is no most specific method. If all the remaining methods have the
same signature then: if all are abstract then one is chosen arbitrarily; otherwise if only one is not
abstract then it is chosen; otherwise the invocation is again ambiguous and is invalid.

4.

The exact details of the algorithm are quite complex, due mainly to the possibility of generic types or methods
being involvedsee Chapter 11. Interested readers should again consult The Java™ Language Specification,
Third Edition, for those details.

Once a method has been selected, that method determines the expected return type and the possible checked
exceptions of that method invocation. If the expected return type is not acceptable in the code (for example,
the method returns a String but the method call is used as an array subscript) or if the checked exceptions
are not dealt with correctly you will get a compile-time error.

For instance, suppose you had the following type hierarchy:

200

200

Also suppose you had several overloaded methods that took particular combinations of Dessert parameters:

void moorge(Dessert d, Scone s) { /* first form */ }
void moorge(Cake c, Dessert d) { /* second form */ }
void moorge(ChocolateCake cc, Scone s) { /* third form */ }
void moorge(Dessert... desserts) { /* fourth form */ }

Now consider the following invocations of moorge:

moorge(dessertRef, sconeRef);
moorge(chocolateCakeRef, dessertRef);
moorge(chocolateCakeRef, butteredSconeRef);
moorge(cakeRef, sconeRef); // INVALID
moorge(sconeRef, cakeRef);

All of these invocations might appear to match the fourth form, and indeed without the other overloaded
forms they would. But the fourth form, being a method that takes a variable number of arguments, will only
be considered by the compiler if it fails to find any candidate methods that explicitly declare two parameters
of assignable type.

The first invocation uses the first form of moorge because the parameter and argument types match exactly.
The second invocation uses the second form because it is the only form for which the provided arguments can
be assigned to the parameter types. In both cases, the method to invoke is clear after step 2 in the
method-matching algorithm.

The third invocation requires more thought. The list of potential overloads includes all three two-argument
forms, because a ChocolateCake reference is assignable to any of the first parameter types, a
ButteredScone reference is assignable to either of the second parameter types, and none of the signatures
matches exactly. So after step 2, you have a set of three candidate methods.

Step 3 requires you to eliminate less specific methods from the set. In this case, the first form is removed from
the set because the third form is more specifica ChocolateCake reference can be assigned to the first
form's Dessert parameter and a Scone reference can be assigned to the first form's Scone parameter, so
the first form is less specific. The second form is removed from the set in a similar manner. After this, the set
of possible methods has been reduced to onethe third form of moorgeand that method form will be invoked.

The fourth invocation is invalid. After step 2, the set of possible matches includes the first and second forms.
Because neither form's parameters are assignable to the other, neither form can be removed from the set in
step 3. Therefore, you have an ambiguous invocation that cannot be resolved by the compiler, and so it is an
invalid invocation of moorge. You can resolve the ambiguity by explicitly casting one of the arguments to
the Dessert type: If you cast cakeRef, then the first form is invoked; if you cast sconeRef, then the
second form is invoked.

The final invocation uses the fourth form. There are no potential candidates after the first phase of step 1, and
no boxing conversions to consider, so the compiler now considers the fourth form in phase 3. An invocation
with two arguments is compatible with a parameter list that has a single sequence parameter, and the types of
the two arguments are assignable to the type of the sequence, so it matches. Because this is the only match
after step 1, it is the method chosen.

These rules also apply to the primitive types. An int, for example, can be assigned to a float, and
resolving an overloaded invocation will take that into account just as it considered that a ButteredScone
reference was assignable to a Scone reference. However, implicit integer conversions to smaller types are

201

201

not appliedif a method takes a short argument and you supply an int you will have to explicitly cast the
int to short; it won't match the short parameter, regardless of its value.

The method resolution process takes place at compile time based on the declared types of the object reference
and the argument values. This process determines which form of a method should be invoked, but not which
implementation of that method. At run time the actual type of the object on which the method is invoked is
used to find an implementation of the method that was determined at compile time.

Methods may not differ only in return type or in the list of exceptions they throw, because there are too many
ambiguities to determine which overloaded method is wanted. If, for example, there were two
doppelgänger methods that differed only in that one returned an int and the other returned a short,
both methods would make equal sense in the following statement:

double d = doppelgänger();

A similar problem exists with exceptions, because you can catch any, all, or none of the exceptions a method
might throw in the code in which you invoke the overloaded method. There would be no way to determine
which of two methods to use when they differed only in thrown exceptions.

Such ambiguities are not always detectable at compile time. For example, a superclass may be modified to
add a new method that differs only in return type from a method in an extended class. If the extended class is
not recompiled, then the error will not be detected. At run time there is no problem because the exact form of
the method to be invoked was determined at compile time, so that is the method that will be looked for in the
extended class. In a similar way, if a class is modified to add a new overloaded form of a method, but the class
invoking that method is not recompiled, then the new method will never be invoked by that classthe form of
method to invoke was already determined at compile time and that form is different from that of the new
method.

Math was always my bad subject. I couldn't convince my teachers that many of my answers
were meant ironically.

Calvin Trillin

Chapter 10. Control Flow

"Would you tell me, please, which way I ought to go from here?" "That depends a good deal
on where you want to get to."

Lewis Carroll, Alice in Wonderland

A program consisting only of a list of consecutive statements is immediately useful because the statements are
executed in the order in which they're written. But the ability to control the order in which statements are
executedthat is, to test conditions and execute different statements based on the results of the testsadds
enormous value to our programming toolkit. This chapter covers almost all the control flow statements that
direct the order of execution. Exceptions and assertions are covered separately in Chapter 12.

10.1. Statements and Blocks

The two basic statements are expression statements and declaration statements, of which you've seen a
plethora. Expression statements, such as i++ or method invocations, are expressions that have a semicolon at

202

202

the end. The semicolon terminates the statement.[1] In fact, a semicolon by itself is a statement that does
nothingthe empty statement. Not all expressions can become statements, since it would be almost always
meaningless to have, for example, an expression such as x<= y stand alone as a statement. Only the following
types of expressions can be made into statements by adding a terminating semicolon:

[1] There is a distinction between terminator and separator. The comma between identifiers in
declarations is a separator because it comes between elements in the list. The semicolon is a
terminator because it ends each statement. If the semicolon were a statement separator, the
last semicolon in a code block would be unnecessary and (depending on the choice of the
language designer) possibly invalid.

Assignment expressionsthose that contain = or one of the op= operators•
Prefix or postfix forms of ++ and --•
Method calls (whether or not they return a value)•
Object creation expressionsthose that use new to create an object•

Declaration statements (formally called local variable declaration statements) declare a variable and initialize
it to a value, as discussed in Section 7.3.1 on page 170. They can appear anywhere inside a block, not just at
the beginning. Local variables exist only as long as the block containing their declaration is executing. Local
variables must be initialized before use, either by initialization when declared or by assignment. If any local
variable is used before it is initialized, the code will not compile.

Local class declaration statements declare a local inner class that can be used within the block in which it was
declared. Local classes were discussed in detail on page 142.

In addition to the expression statements listed, several other kinds of statements, such as if and for
statements, affect flow of control through the program. This chapter covers each type of statement in detail.

Curly braces, { and }, group zero or more statements into a block. A block can be used where any single
statement is allowed because a block is a statement, albeit a compound one.

10.2. ifelse

The most basic form of conditional control flow is the if statement, which chooses whether to execute
statements that follow it. Its syntax is:

if (expression)
statement1

else
statement2

First, the expressionwhich must be of type boolean or Booleanis evaluated. If its value is TRue, then
statement1 is executed; otherwise, if there is an else clause, statement2 is executed. The else
clause is optional.

You can build a series of tests by joining another if to the else clause of a previous if. Here is a method
that maps a stringexpected to be one of a particular set of wordsinto an action to be performed with a value:

public void setProperty(String keyword, double value)
 throws UnknownProperty
{
 if (keyword.equals("charm"))

203

203

 charm(value);
 else if (keyword.equals("strange"))
 strange(value);
 else
 throw new UnknownProperty(keyword);
}

What if there is more than one preceding if without an else? For example:

public double sumPositive(double[] values) {
 double sum = 0.0;

 if (values.length > 1)
 for (int i = 0; i < values.length; i++)
 if (values[i] > 0)
 sum += values[i];
 else // oops!
 sum = values[0];
 return sum;
}

The else clause looks as if it is bound to the array length check, but that is a mirage of indentation, and
indentation is ignored. Instead, an else clause is bound to the most recent if that does not have one. Thus,
the previous block of code is equivalent to

public double sumPositive(double[] values) {
 double sum = 0.0;

 if (values.length > 1)
 for (int i = 0; i < values.length; i++)
 if (values[i] > 0)
 sum += values[i];
 else // oops!
 sum = values[0];
 return sum;
}

This is probably not what was intended. To bind the else clause to the first if, you can use braces to create
blocks:

public double sumPositive(double[] values) {
 double sum = 0.0;

 if (values.length > 1) {
 for (int i = 0; i < values.length; i++)
 if (values[i] > 0)
 sum += values[i];
 } else {
 sum = values[0];
 }
 return sum;
}

204

204

Exercise 10.1: Using ifelse in a loop, write a method that takes a string parameter and returns a string with
all the special characters in the original string replaced by their language equivalents. For example, a string
with a " in the middle of it should create a return value with that " replaced by \". (Section 7.2.3 on page 167
lists all special characters).

10.3. switch

A switch statement allows you to transfer control to a labeled entry point in a block of statements, based on
the value of an expression. The general form of a switch statement is:

switch (expression) {
 case n: statements
 case m: statements

. . .
 default: statements
}

The expression must either be of an integer type (char, byte, short, or int, or a corresponding wrapper
class) or an enum type. The body of the switch statement, known as the switch block, contains statements
that can be prefixed with case labels. A case label is an integer or enum constant. If the value of the
switch expression matches the value of a case label then control is transferred to the first statement
following that label. If a matching case label is not found, control is transferred to the first statement
following a default label. If there is no default label, the entire switch statement is skipped.

For example, consider our Verbose interface from page 121:

interface Verbose {
 int SILENT = 0;
 int TERSE = 1;
 int NORMAL = 2;
 int VERBOSE = 3;

 void setVerbosity(int level);
 int getVerbosity();
}

Depending on the verbosity level, the state of the object is dumped, adding new output at greater verbosity
levels and then printing the output of the next lower level of verbosity:

Verbose v = ... ; // initialized as appropriate
public void dumpState() {
 int verbosity = v.getVerbosity();
 switch (verbosity) {
 case Verbose.SILENT:
 break; // do nothing

 case Verbose.VERBOSE:
 System.out.println(stateDetails);
 // FALLTHROUGH

 case Verbose.NORMAL:
 System.out.println(basicState);
 // FALLTHROUGH

205

205

 case Verbose.TERSE:
 System.out.println(summaryState);
 break;

 default:
 throw new IllegalStateException(
 "verbosity=" + verbosity);
 }
}

Once control has transferred to a statement following a case label, the following statements are executed in
turn, according to the semantics of those statements, even if those statements have their own different case
labels. The FALLTHROUGH comments in the example show where control falls through the next case label
to the code below. Thus, if the verbosity level is VERBOSE, all three output parts are printed; if NORMAL, two
parts are printed; and if TERSE, only one part is printed.

A case or default label does not force a break out of the switch. Nor does it imply an end to execution
of statements. If you want to stop executing statements in the switch block you must explicitly transfer control
out of the switch block. You can do this with a break statement. Within a switch block, a break statement
transfers control to the first statement after the switch. This is why we have a break statement after the
TERSE output is finished. Without the break, execution would continue through into the code for the
default label and throw the exception every time. Similarly, in the SILENT case, all that is executed is the
break because there is nothing to print.

Falling through to the next case can be useful in some circumstances. But in most cases a break should
come after the code that a case label selects. Good coding style suggests that you always use some form of
FALLTHROUGH comment to document an intentional fall-through.

A single statement can have more than one case label, allowing a singular action in multiple cases. For
example, here we use a switch statement to decide how to translate a hexadecimal digit into an int:

public int hexValue(char ch) throws NonHexDigitException {
 switch (ch) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 return (ch - '0');

 case 'a': case 'b': case 'c':
 case 'd': case 'e': case 'f':
 return (ch - 'a') + 10;

 case 'A': case 'B': case 'C':
 case 'D': case 'E': case 'F':
 return (ch - 'A') + 10;

 default:
 throw new NonHexDigitException(ch);
 }
}

There are no break statements because the return statements exit the switch block (and the whole
method) before control can fall through.

You should terminate the last group of statements in a switch with a break, return, or throw, as you
would a group of statements in an earlier case. Doing so reduces the likelihood of accidentally falling through

206

206

the bottom of what used to be the last part of the switch when a new case is added.

All case labels must be enum constants or constant expressionsthe expressions must contain only literals or
named constants initialized with constant expressionsand must be assignable to the type of the switch
expression. In any single switch statement, each case value must be unique, and there can be at most one
default label.

When you use an enum as a switch expression, you will get no warning if you leave out a case. It is your job
to ensure that each case is covered. To safeguard against an enum being redefined to have additional
constants, you should always include a default case that simply throws an exception.

Only statements directly within the switch block can have case labels. This means that you cannot, for
example, transfer control to a statement within the switch block that is in the middle of a loop, or a statement
within a nested block of code. You can, however, skip the declaration and initialization of a local variable
within the switch block (not that we recommend it). The effect of this is that the local variable is still
considered to be declared, but the initializer has not been executed. Because local variables must be
initialized, any attempt to read the value of that variable will result in a compile-time errorthe first use of that
variable must be an assignment.

The first statement in a switch block must be labeled, otherwise it is unreachable (all cases will jump over it)
and your code will not compile.

Exercise 10.2: Rewrite your method from Exercise 10.1 to use a switch.

Exercise 10.3: Using your "days of the week" enum from Exercise 6.1 write a method that takes a day of the
week and returns TRue if it is a working day, and false otherwise. First use nested ifelse statements and
then a switch statement. Which do you think results in clearer code?

10.4. while and dowhile

The while loop looks like this:

while (expression)
statement

The expressionagain either of boolean or Boolean typeis evaluated and, if it is TRue, the statement
(which may be a block) is executed. Once the statement completes, the expression is reevaluated and, if still
TRue, the statement is executed again. This repeats until the expression evaluates to false, at which point
control transfers to after the while.

We introduced the while loop with our second program in Chapter 1, the Fibonacci program:

while (hi < MAX) {
 System.out.println(hi);
 hi = lo + hi;
 lo = hi - lo;
}

This loops around printing and calculating new Fibonacci values until the highest value computed exceeds the

207

207

maximum limit.

A while loop executes zero or more times since the expression might be false the first time it is evaluated.
Sometimes you want to execute a loop body at least once, which is why you also have a dowhile loop:

do
statement

while (expression);

Here, the expression is evaluated after the statement is executed. While the expression is true, the statement
is executed repeatedly. The statement in a dowhile loop is almost always a block.

Exercise 10.4: Select a few previous exercise solutions for which you have used a for loop and rewrite it
using a while loop. Can you also rewrite it using a dowhile loop? Would you do so? If not, why not?

10.5. for

The for statement comes in two forms: a basic and an enhanced form. The basic form is the more general
and powerful of the two.

10.5.1. Basic for Statement

You use the basic for statement to loop over a range of values from beginning to end. It looks like this:

for (initialization-expression;
loop-expression;
update-expression)

statement

The initialization-expression allows you to declare and/or initialize loop variables, and is
executed only once. Then the loop-expressionof boolean or Boolean typeis evaluated and if it is
true the statement in the body of the loop is executed. After executing the loop body, the
update-expression is evaluated, usually to update the values of the loop variables, and then the
loop-expression is reevaluated. This cycle repeats until the loop-expression is found to be
false. This is roughly equivalent to

{
initialization-expression;

 while (loop-expression) {
statement
update-expression;

 }
}

except that in a for statement the update-expression is always executed if a continue is
encountered in the loop body (see "continue" on page 244).

The initialization and update parts of a for loop can be comma-separated lists of expressions. The
expressions separated by the commas are, like most operator operands, evaluated from left-to-right. For

208

208

example, to march two indexes through an array in opposite directions, the following code would be
appropriate:

for (i = 0, j = arr.length - 1; j >= 0; i++, j--) {
 // ...
}

The initialization section of a for loop can also be a local variable declaration statement, as described on
page 170. For example, if i and j are not used outside the for loop, you could rewrite the previous example
as:

for (int i = 0, j = arr.length - 1; j >= 0; i++, j--) {
 // ...
}

If you have a local variable declaration, however, each part of the expression after a comma is expected to be
a part of that local variable declaration. For example, if you want to print the first MAX members of a linked
list you need to both maintain a count and iterate through the list members. You might be tempted to try the
following:

for (int i = 0, Cell node = head; // INVALID
 i < MAX && node != null;
 i++, node = node.next)
{
 System.out.println(node.getElement());
}

This will not compile: In a variable declaration the comma separates the different variables being declared,
and Cell is a type, not a variable. Declarations of different types of variables are distinct statements
terminated by semicolons. If you change the comma to a semicolon, however, you get a for loop with four
sections, not threestill an error. If you need to initialize two different types of variables then neither of them
can be declared within the for loop:

int i;
Cell node;
for (i = 0, node = head;
 i < MAX && node != null;
 i++, node = node.next)
{
 System.out.println(node.getElement());
}

Typically, the for loop is used to iterate a variable over a range of values until some logical end to that range
is reached. You can define what an iteration range is. A for loop is often used, for example, to iterate
through the elements of a linked list or to follow a mathematical sequence of values. This capability makes the
for construct more powerful than equivalent constructs in many other languages that restrict for-style
constructs to incrementing a variable over a range of values.

Here is an example of such a loop, designed to calculate the smallest value of exp such that 10exp is greater
than or equal to a value:

209

209

public static int tenPower(int value) {
 int exp, v;
 for (exp = 0, v = value - 1; v > 0; exp++, v /= 10)
 continue;
 return exp;
}

In this case, two variables step through different ranges. As long as the loop variable v is greater than zero,
the exponent value is incremented and v is divided by ten. When the loop completes, the value 10exp is the
smallest power of ten that is greater than or equal to value. Both the test value and the exponent are updated
on each loop iteration. In such cases, a comma-separated list of expressions is a good technique to ensure that
the two values are always in lockstep.

The body of this loop is simply a continue statement, which starts the next iteration of the loop. The body
of the loop has nothing to doall the work of the loop is in the test and iteration clauses of the for statement
itself. The continue style shown here is one way to show an empty loop body; another way is to put a
simple semicolon on a line by itself or to use an empty block with braces. Simply putting a semicolon at the
end of the for line is dangerousif the semicolon is accidentally deleted or forgotten, the statement that
follows the for can silently become the body of the for.

All the expressions in the for construct are optional. If initialization-expression or
update-expression is left out, its part in the loop is simply omitted. If loop-expression is left out,
it is assumed to be TRue. Thus, one idiomatic way to write an infinite loop is as a "for ever" loop:

for (;;)
statement

Presumably, the loop is terminated by some other means, such as a break statement (described later) or by
throwing an exception.

Conventionally, the for loop is used only when looping through a range of related values. It is bad style to
violate this convention by using initialization or increment expressions that are unrelated to the boolean loop
test.

Exercise 10.5: Write a method that takes two char parameters and prints the characters between those two
values, including the endpoints.

10.5.2. Enhanced for Statement

The enhanced for statement, often referred to as the for-each loop, provides an alternative, more compact
form for iterating through a set of values. It looks like this:

for (Type loop-variable : set-expression)
statement

The set-expression must evaluate to an object that defines the set of values that you want to iterate
through, and the loop-variable is a local variable of a suitable type for the set's contents. Each time
through the loop, loop-variable takes on the next value from the set, and statement is executed
(presumably using the loop-variable for something). This continues until no more values remain in the

210

210

set.

The set-expression must either evaluate to an array instance, or an object that implements the interface
java.lang.Iterablewhich is the case for all of the collection classes you'll see in Chapter 21. Here's an
example using an array, where we rewrite the average method we showed on page 19:

static double average(int[] values) {
 if (values == null || values.length == 0)
 throw new IllegalArgumentException();

 double sum = 0.0;
 for (int val : values)
 sum += val;

 return sum / values.length;
}

The for statement is read "for each i in values" and each time through the loop we add the next value, i,
to the sum. This is equivalent to a basic for statement written as follows:

for (int j = 0 ; j < values.length; j++) {
 int val = values[j];
 sum += val;
}

The advantage of using the for-each loop with arrays is that you don't have to manually maintain the array
index and check the array length. The disadvantage is that for-each can only loop forwards through a single
array, and only looks at the array elements. If you want to modify an array element you will need to know
what index you are working with, and that information is not available in the enhanced for statement.

The main motivation behind the enhanced for statement is to make it more convenient to iterate through
collection classes, or more generally anything that implements the Iterable interface. The Iterable
interface defines a single method iterator that returns an Iterator for that object (see "Iteration" on
page 571). Recalling the AttributedImpl class we defined in Chapter 4, we can define a method to print
all the attributes of an AttributedImpl object:

static void printAttributes(AttributedImpl obj) {
 for (Attr attr : obj)
 System.out.println(attr);
}

Again we read this as "for each attr in obj" and it is simply a syntactic shorthand for a more verbose basic
for statement that uses the iterator explicitly:

for (Iterator<Attr> iter = obj.iterator();
 iter.hasNext();
 /* no update expression */)
{
 Attr attr = iter.next();
 System.out.println(attr);
}

211

211

As before the advantage of the enhanced for is a simple, syntactic construct for accessing the elements you
are iterating through. But you cannot use the iterator's remove method to alter the collection, nor can you
iterate through multiple collections at the same time. If you need these capabilities you must use the basic
for statement and an explicit iterator.

10.6. Labels

You can label statements to give them a name by which they can be referred. A label precedes the statement it
names; only one label is allowed per statement:

label: statement

Labels can be referred to only by the break and continue statements (discussed next).

10.7. break

A break statement can be used to exit from any block, not just from a switch. There are two forms of
break statement. The unlabeled break:

break;

and the labeled break:

break label;

An unlabeled break terminates the innermost switch, for, while, or do statementand so can appear
only within one of those statements. A labeled break can terminate any labeled statement.

A break is most often used to break out of a loop. In this example, we are looking for the first empty slot in
an array of references to Contained objects:

class Container {
 private Contained[] objs;

 // ...

 public void addIn(Contained obj)
 throws NoEmptySlotException
 {
 int i;
 for (i = 0; i < objs.length; i++)
 if (objs[i] == null)
 break;
 if (i >= objs.length)
 throw new NoEmptySlotException();
 objs[i] = obj; // put it inside me
 obj.inside(this); // let it know it's inside me
 }

212

212

}

To terminate an outer loop or block, you label the outer statement and use its label name in the break
statement:

private float[][] matrix;

public boolean workOnFlag(float flag) {
 int y, x;
 boolean found = false;

 search:
 for (y = 0; y < matrix.length; y++) {
 for (x = 0; x < matrix[y].length; x++) {
 if (matrix[y][x] == flag) {
 found = true;
 break search;
 }
 }
 }
 if (!found)
 return false;

 // do some stuff with flagged value at matrix[y][x]
 return true;
}

Here we label the outer for loop and if we find the value we are looking for, we terminate both inner and
outer loops by using a labeled break. This simplifies the logic of the loops because we do not need to add a
!found clause in the loop expressions.

Note that a labeled break is not a goto. The goto statement would enable indiscriminate jumping around
in code, obfuscating the flow of control. A break or continue that references a label, on the other hand,
exits from or repeats only that specific labeled block, and the flow of control is obvious by inspection. For
example, here is a modified version of workOnFlag that labels a block instead of a loop, allowing us to
dispense with the found flag altogether:

public boolean workOnFlag(float flag) {
 int y, x;

 search:
 {
 for (y = 0; y < matrix.length; y++) {
 for (x = 0; x < matrix[y].length; x++) {
 if (matrix[y][x] == flag)
 break search;
 }
 }

 // if we get here we didn't find it
 return false;
 }
 // do some stuff with flagged value at matrix[y][x]
 return true;
}

213

213

You should use the break statement judiciously, and with thought to the clarity of the resulting code.
Arbitrarily jumping out of loops or statements can obscure the flow of control in the code, making it harder to
understand and maintain. Some programming styles ban the use of break altogether, but that is an extreme
position. Contorting the logic in a loop to avoid the need for a break can result in code that is less clear than
it would have been with the break.

10.8. continue

A continue statement can be used only within a loop (for, while, or do) and transfers control to the end
of the loop's body to continue on with the loop. In the case of while and do loops, this causes the loop
expression to be the next thing evaluated. In a basic for loop continue causes the update-expression to be
evaluated next and then the loop expression. In the enhanced for loop execution goes to the next element in
the set of values if there is one.

Like the break statement, the continue statement has an unlabeled form:

continue;

and a labeled form:

continue label;

In the unlabeled form, continue transfers control to the end of the innermost loop's body. The labeled form
transfers control to the end of the loop with that label. The label must belong to a loop statement.

A continue is often used to skip over an element of a loop range that can be ignored or treated with trivial
code. For example, a token stream that included a simple "skip" token might be handled this way:

while (!stream.eof()) {
 token = stream.next();
 if (token.equals("skip"))
 continue;
 // ... process token ...
}

A labeled continue will break out of any inner loops on its way to the next iteration of the named loop. No
label is required on the continue in the preceding example since there is only one enclosing loop. Consider,
however, nested loops that iterate over the values of a two-dimensional matrix. Suppose that the matrix is
symmetric (matrix[i][j]== matrix[j][i]). In that case, you need only iterate through half of the
matrix. For example, here is a method that doubles each value in a symmetric matrix:

static void doubleUp(int[][] matrix) {
 int order = matrix.length;
 column:
 for (int i = 0; i < order; i++) {
 for (int j = 0; j < order; j++) {
 matrix[i][j] = matrix[j][i] = matrix[i][j]*2;
 if (i == j)
 continue column;

214

214

 }
 }
}

Each time a diagonal element of the matrix is reached, the rest of that row is skipped by continuing with the
outer loop that iterates over the columns.

10.9. return

A return statement terminates execution of a method and returns to the invoker. If the method returns no
value, a simple return statement will do:

return;

If the method has a return type, the return must include an expression of a type that could be assigned to
the return type. For example, if a method returns double, a return could have an expression that was a
double, float, or integer:

protected double nonNegative(double val) {
 if (val < 0)
 return 0; // an int constant
 else
 return val; // a double
}

A return can also be used to exit a constructor. Since constructors do not specify a return type, return is
used without a value. Constructors are invoked as part of the new process that, in the end, returns a reference
to a new object, but each constructor plays only a part of that role; no constructor "returns" the final reference.

10.10. What, No goto?

The Java programming language has no goto construct that transfers control to an arbitrary statement,
although goto is common in languages to which the language is related.[2] The primary uses for goto in
such languages have other solutions:

[2] Although not used goto is a reserved keyword, as is const. The reason they are reserved
is mostly historical: Both of these come from strongly related programming languages, like C
and C++, and reserving them helped compilers advise programmers clearly that they were
using something that didn't make sense. Occasionally, suggestions are made for how const
might be used in the Java programming language.

Controlling outer loops from within nested loops. Use labeled break and continue statements to
meet this need.

•

Skipping the rest of a block of code that is not in a loop when an answer or error is found. Use a
labeled break.

•

215

215

Executing cleanup code before a method or block of code exits. Use either a labeled break or, more
cleanly, the finally construct of the try statement covered in Chapter 12.

•

Labeled break and continue have the advantage that they transfer control to a strictly limited place. A
finally block is even stricter as to where it transfers control, and it works in all circumstances, including
exceptions. With these constructs you can write clean code without a goto.

Furious activity is no substitute for understanding.

H.H. Williams

Chapter 11. Generic Types

The problem with people who have no vices is that generally you can be pretty sure they're
going to have some pretty annoying virtues.

Elizabeth Taylor

In the Java programming language, the class Object forms the root of the class hierarchy, allowing other
classes to deal with arbitrary types of objects by declaring that they work with Object. In Chapter 3 you saw
a SingleLinkQueue class that used Cell objects to hold a reference to any Object you wanted in the
queue. This provides great flexibility, but with some inconvenience: If you know that the elements in question
are String objects, for example, then you have to cast the result of the remove method each time.

This use of Object as a generic reference is also potentially unsafethere is nothing to stop the programmer
from mistakenly adding a Number instead of a String, with the mistake only discovered at runtime when
the cast applied to remove fails and a ClassCastException is thrown. To avoid these problems you
could define different queue classes to store particular types of elements, such as
SingleLinkStringQueue or SingleLinkNumberQueue, but this has many drawbacks: It is tedious,
inefficient, and error-prone to duplicate code in this way; it is awkward to deal with an arbitrary kind of
queue; and you could end up with numerous classes that are identical except for the return and parameter
types of a few methods. Ideally, you would like to write a SingleLinkQueue that can be specialized to
contain any particular kind of object and then, for each queue object, define which type it holds. That is where
generic types come in.

To start, here's a new version of Cell declared as a generic class:

class Cell<E> {
 private Cell<E> next;
 private E element;
 public Cell(E element) {
 this.element = element;
 }
 public Cell(E element, Cell<E> next) {
 this.element = element;
 this.next = next;
 }
 public E getElement() {
 return element;
 }
 public void setElement(E element) {
 this.element = element;
 }
 public Cell<E> getNext() {
 return next;

216

216

 }
 public void setNext(Cell<E> next) {
 this.next = next;
 }
}

The class is now declared as Cell<E> (which is read as "Cell of E"). E represents the type of element that
a cell object can hold. In this generic version of Cell, everywhere that Object was used in the original
Cell class now uses the name E. E is known as a type variable for which a concrete type can be substituted.
There's nothing special about the name Eit could be ElementType, for examplebut E is a nice abbreviation
for "element." By convention, type variables have single character names: E for an element type, K for a key
type, V for a value type, T for a general type, and so forth.

To create an actual Cell object you have to tell the compiler what specific type you wish to replace E with.
For example, a Cell to hold a String could be constructed and referenced as follows:

Cell<String> strCell = new Cell<String>("Hello");

Note that the concrete type information is required in two places here: in the type declaration of strCell
and as part of the constructor invocation.

Of course, our cells aren't used directly like this; rather, they are an internal part of the SingleLinkQueue
class, which would look like this:

class SingleLinkQueue<E> {
 protected Cell<E> head;
 protected Cell<E> tail;
 public void add(E item) {
 Cell<E> cell = new Cell<E>(item);
 if (tail == null)
 head = tail = cell;
 else {
 tail.setNext(cell);
 tail = cell;
 }
 }

 public E remove() {
 if (head == null)
 return null;
 Cell<E> cell = head;
 head = head.getNext();
 if (head == null)
 tail = null; // empty queue
 return cell.getElement();
 }
}

A queue with element type E is made up of cells of E. Again, everywhere in the original class that Object
was used, the type variable E is now used. In addition, each use of Cell is replaced with Cell<E>.

You can create and use a queue of String objects as follows:

SingleLinkQueue<String> queue =

217

217

 new SingleLinkQueue<String>();
queue.add("Hello");
queue.add("World");

Now there is no need for a cast when invoking remove:

String hello = queue.remove();

Nor is it possible to add the wrong kind of element to the queue:

queue.add(25); // INVALID: won't compile

Generic types are invaluable in defining these kind of collection classes, as you'll see in Chapter 21, but they
have uses in many other situations.

11.1. Generic Type Declarations

The declaration of the class Cell<E> is an example of a generic type declaration. It declares Cell to be a
generic class, where the type variable E is known as the type parameter of the generic declaration. When you
use a type name such as Cell<String>, providing a specific type argument (String) to replace the
generic type parameter (E), you thereby introduce a parameterized type. This has some similarities to the
method invocation process where declared parameters are given the values of specific arguments, so the use
of a parameterized type such as Cell<String> is also known as a generic type invocation.

A generic type declaration can contain multiple type parameters, separated by commas. For example, the Map
interface (see page 587) defines a generic mapping between keys and values so it is declared as
interfaceMap<K, V>, where K is the type parameter for the key type and V is the type parameter for the
value type.

When you define a generic class, all invocations of that generic class are simply expressions of that one class.
Declaring a variable strCell as Cell<String> tells the compiler that strCell will refer to an object
of type Cell<E> where E will be String. It does not tell the compiler to create a new class
Cell<String>. Cell<String> and Cell<Number> are not two separate classes. They are two
generic type invocations of the one classCellthat are applied in two different ways to two different objects.
The class Cell is known as the raw type corresponding to the generic class declaration Cell<E>.

The following code shows quite clearly that there is just one class because the value of same is TRue:

Cell<String> strCell = new Cell<String>("Hello");
Cell<Integer> intCell = new Cell<Integer>(25);
boolean same = (strCell.getClass() == intCell.getClass());

This may seem surprising if you thought that Cell<String> was a class. But it is only Cell that is a class.
The use of <String> and <Integer> in the constructor invocations are not class definitions. They declare
information about the type of object being constructed so that the compiler can check that the object is used
correctly. At runtime, no generic type information is present in objects. In the example above, the Cell
object that contains the element "Hello" has no knowledge that it was constructed as a

218

218

Cell<String>that knowledge has been erased; a concept we come back to a bit later in the chapter (see
page 267).

The fact that there is a single class definition for a generic class, no matter how many different parameterized
invocations there may be, has several consequences in regard to what you can and cannot do with generics.
We point these out along the way, but they all boil down to this: There is only one class, so you cannot do
anything that cannot be done with only one class.

The first consequence of this fact is that a generic class with a type parameter, say E, cannot use E in the type
of a static field or anywhere within a static method or static initializer. To do so would require a different field
or method for each value of E. Because there is only one class, there is only one actual static field or method,
and so the code cannot depend on the value of E. The fact that static members are never dependent on a
particular parameterization is reinforced by the rule that you cannot refer to a static member via a
parameterized type name. For example, if SingleLinkQueue has a static merge method, it must be
invoked as SingleLinkQueue.merge. SingleLinkQueue<Integer>.merge, for example, would
not compile. To similarly reinforce that there is but a single class object, a class literal such as
SingleLinkQueue.class can only use the raw class name.

Within a generic class definition, a type parameter can appear in any non-static declaration where you would
normally put a concrete type name: in a field declaration, a method return type or parameter type declaration,
a local variable declaration, or a nested type declaration. You've seen examples of most of these uses in the
Cell and SingleLinkQueue classes.

Two places where you would usually use a class name but cannot use a type parameter are when creating
objects and arrays. For example, here is the wrong way to try to expose the elements of a queue as an array:

class SingleLinkQueue<E> {
 // ...

 public E[] toArray() {
 int size = 0;
 for (Cell<E> c = head; c != null; c = c.getNext())
 size++;

 E[] arr = new E[size]; // INVALID: won't compile
 // ... copy in elements ...
 }
}

You cannot instantiate E or create an array of E for the same reason you can't have a static field of type E:
There is a single class with a single definition of toArray, and the compiler has to know at compile time
what code to generate to create any objects or arrays. There is no way for the compiler to generate
newString[size] or newInteger[size] depending on what E happens to be.[1]

[1] This is a consequence of there being no parameterized type information within objects at
runtimesee Section 11.5 on page 267.

By now you may be wondering how it is that the compiler can do anything with type parameters? The answer
to that is deceptively simple: The compiler uses the most general possible type to represent the type parameter
(often Object) and uses type casting to ensure type correctness. You can think of generics as a (potentially
optimized) shorthand for writing all those casts. This is explained in more detail a little later.

So how do you expose the elements of the queue as an array? You could expose the size of the queue and
have the caller create, and pass to you, an array of the right size and typewhich we show you a little lateror
you could have the caller provide the type token for E (the Class object for the actual type argument) and

219

219

use reflection to create an array of the right sizesee "Genericity and Dynamic Arrays" on page 430.

Exercise 11.1: Revisit the LinkedList class that you started back in Exercise 2.2 and rewrite it as a generic
class.

Exercise 11.2: Rewrite the Attr class from Chapter 3 as a generic class.

Exercise 11.3: Was Exercise 11.2 a good idea? How does Attr being generic affect the Attributed
interface defined in Chapter 4? What does it mean for Attributed objects?

11.1.1. Bounded Type Parameters

In the generic class declaration of Cell<E>, the type variable E can be replaced by absolutely any reference
type. Sometimes it doesn't make sense to allow an arbitrary type argument to be used with a generic type. For
example, a sorted collection can hold any type of object as long as that object can be sorted. As you have seen
a number of times now, the way to define something that can be sorted is to have it implement the
Comparable interface. Comparable itself is a generic interface, with a single type variable that identifies
what type the current type can be compared with. Usually, objects of a given type should only be compared
with other objects of that same type, so typically a class Value that is comparable will be declared as

class Value implements Comparable<Value> {
 // ...
}

So a sorted collection would restrict its type parameter to be a type that implements Comparable:[2]

[2] You'll see a little later (page 258) that it's better to actually declare this slightly differently,
but for now we keep it simple.

interface SortedCollection<E extends Comparable<E>> {
 // ... sorted collection methods ...
}

Here E is restricted to be a type that "extends" Comparable<E> so that you know that no matter what type
argument is supplied, it is guaranteed to support the methods of the Comparable interface. We say that
Comparable is the upper bound on the type of E, and that E is a bounded type parameter. The keyword
extends is used here in a very general way to mean either "extends" or "implements," depending on
whether the type that follows is a class type or an interface type. Any given class can extend only one other
class, but multiple interfaces can be implemented by classes or interfaces. A type bound can express such
multiple dependencies by declaring that the type parameter extends one class or interface, followed by an
ampersand (&) separated list of additional interfaces that must be implemented. For example, a sorted
collection of character sequences could be declared as follows:

interface SortedCharSeqCollection<E extends Comparable<E>
 & CharSequence> {
 // ... sorted char sequence collection methods ...
}

Such a collection could hold String objects, for example.

220

220

11.1.2. Nested Generic Types

A nested type can also be declared as a generic type with its own type variables. Because static members
cannot refer to type variables of their own class, any type variable in a static nested type is distinct from any
type variable in the outer type, even if they have the same name. For example, if Cell objects are only
intended for use within SingleLinkQueue objects, then it would be reasonable for Cell to be a static
nested class within SingleLinkQueue:

class SingleLinkQueue<E> {
 static class Cell<E> {
 private Cell<E> next;
 private E element;
 public Cell(E element) {
 this.element = element;
 }
 public Cell(E element, Cell<E> next) {
 this.element = element;
 this.next = next;
 }
 public E getElement() {
 return element;
 }
 /* ... rest of Cell methods as before ... */
 }

 protected Cell<E> head;
 protected Cell<E> tail;

 /* ... rest of SingleLinkQueue methods as before ... */
}

The code in Cell and SingleLinkQueue is unchanged except that Cell is declared as a static nested
class within SingleLinkQueue. The type variable E is used for both classes because the element type of a
cell must always match the element type of the queue it is part of, but they are distinct names. The two
different E types are associated in the declarations of head and tail, where the E type parameter of the
SingleLinkQueue class defines the parameterized type Cell<E>. As always, you should choose names
carefully and avoid confusion. If the type variables should always represent the same type then use the same
name; if they can be distinct types, then use different names.

If the nested type is an inner class, then the type variables of the outer class declaration are accessible to it and
can be used directly. For example, an alternative design of the queue could use a non-generic inner class to
define cell objects:

class SingleLinkQueue<E> {
 class Cell {
 private Cell next;
 private E element;
 public Cell(E element) {
 this.element = element;
 }
 public Cell(E element, Cell next) {
 this.element = element;
 this.next = next;
 }
 public E getElement() {
 return element;
 }
 /* ... rest of Cell methods ... */
 }

221

221

 protected Cell head;
 protected Cell tail;

 public void add(E item) {
 Cell cell = new Cell(item);
 if (tail == null)
 head = tail = cell;
 else {
 tail.setNext(cell);
 tail = cell;
 }
 }

 public E remove() {
 if (head == null)
 return null;
 Cell cell = head;
 head = head.getNext();
 if (head == null)
 tail = null; // empty queue
 return cell.getElement();
 }

 /* ... rest of methods ... */
}

This time the element type of the cell is directly tied to the element type of the queue that it is in, and there is
no need to declare Cell to be a generic class.

If you do choose to use generic inner classes, a type variable in the inner class hides any type variable with the
same name in the outer class and, as always, hiding should be avoided.

Deeply nesting types is even more of a problem when the nested types are generic. Both nested types and
generic types add an extra degree of complexity to programs, and their combination can greatly compound
that complexity.

11.2. Working with Generic Types

To use a generic type you define a suitable parameterized type that provides the desired type arguments for
each type parameter. For example, you previously saw:

SingleLinkQueue<String> queue =
 new SingleLinkQueue<String>();

The variable queue is of type SingleLinkQueue<String>, and the constructor invocation also
declares the parameterized type SingleLinkQueue<String>. A parameterized type must supply a type
argument for each type parameter declared by the generic type.

Working with generic types requires a little more planning than working with non-generic types: When you
need to declare a field or local variable, or a method parameter or return type, you need to specify the
appropriate parameterized type that you intend to work with. For example, should a field be of type
SingleLinkQueue<String> or SingleLinkQueue<Number>, or should it be able to refer to any
queue, perhaps SingleLinkQueue<Object>? This seems an easy enough question to answerindeed it
seems we did just answer it: You should specify a type argument that is assignable by all the types you expect.

222

222

The problem is that the way you specify such a type is not the way we just illustrated because generic types
don't form subtypes in the way you might think.

11.2.1. Subtyping and Wildcards

Suppose you want to write a method to sum all of the elements in a Listone of the collection interfaces of
java.util that we describe in Section 21.6 on page 580. Naturally, you can only sum numbers, so you
require that the list that gets passed contains only Number objects. The following code would seem to do the
trick:

static double sum(List<Number> list) {
 double sum = 0.0;
 for (Number n : list)
 sum += n.doubleValue();
 return sum;
}

The intent is that sum can be passed any List object that has elements that are compatible with Number.
But that is not what the parameterized type List<Number> means: It means an object compatible with
List that has elements declared to be Number. If you try to invoke sum with a List<Integer>, for
example, your code will not compile.

List<Integer> l = new ArrayList<Integer>();
l.add(1);
l.add(4);
l.add(9);
double sum = sum(l); // INVALID: won't compile

The problem is that even though Integer is a subtype of Number, List<Integer> is not a subtype of
List<Number>. Contrast this with arrays, where Integer[] is a subtype of Number[].

We need a way to declare a List of an arbitrary element type that is compatible with Number, and the way
to do that is to use the type argument wildcard '?':

static double sum(List<? extends Number> list) {
 double sum = 0.0;
 for (Number n : list)
 sum += n.doubleValue();
 return sum;
}

In this example, the wildcard indicates that we require a List of any type, as long as that type is Number or
a subclass of Number. More formally, we've used a bounded wildcard, where Number forms the upper
bound on the type that is expected: Whatever type we get, it must be at least a Number.

You can also specify that a wildcard type must be the same as, or a supertype of, another. You do this by
using the keyword super rather than extends. For example, you could use List<?super Integer> to
match a List of Integer or any of its supertypes: List<Integer>, List<Number>,
List<Serializable>, List<Comparable<Integer>>, or List<Object>. In this case the type
represents the lower bound on the wildcard's type.

223

223

Note that unlike a bounded type variable, a bounded wildcard can have only a single boundeither an upper
bound or a lower bound. For example, if you would like to restrict the type of list to be one containing
elements that are at least of class Value and also implement Serializable, you cannot say
List<?extends Value& Serializable>.

Of course, you can also have an unbounded wildcard. For example, List<?> represents a list of any
kindimplicitly the upper bound is Object. But remember that List<?> is not another way of saying
List<Object>; rather, it is a way of saying List<?extends Object>.

In contrast to the non-wildcard versions, parameterized types that include a bounded wildcard are related in
the way you might have expected. For example, List<?extends Integer> is a subtype of
List<?extends Number>, which is itself a subtype of List<?>. Similarly, List<?super Number>
is a subtype of List<?super Integer>. In addition, non-wildcard parameterized types are subtypes of
suitably bounded, wildcard parameterized types. For example, List<Number> is a subtype of
List<?extends Number>, as is List<Integer>. While this in itself is a good property to have, the
difference between the behavior with and without bounded wildcards can be a source of confusion. Perhaps
the following diagram will clarify things:

These properties of wildcards make them not only useful but essential for effective use of generic types.
Whenever a method takes a parameter that is a parameterized type or returns a parameterized type, that
parameterized type should almost always be expressed with a wildcard of some form. Typically, parameters
use lower-bounded wildcards, while return values use upper bounded wildcardsthough if there is a constraint
between a parameter type and the return type, it may not be possible to use a wildcard. Even a type bound that
is a parameterized type will often be expressed with a wildcard. Recall the example of the
SortedCollection<E> interface, in which we constrained the type parameter E such that E extends
Comparable<E>. This seemed reasonable: to sort the collection we need the elements to be comparable to
each other. In fact, this constraint is overly tightfor two elements of a class T to be comparable to each other,
it is not necessary that T extend Comparable<T> but only that T extend Comparable<S> where S is T or
any supertype of T. For example, if class Value implements Comparable<Object> then it can still
correctly compare two Value objectsit just happens to be able to do more than that. Consequently,
SortedCollection should be declared as follows:

interface SortedCollection<E extends Comparable<? super E>> {
 // ... sorted collection methods ...
}

Wildcards are essential for obtaining the flexibility that we needed in the sum example, but they have a
limitation: Because the wildcard represents an unknown type, you can't do anything that requires the type to
be known. For example, you can't add an element to a queue referenced through a variable that has an
unbounded or upper-bounded wildcard type:[3]

224

224

[3] Since the reference literal null has no type, the type-system will allow you to invoke add
passing null, but this is an uninteresting boundary case with little practical significance.

SingleLinkQueue<?> strings =
 new SingleLinkQueue<String>();
strings.add("Hello"); // INVALID: won't compile

SingleLinkQueue<? extends Number> numbers =
 new SingleLinkQueue<Number>();
numbers.add(Integer.valueOf(25)); // INVALID: won't compile

This is a reasonable restriction because in general, if passed a queue of an unknown kind, you have no idea
what type of object you can store in it. So you can't store a String (or an Object or a Number or …) in a
queue that could require some other kind of element. Nor can you store a Number in a queue in which the
elements are known to be Number objects or objects of a subclass of Numberbecause in the subclass case
passing a general Number object would be incorrect. However, given strings above, you could invoke
remove and assign the result to an Object referencebecause the returned value must be compatible with
Object. Similarly, given numbers, you could invoke remove and assign the result to a Number
referencebecause the returned value must be at least a Number.

In contrast, given a lower-bounded wildcard type, the wildcard is known to be the same as, or a super type of,
the bound, so adding an element of the same type as the bound is always correct. For example, this method is
perfectly correct:

static void addString(SingleLinkQueue<? super String> sq) {
 sq.add("Hello");
}

No matter what queue is passed to addString, you're guaranteed that it can hold String objects.

Wildcards can be used in most declarations: fields, local variables, parameter types, and return types. But you
can't use them to name a class or interface in an extends or implements clause. Any parameterized types
that a class (or interface) extends or implements must be concrete types in which the immediate type argument
is not a wildcard. For example, you can't define a class that implements List<?>. However, the type
argument may itself be a parameterized type with a type argument that is a wildcard so implementing
List<List<?>> is okay.

You'll see more examples of the use of wildcards when we look at the collection classes in detail in Chapter
21.

11.3. Generic Methods and Constructors

Earlier we mentioned how the SingleLinkQueue class might want to expose the elements of the queue as
an array. We noted then that it was impossible to create an array with the type variable E and that instead the
caller should pass in an array of the right size and type. Here's a first attempt at defining such a method:

public E[] toArray_v1(E[] arr) { // too restrictive!
 int i = 0;
 for (Cell<E> c = head;
 c != null && i < arr.length;
 c = c.getNext())
 arr[i++] = c.getElement();

225

225

 return arr;
}

This method works. If you invoke toArray_v1 on an instance of SingleLinkQueue<String> and
pass a String[], then as many elements from the queue as the array can hold will be copied into it, and
then the array will be returned. The problem with this definition, as you may have already surmised from the
discussion of wildcards, is that it is too restrictive. It will, in the current example, accept only a String[]
and not, for example, an Object[] even though it is perfectly valid to store String objects into an
Object[].

Can we use a wildcard to help us out in this situation as well? Unfortunately not. To use a wildcard we'd try
writing something like this:

public ?[] toArray(?[]) { ... } // INVALID: won't compile

But this is simply not legal syntax: A wildcard represents an unknown type in a parameterized type definition
and '?[]' is not a parameterized type. What you need to do is introduce another type variable, say T, and use
it to describe the type of the array. And the way you introduce new type variables in a method is to declare the
method as a generic method.

You declare a generic method by defining type variables between the method modifiers and the method return
type, much as you would declare type variables for a generic class or interface. Here is how you would
actually define toArray as a generic method:

public <T> T[] toArray(T[] arr) {
 Object[] tmp = arr;
 int i = 0;
 for (Cell<E> c = head;
 c != null && i < arr.length;
 c = c.getNext())
 tmp[i++] = c.getElement();
 return arr;
}

Notice that the type variable T is only used in the method header to constrain the parameter type and the
return type to be the samewithin the method body we don't really care what type T is. But also note that in the
method body we actually work with a local variable of type Object[], which refers to the actual array that
is passed in. This is necessary because the array is of type T, but getElement returns E, and these are not
the same typeT may be Object while E is String. We could cast E to T for the cast must succeed if T and
E are compatible, but such a cast would be an unchecked cast and would produce a compiler warningsee
"Erasure at Runtime" on page 267so we bypass the problem by using the Object[] variable.

By now you may be asking yourself: "Shouldn't there be some restriction between the types T and E, since
they must be compatible?" Logically, there could be such a restriction: T must be E or a supertype of E.
Unfortunately, there is no way to express this restriction. Only wildcards can be given a lower type bound, so
you cannot write <Tsuper E> as a type variable. In any case, such a restriction is not strictly necessary.
Suppose you have a SingleLinkQueue<Object> that you know you have filled only with String
instanceswhy shouldn't you be able to pass toArray a String[]? Yet String is not a supertype of
Object. So in fact there is no compile-time type checking between T and E to see if they are compatible. We
instead rely on the runtime type check that always occurs when a reference is stored into an array.

226

226

Generic methods and constructors are typically used when you need to introduce a type variable to constrain
the parameterized types of different parameters, or to constrain a parameter and the return type, as with
toArray. For example, consider a merge operation for SingleLinkQueue that moves the elements
from a source queue into a destination queue. To perform a merge, the elements of the source queue must be
the same as, or a subtype of, the elements of the destination queue. You can express this constraint with a
generic method by using a wildcard:

public static <E> void merge(SingleLinkQueue<E> d,
 SingleLinkQueue<? extends E> s)
{
 // ... merge s elements into d ...
}

We could have introduced a second type variable, say S, to use instead of the wildcard to achieve the same
affect. So which is preferable? The general rule is to use wildcards when you can because code with wildcards
is generally more readable than code with multiple type parameters. When deciding if you need a type
variable, ask yourself if that type variable is used to relate two or more parameters, or to relate a parameter
type with the return type. If the answer is no, then a wildcard should suffice. In the above example, S would
appear in only one place and so can trivially be replaced by a wildcard.

A generic method need not be declared in a generic type, and if it is then the type variables are distinct. As
with inner generic types, if a generic method declares a type variable of the same name as that of a type
variable in the method's class or interface, the outer name is hidden. Finally, note that a static method such as
merge can be a generic method, though it cannot refer to any type variables of its own generic class.

11.3.1. Generic Invocations and Type Inference

If you invoke a generic method like toArray or merge, the compiler must ensure, as it does for all method
invocations, that you pass in arguments of the right type and assign any return value to a variable of the right
type. When you create an instance of a generic class, you use a parameterized type to bind a particular type
argument to the type variables of the class. Similarly, you can parameterize a method invocation to supply
type arguments for the method's type variables. For example, consider this generic method that simply returns
its argument:

<T> T passThrough(T obj) {
 return obj;
}

You can invoke passThrough as a String method:

String s1 = "Hello";
String s2 = this.<String>passThrough(s1);

This parameterized method invocation tells the compiler that T should be treated as String and that the
arguments and return value of passThrough must be verified accordingly.

Fortunately, explicitly parameterizing a method invocation is rarely needed. In the absence of a type
argument, the compiler will infer what type to use from the static argument types and the way in which the
return type is used. For example, this invocation of passThrough is equivalent to the previous one but

227

227

relies on type inference to establish the type of T:

String s1 = "Hello";
String s2 = passThrough(s1);

In this case, the argument type is inferred to be String, which is the static type of the variable s1. This
implies that the return type is also String. This is compatible with the assignment to s2 and so the
invocation is valid with an inferred type of String.

The following invocations of passThrough are also valid:

String s1 = "Hello";
Object o1 = passThrough(s1); // T => String
Object o2 = passThrough((Object) s1); // T => Object

In the first case the argument type is String and the return type is expected to be Object. The inferred
type for T is again String, implying that the return type is also String. This is compatible with
assignment to the Object variable o1, so the invocation is valid, with an inferred type of String. In the
second case the static type of the argument is Object (due to the cast) and so the inferred type is also
Object. This makes the return type Object, so again we have a compatible assignment and so a valid
invocation. In general, type inference has to find the most specific type in the set of types that satisfy the
constraints imposed by the type variablesa non-trivial exercise.

Type inference is based on the static type of the argument expressions that are being passed, not their dynamic
types, so the following won't compile:

String s1 = "Hello";
s1 = passThrough((Object) s1); // INVALID: won't compile

The static argument type of Object requires that T, as the return type of the method, be Object (or a
supertype if Object had one) and the String type of s1 requires that T be assignable to String. But
there is no such typeyou cannot assign an Object to a String reference. Of course, you can inform the
compiler that you know the returned object actually is a String by inserting an additional cast:

s1 = (String) passThrough((Object) s1);

The actual type inference process and the rules controlling it are extremely complex, but for the most part you
don't need to care what the actual inferred type is as long as the code compiles. For example, if a generic
method took two parameters of type T and you invoked it passing a List<String> and a
List<Number>, then the inferred type could be List<?>. Inference is also used as part of determining
which method to invoke, as you will see shortly.

The inference process may result in simple types like Object or String, or more complex types for which
no single class or interface declaration existssuch as a type that is both Runnable and Cloneable. These
complex types are generally known as intersection types. For each constraint on a type variable there will be a
set of types that meet that constraint. The intersection of those sets contains the inferred type.

228

228

Finally, note that if you do wish to make a parameterized method invocation, you cannot parameterize an
invocation that uses just a simple method name:

String s1 = "Hello";
String s2 = <String>passThrough(s1); // INVALID: won't compile

Instead you must qualify the method name appropriately, such as by using this or super for instance
methods, or the class name for static methods.

11.4. Wildcard Capture

Wildcards represent an unknown type, but whenever a variable that has a wildcard type is used, the compiler
must treat it as having some specific type so that it can check for correct usage. This specific (but still
unknown) type is referred to as the capture of the wildcard. The place you will most commonly come across
the capture of a wildcard is in the error messages the compiler produces when you use a parameterized type
the wrong way. For example, recall the incorrect attempt to add a String object to a queue accessed through
an unbounded wildcard reference:

SingleLinkQueue<?> strings =
 new SingleLinkQueue<String>();
strings.add("Hello"); // INVALID: won't compile

The error message this produced from the compiler we used was:

add(capture of ?) in SingleLinkQueue<capture of ?> cannot be applied to (java.lang.String)

This is telling us that when the wildcard reference strings is used, the type of queue is
SingleLinkQueue<captureof ?>, so the type of the parameter to add is also "captureof ?".
Because String is not compatible with "captureof ?" the call is not allowed. Even if the wildcard is
bounded, as in the earlier example with the queue of numbers ("?extends Number"), the type of the
parameter to add is "captureof ?extends Number" which is still not compatible with Integer, even
though Integer is a subtype of Number.

If a wildcard is always represented by its capture, it would seem that once you have a wildcard type you can
only use it wherever a wildcard type is expected. Indeed this is a basic rule that ensures the integrity of the
type system.

However, as it stands this basic rule imposes a rather annoying restriction. A wildcard represents any type.
Similarly, the type variable of a generic method represents any type. But under the basic rule a wildcard type
can only be used where a wildcard type is expected. This precludes passing wildcard types to generic methods
that have a parameter defined by a type variable. Consider the synchronizedList utility method from the
Collections classpart of the java.util package discussed in more detail in Chapter 21. Its job is to
take an arbitrary list object and return a new list object that is backed by the original, but one for which all the
methods are synchronized to make access to the list thread-safe (see Chapter 14). The method is declared
as follows:

static <T> List<T> synchronizedList(List<T> list) { ... }

229

229

There is no logical reason why we should not be able to pass it a list referenced through a wildcard type:

static void processList(List<?> list) {
 List<?> slist = Collections.synchronizedList(list);
 // ... process the list
}

To do so is quite safeand quite convenient!

Although in general you cannot use a List<?> where a List<T> is expected because the actual type
represented by the wildcard is not known to be compatible with T, a special rule bridges the gap that would
otherwise exist between wildcard types and the type variables of generic methods. This rule allows (under the
right circumstances) the capture of the wildcard to be represented as some unknown generic type X and then
to infer in the call that T is X. You don't actually need to know what X iswhatever it is, the resulting use of the
list is guaranteed to be type-safe.

This conversion of the capture of the wildcard to the type T is known as capture conversion and it
complements the other type conversions that we discussed in Section 9.4 on page 216.

For capture conversion to apply, there must be a unique mapping between the capture of the wildcard and the
type variable involved. This leads to some general restrictions on when capture conversion can apply.

First, capture conversion won't apply if the type parameter is used with more than one method parameter.
Consider a utility method that merges two lists:

static <T> List<T> merge(List<T> first, List<T> second) {
 /* ... */
}

If you try to pass an argument of type List<?> for first and second it will faileven if you passed the
same reference. The problem is that the process for resolving the method call will essentially replace the type
of the first argument with X, the type of the second argument with Y, and then see if T is uniquely determined.
But because X is not the same as Y this will not be the case.

Second, you can only apply capture conversion if the type variable is defined at the top-level of the generic
type. For example, suppose you had the method

static <T> void processListOfLists(List<List<T>> list) {
 /* ... */
}

and you tried to invoke it with an argument of type List<List<?>>. The capture of the wildcard would not
uniquely determine an element type for the outer List. The method requires a List with elements that are
all the same type, but a List with an element type of List<?> could contain a List<String>, a
List<Object>, and so forth, so capture conversion does not apply in this case.

Finally, as usual you cannot use a wildcard reference anywhere that the type of the wildcard needs to be
known. For example, given the method

230

230

static <T> void addToList(List<T> list, T t) {
 /* ... */
}

you cannot pass a reference of type List<?> because the inferred type of T will be "captureof ?" and
there is no type compatible with "captureof ?" that you could possibly pass for the parameter t. Or
looking at it the other way, T will be determined by whatever you pass for t, and whatever it is, it cannot be
"captureof ?", so the type of T would not be uniquely determined.

11.5. Under the Hood: Erasure and Raw Types

As we have stated a number of times, for each generic type there is only one class, no matter how many
different parameterized types are formed from it. This raises the question: What exactly is that type? Given a
class like Cell<E>, what type do Cell<String> and Cell<Number> share?

To determine the answer the compiler uses a process called erasure (because the compiler essentially erases
all generic type information from the compiled class). The erasure of a generic or parameterized type is
simply the unadorned type name. This is also known as the raw type (see "Raw Types, "Unchecked"
Warnings, and Bridge Methods" on page 745). For example, the erasure of Cell<E> is just Cell. The
erasure of a type variable is the erasure of its first bound. For example, the erasure of E in <E> is Objectthe
implicit upper bound. The erasure of E in <Eextends Number> is the explicit upper bound of Number, as
it is in <Eextends Number& Cloneable>, because Number is the first bound. The compiler generates a
class definition for the erasure of a generic type by effectively replacing each type variable with its erasure.
When a parameterized type is used and the type information from the erasure of the generic type doesn't
match what is expected, the compiler inserts a cast. For example, if you invoke remove on an object created
as a SingleLinkQueue<String> and assign it to a String reference, the compiler will insert a cast to
String because the erasure of the type variable in SingleLinkQueue<E> is just Object.

You need to understand the erasure process because it impacts your programs in two key areas:

The runtime actions that can involve generic types•
Method overloading and overriding•

We start with the runtime issues.

11.5.1. Erasure at Runtime

The runtime impact of erasure is simple to state: Nothing that needs to know the value of a type argument at
runtime is allowed. This has the following consequences, some of which we have already discussed:

You cannot instantiate a type represented only as a type parameter, nor can you create an array of
such a type. So for a type variable T you can't do newT() or newT[n] .

•

You cannot create an array whose element type is a parameterized type, with the exception of a
parameterized type for which all the type arguments are unbounded wildcards. For example,
"newList<String>[1] " is invalid, whereas "newList<?>[1] " is okay.

•

You cannot use instanceof to see if an object is an instance of a parameterized type, again with
the exception of a parameterized type whose type arguments are all unbounded wildcards. The
instanceof test is a runtime test, and at runtime the parameterized type has been replaced by its
erasure. Since this is unlikely to perform the test you expected, the compiler rejects it. You can
replace the parameterized type by its erasure if that is what you really wanted to test.

•

231

231

Casts involving type parameters or parameterized types are replaced with casts to the erasure of that
type (see discussion below).

•

A catch clause cannot declare that it catches an exception represented by a type variableeven if the
bound on that type variable is an exception type. The exact type of the exception must be known at
compile time. (You can throw an exception so referenced, however, and you can declare the type
variable in a method's throw clause.)

•

A generic class is not allowed to directly or indirectly extend Throwable. Given that you can't catch
generic exceptions there is little point in being able to declare them.

•

You cannot use a parameterized type in a class literal expression (such as
SingleLinkQueue<String>.class). This reinforces that there is but one class object.

•

The restriction on creating arrays of a parameterized type can be limiting but is essential. Consider, for
example, an implementation of List that provides a split method that returns the contents of the list split
across a number of sub-lists. It would seem reasonable to return the sublists as an array of lists. So given a
class that implements List<T> the split method would return List<T>[]. You could actually declare
such a method, but you would have trouble implementing it. You cannot create an array with component type
List<T>, and any attempt to return some less specific array type (say List[]) would result in an
"unchecked" warning (see below). The reason you cannot create a generic array such as List<T>[] is that
correct use of the array cannot be enforced by the type system. This is because array store checks are based on
the erasure of the component type not on their actual parameterized type, so you would be allowed to store
any kind of List in an array that is supposed to have a component type of List<String>, for example.
Not allowing you to create generic arrays avoids this problem. From the programmers perspective, it is better
to try to work with a suitable collection of a parameterized type rather than an array. For example, the split
method could be defined to return List<List<T>> instead.

Using unbounded wildcards in array creation and instanceof is allowed for parameterized types because
such types are effectively equivalent to their raw types. For example, creating a List<?>[1] is effectively
the same as creating a List[1]an array whose component type is a raw type. However, there is one
significant difference between these two forms: The raw type permits unsafe operations but causes the
compiler to issue a warning, whereas the wildcard form prohibits unsafe operations, causing a compile-time
error.

The absence of generic type information at runtime also means that casts involving type parameters or
parameterized types may not have the desired effect: You cannot check whether an object is an instance of a
parameterized type, so a cast to that type can not be checked at runtimeexcept if all type parameters are
unbounded wildcards. In an ideal world in which everyone used generics, such casts would simply be
disallowed (as is use of instanceof). Some degree of interoperability between generic code and
non-generic code must be provided, so the casts are allowed but are replaced by casts to the erasure of the
type variable or parameterized type, usually causing the compiler to emit an "unchecked" warning (see page
745). This warns you that the cast can neither be checked at runtime nor guaranteed to be type-safe at compile
time. For example, a method with a SingleLinkQueue<?> parameter could cast it to
SingleLinkQueue<String> and add a String. This would cause the compiler to emit an "unchecked"
warning. At runtime, the actual cast to SingleLinkQueue would succeed even if the queue was actually of
type SingleLinkQueue<Number>, and the String would be added, violating the type integrity of the
queue. This violation would only be detected when a remove invocation tried to cast the returned instance to
Number, resulting in a runtime ClassCastException. Note, however, that if the cast does not involve a
change to the type parameter, then the cast is quite safe and there is no warning. For example, a cast from
Collection<T> to List<T> doesn't require checking anything about T.

Casts involving parameterized types are unavoidable in many circumstances, such as when a method returns a
(possibly non-generic) supertype, and the actual object will be of a generic subtype that you need to cast to
that subtype. In such circumstances you should use casts that only involve unbounded wildcards, and assign
the results to variables that also declare unbounded wildcards. The fact that you need a cast means that you
have lost valuable type information and there is no way to restore that information at runtime, so casting to a

232

232

parameterized type should always involve unbounded wildcards. For example, consider a non-generic version
of the passThrough method:

Object passThrough(Object o) {
 return o;
}

and its subsequent use with an instance of List<String>:

List<String> l = new ArrayList<String>();
Object o = passThrough(l);

List<String> list1 = (List<String>) o; // unchecked
List<String> list2 = (List) o; // unchecked; raw type
List<?> list3 = (List) o; // OK: but raw type
List<?> list4 = (List<?>) o; // OK

The attempt to cast to List<String> is effectively a cast to List<?> (or equivalently the raw type
List). At runtime we may have a list of some type but we can not be certain it is a List<String>, so the
use of the cast gives an "unchecked" warning. The cast to the raw List type is itself okay, but the assignment
to list2 raises an "unchecked" warning because again there is no guarantee that the object is a
List<String>. You can remove the "unchecked" warning by assigning to a variable of type List<?>, as
with list3 abovethe cast checks that the object is a list of some kind and that list3 can hold a reference to
a list of some kind. You should cast to List<?> instead of simply to List because it clearly expresses that
List is a generic type. The raw types exist for integration with legacy code that predates generics; when you
are writing code, it's better to consistently stick with the generic expression of the concept instead of the
legacy raw type.

The only places where use of a raw type is unavoidable are within a class literal expression and when
accessing static members. This reinforces the fact that what you are accessing is independent of any
parameterization of the generic type.

In some rare circumstances you may know for certain that a value has a particular parameterized type,[4] even
though the type system cannot verify that at runtime, and a cast to that parameterized type (with its ensuing
"unchecked" warning) is essential to allow your code to compile. As noted above, the fact that you need the
cast means that type information was lost, so your first response to this should be to avoid the loss of type
information in the first place. If you cannot do this you should clearly document why the "unchecked"
warning is occurring and why you are certain that the lack of a runtime type check is not a problem.

[4] Implementing a clone method is one such circumstancesee Section A.3.2 on page 747.

11.5.2. Overloading and Overriding

In Chapter 2 we defined overloaded methods to be methods having the same name but different signatures.
Later, in Chapter 3, we defined an overriding method to be a method in a subclass with the same name and the
same signature as an accessible method in the supertype. When a method signature involves type variables,
these definitions have to be adapted slightly.

First, the definition of "same signature" for two generic methods requires that they have the same number of
type variables with the same corresponding bounds. Further, after all the uses of the type variables in the
second method are renamed with the names of the type variables from the first method, the formal parameter

233

233

types must be the same.

Second, rather than requiring the same (or different) signatures we talk about override-equivalent signatures:
Two methods have override-equivalent signatures if their signatures are the same, or if the erasures of their
signatures are the same.

Using the new definitions, two methods are overloaded if they have the same name and do not have
override-equivalent signatures. Consider this class:

class Base<T> {
 void m(int x) {}
 void m(T t) {}
 void m(String s) {}
 <N extends Number> void m(N n) {}
 void m(SingleLinkQueue<?> q) {}
}

This defines five different overloads of the method m. Replacing each method's signature by its erasure, we
would get the following corresponding set of methods:

void m(int x) {}
void m(Object t) {}
void m(String s) {}
void m(Number n) {}
void m(SingleLinkQueue q) {}

It is an error for a class or interface to declare two methods with the same name and the same signature
erasure. Consequently, trying to define any of the following versions of m in Base would be an error:

void m(Object o) {}
void m(Number n) {}
<G extends String> void m(G g) {}
void m(SingleLinkQueue<Object> q) {}

In each case, the erasure of the signature matches the erasure of one of the other signatures.

A method in a subtype potentially overrides an accessible method in a super type if the two methods have the
same name and have override-equivalent signatures. We say "potentially overrides" because there is an
additional requirement to be met: The signature of the subclass method must be the same as that of the
superclass method, or it must be the same as the erasure of the signature of the superclass method. This
constraint makes overriding a "one-way street": A method without generic types can override a method with
generic types, but not the other way around. You are allowed to do this so that you can generify an existing
class without breaking previously existing subclasses that overrode methods.

Continuing with the previous example we can extend Base as follows:

class Derived<T> extends Base<T> {
 void m(Integer i){} // new overload
 void m(Object t) {} // overrides m(T t)
 void m(Number n) {} // overrides m(N n)
}

234

234

This introduces one new overloaded form of m and defines two overriding implementations of m.

The simple rule to remember when thinking about overloading and overriding is to always consider the
erasure of the method signatures and to remember that you can't add genericity to an inherited method.

11.6. Finding the Right Method Revisited

In "Finding the Right Method" on page 224, we outlined the basic algorithm used by the compiler to
determine which form of a method should be invoked for a given method invocation expression. We can now
consider how generic types and generic methods (and constructors) affect that basic algorithm.

The changes to the algorithm can be summarized as follows:

If the method invocation includes explicit type arguments, then any potentially applicable generic
methods must have the same number of type parameters. Non-generic methods may also be
potentially applicable, in which case the actual type arguments are ignored.

1.

If there are no explicit type arguments in the invocation, and a generic method might be applicable,
then first the type arguments for the generic method are inferred based on the static types of the
argument expressions used in the method invocation. If no types that satisfy all the constraints on the
type parameters can be inferred, then the method is not applicable.

2.

At each phase, once the set of potentially applicable methods is determined, applicable methods are
searched for as previously described. For generic methods, either the explicit (if present) or the
inferred type arguments establish whether the argument type is compatible with the formal parameter
type.

3.

When the most specific method is searched for, type inference is again used when generic methods
are being considered. However, this time the type inference is not based on the actual argument
expression types; rather, the initial constraint is between the formal parameters of the generic method
and the formal parameters of the method against which it is being tested for being most specific. In
simple terms, the most specific test considers only the declared parameter types of the methods
concerned, not the type of the arguments used in the method invocation. This is clarified in an
example below.

4.

The search for the maximally specific method is not based on "same or different signature" but rather
on whether the signatures are override-equivalent (as previously described) or not.

5.

If the maximally specific method is a generic method, then the type of the method invocation
expression is the inferred return type of that generic method as determined by the type inference
applied as in point 2 above.

6.

For example, consider these two overloads of a method m:

void m(String key, Object val) {
 // ...
}

<S, T extends Number> void m(S key, T val) {
 // ...
}

Now consider this invocation of m:

m("hello", "world");

235

235

Both forms of m are potentially applicable because they have the right name and the right number of
parameters. Both arguments are reference types and neither method has a variable number of parameters, so
only phase 1 for finding the applicable methods will occur. First, the type arguments of the generic method
must be inferred. Attempting to do so, however, requires that String extend Number; it does not, so the
generic form is not applicable. The non-generic form is applicable because it matches in the first argument
type exactly, and in the second a String can be assigned to an Object. Since there is only one applicable
method, it is selected.

Now consider this invocation of m:

m(new Object(), 29);

Again both forms are potentially applicable. The type of the generic method is inferred to be
<Object,Integer> after applying boxing conversion to the argument 29. The non-generic form fails to
match in the first argument because an Object is not compatible with a String, so it is not applicable. The
generic method matches in the first argument exactly, and matches in the second argument after a boxing
conversion (phase 2). Consequently, the generic method is the only applicable method.

In contrast, this invocation of m is ambiguous:

m("hello", Integer.valueOf(29));

Both forms are potentially applicable, and again only phase 1 will come into play. The inferred type of the
generic method call is <String,Integer> . The non-generic form matches exactly in the first argument
type and matches in the second argument because an Integer is an Object. The generic form matches
exactly on both argument types. So there are two applicable methods. The next step is to determine which is
the most specific method. First, we see if the non-generic method is more specific than the generic method.
This is done as follows:

Since our second method is generic, type inference is performed, but this time with the initial
constraint that String is convertible to S and that Object is convertible to T. This infers the types
<String,Object> for the generic method. Note that the bound on T is not considered at this
point.

1.

A check is made to see if each parameter of the first method is a subtype of the (inferred) type of the
corresponding parameter in the second method. In this case the parameter types of the first method
and the inferred parameter types of the second method are the same, so the check passes.

2.

Since the second method is generic, a second check is then made to see if the types of the parameters
of the first method are subtypes of the bounds of the generic type parameters of the second method.
Considering the first parameter, the bound of S is Object and so we are testing whether String is
a subtype of Objectwhich it is. The bound of T, however, is Number and the test is if Object is a
subtype of Numberwhich it is not.

3.

Because the check has failed, the non-generic method is not more specific than the generic method. Now we
must see if the generic method is more specific than the non-generic one. This proceeds as follows:

The second method is not generic this time, so no type inference occurs.1.
A check is made to see if each parameter of the first method is a subtype of the type of the
corresponding parameter in the second method. In this case the check is to see whether S is a subtype
of String and T is a subtype of Object. A type variable is a subtype only of its bounds (and their

2.

236

236

supertypes) so S is a subtype of Object and T is subtype of Number. Because S is a subtype of
Object and not String, the check fails.

The check failed, so the generic method is not more specific than the non-generic method. Since neither
method is more specific than the other the call is ambiguous and the compiler rejects it as such.

Informally, one method is more specific than another if all calls to the first method could be handled by the
second. Looking at the two methods here, the most general signature of the generic method would have
parameters of type Object and Number. So if we consider the first parameter, anything we pass to the
non-generic method must be a String, and a String is always an Object, so the generic method could
accept all first arguments to the first method. So considering just the first parameter, the non-generic method
is more specific than the generic method. But conversely, the generic method can accept first arguments that
are not String objects, so the generic method is not more specific than the non-generic method. Considering
the second parameter, you can pass arbitrary objects to the non-generic method but only Number objects to
the generic method. Consequently, the non-generic method is not more specific at the second parameter and
so it is not more specific. As neither is more specific, the call is ambiguous.

You can remove the ambiguity in two ways. You can cast the first argument to Object so that the
non-generic method is no longer applicable and so the generic version must be called:

m((Object) "hello", Integer.valueOf(29));

The alternative is to cast the second argument to Object so that the generic method is no longer applicable
and so the non-generic version must be called:

m("hello", (Object) Integer.valueOf(29));

Note that parameterizing the invocation itself does not automatically exclude the non-generic methodits
applicability is determined without consideration of the type arguments.

Overloading, even without involving generics, should be used judiciously and only to improve the resulting
clarity of the program. With generics added to the mix, it is even easier to create programs in which the intent
can only be established by detailed recourse to the language specification. Avoid mixing generic and
non-generic overloads of a method unless you have an extremely compelling reason.

11.7. Class Extension and Generic Types

Generic types add an extra dimension to the type system, and force you to think more deeply about how to
define classes and interfaces and how to use existing classes and interfaces. You can extend a non-generic
type to produce either a generic or a non-generic subtype. You can extend a generic type to produce a generic
subtype, or you can extend a specific parameterized type to yield a non-generic subtype, or you can combine
both. This degree of flexibility can be overwhelming, but the key thing to focus on is what abstraction your
new class or interface represents and what abstraction the class or interface you are inheriting from represents.

For example, the List<E> interface is generic and represents a list of elements of some kind. If you
implement that interface then you may be providing a general-purpose implementation that can deal with
arbitrary element types, and in that case your class would also be a generic class, such as

class GeneralList<E> implements List<E> { /* ... */ }

237

237

Or you may be providing a specialized implementation that has been hand-crafted to deal with a particular
kind of element, say String, and so it won't be generic itself and will implement the parameterized interface
List<String>:

 class StringList implements List<String> { /* ... */ }

An existing non-generic class, such as AbstractEventService, may provide base functionality that you
have to extend to use a framework within your application. You might define a concrete implementation that
has no need of generics:

class RemoteEventService extends AbstractEventService {
 /* ... */
}

Or you might define a generic service for different kinds of events:

class LocalEventService<T extends Event> extends
 AbstractEventService { /* ... */ }

The possibilities really depend on the semantics of the types involved.

When choosing to extend a parameterized type, you need to carefully consider the implications, particularly if
you are implementing an interface, because a class cannot inherit two interface types that are different
parameterizations of the same interface. For example, consider the Comparable interface. If you define a
comparable class Value then it is natural to declare it as:

class Value implements Comparable<Value> {
 // ...
}

Suppose you now extend Value to add additional state. This ExtendedValue class should define objects
that are comparable only to ExtendedValue objects, so you would expect to be able to define it so:

class ExtendedValue extends Value
 implements Comparable<ExtendedValue> { // INVALID!
 // ...
}

But this won't compile because ExtendedValue is attempting to implement both Comparable<Value>
and Comparable<ExtendedValue> and that is not permitted. Once you extend or implement a
parameterized type you fix that parameterization for the current class and all subclasses. So you need to think
carefully about the implications of that. In the case of Comparable you have little choice but to accept the
restriction, and although you can't change the type parameterization, you can override the implementation of
compareTo to ensure that a subclass instance is accepted for comparison while a superclass instance is
rejected. Recall from the SortedCollection example on page 258 that if you want to accept a

238

238

Comparable object, the correct approach is to declare Comparable<?super T> rather than
Comparable<T>. This is not only more general (as previously explained), it also allows for the fact that a
comparable class T may not actually be able to implement Comparable<T>.

Generic types are a powerful tool for writing your programs more effectively, but they are a tool that is
difficult to master and can easily be misused. A full treatment of generic types requires an understanding of
type theoryin particular the characteristics of covariant and contravariant typingthat is beyond the scope of
this book. If you are interested there is additional material on the subject listed in "Further Reading" on page
755.

Nearly all men can stand adversity, but if you want to test a man's character, give him power.

Abraham Lincoln

Chapter 12. Exceptions and Assertions

A slipping gear could let your M203 grenade launcher fire when you least expect it. That
would make you quite unpopular in what's left of your unit.

The U.S. Army's PS magazine, August 1993

During execution, applications can run into many kinds of errors of varying degrees of severity. When
methods are invoked on an object, the object can discover internal state problems (inconsistent values of
variables), detect errors with objects or data it manipulates (such as a file or network address), determine that
it is violating its basic contract (such as reading data from an already closed stream), and so on.

Many programmers do not test for all possible error conditions, and for good reason: Code becomes
unintelligible if each method invocation checks for all possible errors before the next statement is executed.
This trade-off creates a tension between correctness (checking for all errors) and clarity (not cluttering the
basic flow of code with many error checks).

Exceptions provide a clean way to check for errors without cluttering code. Exceptions also provide a
mechanism to signal errors directly rather than indirectly with flags or side effects such as fields that must be
checked. Exceptions make the error conditions that a method can signal an explicit part of the method's
contract. The list of exceptions can be seen by the programmer, checked by the compiler, and preserved (if
needed) by extended classes that override the method.

An exception is thrown when an unexpected error condition is encountered. The exception is then caught by
an encompassing clause further up the method invocation stack. Uncaught exceptions result in the termination
of the thread of execution, but before it terminates, the thread's UncaughtExceptionHandler is given
the opportunity to handle the exception as best it can, usually printing useful information (such as a call stack)
about where the exception was thrownsee "Threads and Exceptions" on page 379.

12.1. Creating Exception Types

Exceptions are objects. All exception typesthat is, any class designed for throwable objectsmust extend the
class THRowable or one of its subclasses. The THRowable class contains a string that can be used to
describe the exceptionit is set via a constructor parameter and may be retrieved with the getMessage
method. By convention, most new exception types extend Exception, a subclass of THRowable.
Exception types are not allowed to be generic types.

239

239

Exceptions are primarily checked exceptions, meaning that the compiler checks that your methods throw only
the exceptions they have declared themselves to throw. The standard runtime exceptions and errors extend one
of the classes RuntimeException and Error, making them unchecked exceptions. Here is the top of the
exception type hierarchy:

Checked exceptions represent conditions that, although exceptional, can reasonably be expected to occur, and
if they do occur must be dealt with in some way. Making these exceptions checked documents the existence
of the exception and ensures that the caller of a method deals with the exception in some wayor at least
consciously chooses to ignore it.

Unchecked runtime exceptions represent conditions that, generally speaking, reflect errors in your program's
logic and cannot be reasonably recovered from at run time. For example, the
ArrayIndexOutOfBoundsException thrown when you access outside the bounds of an array tells you
that your program calculated an index incorrectly, or failed to verify a value to be used as an index. These are
errors that should be corrected in the program code. Given that you can make errors writing any statement it
would be totally impractical to have to declare or catch all the exceptions that could arise from those
errorshence they are unchecked.

The Error class, through its subclasses, defines a range of errors that indicate something has failed in the
virtual machine itself (VirtualMachineError), or in the virtual machine's attempt to execute your
application (LinkageError). These are also unchecked because they are beyond the applications ability to
control, or handle. Application code should rarely, if ever, throw these error exceptions directly.

Nearly all exceptions you create should extend Exception, making them checked exceptions. These new
checked exceptions represent the exceptional conditions that can arise in your library or application. You can
usually handle any runtime problems that arise in your code by throwing one of the existing runtime exception
classesthere are sufficient of these that one of them is usually a good match to the kind of error that has
occurred, or else the error is sufficiently general that throwing an instance of RuntimeException itself is
sufficient. Occasionally, you may want to extend an existing runtime exception class to provide additional
information about the error that occurred. Even more rarely, you might define a new class of runtime
exception that is specific to your application domain. Just remember that when it comes to unchecked
exceptions, proper usage relies on good documentation because the compiler will not be able to assist you.

Sometimes it is useful to have more data to describe the exceptional condition than what is in the
Exception class. In such cases, you can extend Exception to create a class that contains the added data
(usually set in the constructor).

For example, suppose a replaceValue method is added to the Attributed interface discussed in
Chapter 4. This method replaces the current value of a named attribute with a new value. If the named
attribute doesn't exist, an exception should be thrown, because it is reasonable to assume that one should
replace only existing attributes. That exception should contain the name of the attribute. To represent the
exception, we create the NoSuchAttributeException class:

240

240

public class NoSuchAttributeException extends Exception {
 public final String attrName;

 public NoSuchAttributeException(String name) {
 super("No attribute named \"" + name + "\" found");
 attrName = name;
 }
}

NoSuchAttributeException extends Exception to add a constructor that takes the name of the
attribute; it also adds a public final field to store the data. The constructor invokes the superclass's constructor
with a string description of what happened. This custom exception type helps when writing code that catches
the exception because it holds both a human-usable description of the error and the data that created the error.
Adding useful data is one reason to create a new exception type.

Another reason to create a new exception type is that the type of the exception is an important part of the
exception data, because exceptions are caught according to their type. For this reason, you would invent
NoSuchAttributeException even if you did not want to add data. In this way, a programmer who
cared only about such an exception could catch it exclusive of other exceptions that might be generated either
by the methods of the Attributed interface, or by other methods used on other objects in the same area of
code.

In general, new exception types should be created when programmers will want to handle one kind of error
differently from another kind. Programmers can then use the exception type to execute the correct code rather
than examine the contents of the exception to determine whether they really care about the exception or they
have caught an irrelevant exception by accident.

12.2. tHRow

You throw exceptions using the tHRow statement:

throw expression;

where expression must evaluate to a value or variable that is assignable to Throwableor in simple
terms, a reference to a Throwable object. For example, here is an addition to AttributedImpl from
Chapter 4 that implements replaceValue:

public void replaceValue(String name, Object newValue)
 throws NoSuchAttributeException
{
 Attr attr = find(name); // look up the attr
 if (attr == null) // it isn't found
 throw new NoSuchAttributeException(name);
 attr.setValue(newValue);
}

The replaceValue method first looks up the current Attr object for the name. If there isn't one, it throws
a new object of type NoSuchAttributeException, providing the constructor with the attribute name.
Exceptions are objects, so they must be created before being thrown. If the attribute does exist, its value is
replaced with the new value. You can also generate an exception by invoking a method that itself throws an

241

241

exception.

12.2.1. Transfer of Control

When an exception is thrown, the statement or expression that caused the exception is said to complete
abruptly. This abrupt completion of statements causes the call chain to gradually unwind as each block or
method invocation completes abruptly until the exception is caught. If the exception is not caught, the thread
of execution terminates, after giving the thread's UncaughtExceptionHandler a chance to handle the
exceptionsee "Threads and Exceptions" on page 379.

Once an exception occurs, actions after the point at which the exception occurred do not take place. If
evaluation of a left-operand causes an exception then no part of the right-operand is evaluated; if evaluation of
a left argument expression results in an exception, then no argument to the right is evaluated. The next action
to occur will be in either a finally block, or a catch block that catches the exception.

12.2.2. Asynchronous Exceptions

A tHRow statement results in a synchronous exception, as does, say, a divide-by-zero arithmetic exceptionthe
exception occurs directly as a result of executing a particular instruction; either the throw or dividing by
zero. In contrast an asynchronous exception is one that can occur at any time, regardless of the instructions
being executed.

Asynchronous exceptions can occur in only two specific ways. The first is an internal error in the Java virtual
machinesuch exceptions are considered asynchronous because they are caused by the execution of instructions
in the virtual machine, not the instructions of the program. Needless to say, there is little that you can do about
an internal error.

The second mechanism is the use of the deprecated Thread.stop methods, or the related, and not
deprecated, stopThread methods of the JVM™ Tool Interface (JVMTI)a native code interface to the virtual
machine that allows for the inspection, and control of, a running application. These methods allow an
asynchronous exception of any kind (checked or unchecked) to be thrown at any point during the execution of
the target thread. Such a mechanism is inherently dangerous, which is why it has been deprecated in the
THRead classwe discuss this further in Chapter 14.

12.3. The tHRows Clause

The definition of the replaceValue method declares which checked exceptions it throws. The language
requires such a declaration because programmers invoking a method need to know the exceptions it can throw
just as much as they need to know its normal behavior. The checked exceptions that a method throws are as
important as the type of value it returns. Both must be declared.

The checked exceptions a method can throw are declared with a tHRows clause, which declares a
comma-separated list of exception types. Only those exceptions that are not caught within the method must be
listed.

You can throw checked exceptions that are extensions of any type of exception in the throws clause because
you can use a class polymorphically anywhere its superclass is expected. A method can throw many classes of
checked exceptionsall of them extensions of a particular exception classand declare only the superclass in the
throws clause. By doing so, however, you hide potentially useful information from programmers invoking
the method: They won't know which of the possible extended exception types could be thrown. For
documentation purposes, the tHRows clause should be as complete and specific as possible.

242

242

The contract defined by the throws clause is strictly enforcedyou can throw only a type of checked
exception that has been declared in the tHRows clause. Throwing any other type of checked exception is
invalid, whether you use throw directly or use it indirectly by invoking another method. If a method has no
throws clause, that does not mean that any exceptions can be thrown: It means that no checked exceptions
can be thrown.

All the standard runtime exceptions (such as ClassCastException and ArithmeticException) are
extensions of the RuntimeException class. The more serious errors are signaled by exceptions that are
extensions of Error, and these exceptions can occur at any time in any code. RuntimeException and
Error are the only exceptions you do not need to list in your throws clauses. They are ubiquitous, and
every method can potentially throw them. This is why they are unchecked by the compiler. Those runtime
exceptionssuch as IllegalArgumentExceptiontHRown under specific conditions should always be
documented, even though they do not appear in the tHRows clause; see Chapter 19 for details on how to
document exceptions thrown by your methods.

Because checked exceptions must be declared in a throws clause, it follows that any code fragment outside
a method, or constructor, with a throws clause cannot throw a checked exception. This means that static
initializers and static initialization blocks cannot throw checked exceptions, either directly or by invoking a
method that throws such an exception. Non-static initializers and non-static initialization blocks are
considered to be part of the constructor for a class, and so they are allowed to throw checked exceptions only
if all the constructors of the class declare those checked exceptions.

Checked exception handling is strictly enforced because doing so helps avoid bugs that come from not dealing
with errors. Experience has shown that programmers forget to handle errors or defer writing code to handle
them until some future time that never arrives. The tHRows clause states clearly which exceptions are being
thrown by methods and makes sure they are dealt with in some way by the invoker.

If you invoke a method that lists a checked exception in its tHRows clause, you have three choices:

Catch the exception and handle it.•
Catch the exception and map it into one of your exceptions by throwing an exception of a type
declared in your own throws clause.

•

Declare the exception in your throws clause and let the exception pass through your method
(although you might have a finally clause that cleans up first; see "finally" on page 288 for
details).

•

The first two choices require that you catch exceptions thrown by other methodssomething you will learn
about soon.

You should be explicit in your throws clause, listing all the exceptions you know that you throw, even when
you could encompass several exceptions under some superclass they all share. This is good
self-documentation. Deciding how explicit you should be requires some thought. If you are designing a
general interface or superclass you have to think about how restrictive you want to be to the implementing
classes. It may be quite reasonable to define a general exception you use in the interface's throws clause,
and to expect that the implementing classes will be more specific where possible. This tactic is used by the
java.io package, which defines a general IOException type for its methods to throw. This lets
implementing classes throw exceptions specific to whatever kind of I/O is being done. For example, the
classes that do I/O across network channels can throw various network-related subclasses of IOException,
and those dealing with files throw file-related subclasses.

243

243

12.3.1. tHRows Clauses and Method Overriding

When you override an inherited method, or implement an inherited abstract method, the tHRows clause of
the overriding method must be compatible with the throws clause of the inherited method (whether abstract
or not).

The simple rule is that an overriding or implementing method is not allowed to declare more checked
exceptions in the tHRows clause than the inherited method does. The reason for this rule is quite simple:
Code written to deal with the original method declaration won't be prepared to catch any additional checked
exceptions and so no such exceptions are allowed to be thrown. Subtypes of the declared exceptions can be
thrown because they will be caught in a catch block for their supertype. If the overriding or implementing
method does not throw a checked exception then it need not redeclare that exception. For example, as you saw
in "Strategies for Cloning" on page 101, a class that implements Cloneable need not declare that clone
may throw a CloneNotSupportedException. Whether to declare it or not is a matter of designif you
declare it in the overriding method then subclasses of your class will be allowed to throw the exception in that
method, otherwise they will not.

If a method declaration is multiply inheritedthat is, it exists in more than one inherited interface, or in both an
inherited interface and a superclassthen the tHRows clause of that method must satisfy all the inherited
tHRows clauses. As we discussed in "Inheriting, Overriding, and Overloading Methods" on page 125, the
real issue in such multiple inheritance situations, is whether a single implementation of a method can honor all
the inherited contracts.

12.3.2. throws Clauses and Native Methods

A native method declaration (see page 74) can provide a throws clause that forces all users of that method
to catch or redeclare the specified checked exceptions. However, the implementation of native methods is
beyond the control of the Java compiler and so they cannot be checked to ensure that only the declared
exceptions are thrown. Well-written native methods, however, will throw only those checked exceptions that
they declare.

Exercise 12.1: Create an ObjectNotFoundException class for the LinkedList class you built in
previous exercises. Add a find method that looks for an object in the list and either returns the
LinkedList object that contains the desired object or throws the exception if the object isn't found in the
list. Why is this preferable to returning null if the object isn't found? What additional data if any should
ObjectNotFoundException contain?

12.4. TRy, catch, and finally

You catch exceptions by enclosing code in TRy blocks. The basic syntax for a TRy block is:

try {
statements

} catch (exception_type1 identifier1) {
statements

} catch (exception_type2 identifier2) {
statements

...
} finally {

statements
}

244

244

where either at least one catch clause, or the finally clause, must be present. The body of the try
statement is executed until either an exception is thrown or the body finishes successfully. If an exception is
thrown, each catch clause is examined in turn, from first to last, to see whether the type of the exception
object is assignable to the type declared in the catch. When an assignable catch clause is found, its block
is executed with its identifier set to reference the exception object. No other catch clause will be executed.
Any number of catch clauses, including zero, can be associated with a particular TRy as long as each clause
catches a different type of exception. If no appropriate catch is found, the exception percolates out of the
try statement into any outer try that might have a catch clause to handle it.

If a finally clause is present with a try, its code is executed after all other processing in the try is
complete. This happens no matter how completion was achieved, whether normally, through an exception, or
through a control flow statement such as return or break.

This example code is prepared to handle one of the exceptions replaceValue throws:

Object value = new Integer(8);
try {
 attributedObj.replaceValue("Age", value);
} catch (NoSuchAttributeException e) {
 // shouldn't happen, but recover if it does
 Attr attr = new Attr(e.attrName, value);
 attributedObj.add(attr);
}

The try sets up a statement (which must be a block) that does something that is normally expected to
succeed. If everything succeeds, the block is finished. If any exception is thrown during execution of the code
in the try block, either directly via a throw or indirectly by a method invoked inside it, execution of the
code inside the try stops, and the attached catch clause is examined to see whether it wants to catch the
exception that was thrown.

A catch clause is somewhat like an embedded method that has one parameter namely, the exception to be
caught. As with method parameters, the exception "parameter" can be declared final, or can have
annotations applied. Inside a catch clause, you can attempt to recover from the exception, or you can clean
up and rethrow the exception so that any code calling yours also has a chance to catch it. Or a catch can do
what it needs to and then fall out the bottom, in which case control flows to the statement after the try
statement (after executing the finally clause, if there is one).

A general catch clauseone that catches exceptions of type Exception, for exampleis usually a poor
implementation choice since it will catch any exception, not just the specific one you are interested in. Had we
used such a clause in our code, it could have ended up handling, for example, a ClassCastException as
if it were a missing attribute problem.

You cannot put a superclass catch clause before a catch of one of its subclasses. The catch clauses are
examined in order, so a catch that picked up one exception type before a catch for an extended type of
exception would be a mistake. The first clause would always catch the exception, and the second clause would
never be reached. The compiler will not accept the following code:

class SuperException extends Exception { }
class SubException extends SuperException { }

class BadCatch {
 public void goodTry() {
 /* This is an INVALID catch ordering */
 try {
 throw new SubException();
 } catch (SuperException superRef) {

245

245

 // Catches both SuperException and SubException
 } catch (SubException subRef) {
 // This would never be reached
 }
 }
}

Only one exception is handled by any single encounter with a TRy clause. If a catch or finally clause
throws another exception, the catch clauses of the try are not reexamined. The catch and finally
clauses are outside the protection of the try clause itself. Such exceptions can, of course, be handled by any
encompassing try block in which the inner catch or finally clauses were nested.

12.4.1. finally

The finally clause of a try statement provides a mechanism for executing a section of code whether or
not an exception is thrown. Usually, the finally clause is used to clean up internal state or to release
non-object resources, such as open files stored in local variables. Here is a method that closes a file when its
work is done, even if an error occurs:

public boolean searchFor(String file, String word)
 throws StreamException
{
 Stream input = null;
 try {
 input = new Stream(file);
 while (!input.eof())
 if (input.next().equals(word))
 return true;
 return false; // not found
 } finally {
 if (input != null)
 input.close();
 }
}

If the new fails, input will never be changed from its initial null value. If the new succeeds, input will
reference the object that represents the open file. When the finally clause is executed, the input stream
is closed only if it has been open. Whether or not the operations on the stream generate an exception, the
contents of the finally clause ensure that the file is closed, thereby conserving the limited resource of
simultaneous open files. The searchFor method declares that it throws StreamException so that any
exceptions generated are passed through to the invoking code after cleanup, including any
StreamException thrown by the invocation of close.

There are two main coding idioms for correctly using finally. The general situation is that we have two
actions, call them pre and post, such that if pre occurs then post must occurregardless of what other
actions occur between pre and post and regardless of whether those actions complete successfully or throw
exceptions. One idiom for ensuring this is:

pre();
try {
 // other actions
} finally {
 post();
}

246

246

If pre succeeds then we enter the try block and no matter what occurs we are guaranteed that post gets
executed. Conversely, if pre itself fails for some reason and throws an exception, then post does not get
executedit is important that pre occur outside the try block in this situation because post must not execute
if pre fails.

You saw the second form of the idiom in the stream searching example. In that case pre returns a value that
can be used to determine whether or not it completed successfully. Only if pre completed successfully is
post invoked in the finally clause:

Object val = null;
try {
 val = pre();
 // other actions
} finally {
 if (val != null)
 post();
}

In this case, we could still invoke pre outside the try block, and then we would not need the if statement
in the finally clause. The advantage of placing pre inside the try block comes when we want to catch
both the exceptions that may be thrown by pre and those that may be thrown by the other actionswith pre
inside the TRy block we can have one set of catch blocks, but if pre were outside the TRy block we would
need to use an outer TRy-catch block to catch the exceptions from pre. Having nested TRy blocks can be
further complicated if both pre and the other actions can throw the same exceptionsquite common with I/O
operationsand we wish to propagate the exception after using it in some way; an exception thrown by the
other actions would get caught twice and we would have to code our catch blocks to watch for and deal with
that situation.

A finally clause can also be used to clean up for break, continue, and return, which is one reason
you will sometimes see a try clause with no catch clauses. When any control transfer statement is
executed, all relevant finally clauses are executed. There is no way to leave a try block without
executing its finally clause.

The preceding example relies on finally in this way to clean up even with a normal return. One of the
most common reasons goto is used in other languages is to ensure that certain things are cleaned up when a
block of code is complete, whether or not it was successful. In our example, the finally clause ensures that
the file is closed when either the return statement is executed or the stream throws an exception.

A finally clause is always entered with a reason. That reason may be that the try code finished normally,
that it executed a control flow statement such as return, or that an exception was thrown in code executed
in the TRy block. The reason is remembered when the finally clause exits by falling out the bottom.
However, if the finally block creates its own reason to leave by executing a control flow statement (such
as break or return) or by throwing an exception, that reason supersedes the original one, and the original
reason is forgotten. For example, consider the following code:

try {
 // ... do something ...
 return 1;
} finally {
 return 2;
}

247

247

When the TRy block executes its return, the finally block is entered with the "reason" of returning the
value 1. However, inside the finally block the value 2 is returned, so the initial intention is forgotten. In
fact, if any of the other code in the try block had thrown an exception, the result would still be to return 2. If
the finally block did not return a value but simply fell out the bottom, the "return the value 1" reason
would be remembered and carried out.

12.5. Exception Chaining

Exceptions sometimes are caused by other exceptions. In "A Quick Tour", Section 1.14 on page 32, you saw
an example where this was true:

public double[] getDataSet(String setName)
 throws BadDataSetException
{
 String file = setName + ".dset";
 FileInputStream in = null;
 try {
 in = new FileInputStream(file);
 return readDataSet(in);
 } catch (IOException e) {
 throw new BadDataSetException();
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 ; // ignore: we either read the data OK
 // or we're throwing BadDataSetException
 }
 }
}
// ... definition of readDataSet ...

This method throws a BadDataSetException on any I/O exception or data format error. The problem is
that any information about the original exception is lost, and it might be a needed clue to fixing the problem.

Replacing exceptions with other ones is an important way to raise the level of abstraction. To any code
invoking the above method, all failures can be recovered from in the same way. The particulars of the failure
probably don't much matter to what the program will do, which is to handle the failure of the data file. But
humans fixing the problem can require knowledge of the exact failure, so they will want to have that
information availablesee "Stack Traces" on page 294.

Situations like this are common enough that the exception mechanism includes the notion of one exception
being caused by another exception. The initCause method, defined in Throwable, sets one exception's
cause to be the exception object passed as a parameter. For example, the previous example can have its
IOException catch clause rewritten as:

} catch (IOException e) {
 BadDataSetException bdse = new BadDataSetException();
 bdse.initCause(e);
 throw bdse;
} finally {
 // ...
}

248

248

Here initCause is used to remember the exception that made the data bad. This means that the invoking
code can handle all bad data simply with one exception handler but still know the kind of exception that
caused the underlying problem. The invoking code can use the getCause method to retrieve the exception.

The example can be simplified further by writing BadDataSetException to expect to have a cause, at
least some of the time, and so provide a constructor to accept that cause if it is known. The idiomatic way to
define a new exception class is to provide at least the following four constructor formsor variants thereof that
deal with exception specific data:

class BadDataSetException extends Exception {
 public BadDataSetException() {}

 public BadDataSetException(String details) {
 super(details);
 }

 public BadDataSetException(Throwable cause) {
 super(cause);
 }

 public BadDataSetException(String details,
 Throwable cause) {
 super(details, cause);
 }
}

Now the catch clause in the example simply becomes:

} catch (IOException e) {
 throw new BadDataSetException(e);
} finally {
 // ...
}

Not all exception classes provide cause-taking constructors, but all support the initCause method. To
make it easier to use initCause with such exception classes, it returns the exception instance that it is
invoked on. The idea is that you can use it like this:

throw new BadDataSetException().initCause(e); // Error?

The only problem is that this will nearly always result in a compile-time error: initCause returns a
THRowable instance, and you can only throw a THRowable if your method's throw clause lists
Throwablewhich it rarely, if ever, should! Consequently, you have to modify the above, to cast the
Throwable back to the actual exception type you are creating:

throw (BadDataSetException)
 new BadDataSetException().initCause(e);

249

249

Note that an exception can only have it's cause set onceeither via a constructor, or by a single call to
initCauseany attempt to set it again will cause an IllegalStateException to be thrown.

12.6. Stack Traces

When an exception is created, a stack trace of the call is saved in the exception object. This is done by the
THRowable constructor invoking its own fillInStacktrace method. You can print this stack trace by
using printStackTrace, and you can replace it with the current stack information by invoking
fillInStackTrace again. If an exception has a cause, then typically printStackTrace will print the
current exceptions stack trace, followed by the stack trace of its causehowever, the details of stack trace
printing depend on the virtual-machine implementation.

A stack trace is represented by an array of StackTraceElement objects that you can get from
getStackTrace. You can use this array to examine the stack or to create your own display of the
information. Each StackTraceElement object represents one method invocation on the call stack. You
can query these with the methods getFileName, getClassName, getMethodName,
getLineNumber, and isNativeMethod.

You can also set the stack trace with setStackTrace, but you would have to be writing a very unusual
program for this to be a good idea. The real information contained in a stack trace is quite valuable. Do not
discard it without compelling need. Proper reasons for changing a stack trace are vital, but very rare.

12.7. When to Use Exceptions

We used the phrase "unexpected error condition" at the beginning of this chapter when describing when to
throw exceptions. Exceptions are not meant for simple, expected situations. For example, reaching the end of
a stream of input is expected, so the method that returns the next input from the stream has "hitting the end" as
part of its expected behavior. A return flag that signals the end of input is reasonable because it is easy for
callers to check the return value, and such a convention is also easier to understand. Consider the following
typical loop that uses a return flag:

while ((token = stream.next()) != Stream.END)
 process(token);
stream.close();

Compare that to this loop, which relies on an exception to signal the end of input:

try {
 for (;;) {
 process(stream.next());
 }
} catch (StreamEndException e) {
 stream.close();
}

In the first case, the flow of control is direct and clear. The code loops until it reaches the end of the stream,
and then it closes the stream. In the second case, the code seems to loop forever. Unless you know that end of
input is signaled with a StreamEndException, you don't know the loop's natural range. Even when you

250

250

know about StreamEndException, this construction can be confusing since it moves the loop termination
from inside the for loop into the surrounding try block.

In some situations no reasonable flag value exists. For example, a class for a stream of double values can
contain any valid double, and there is no possible end-of-stream marker. The most reasonable design is to
add an explicit eof test method that should be called before any read from the stream:

while (!stream.eof())
 process(stream.nextDouble());
stream.close();

On the other hand, continuing to read past the end of input is not expected. It means that the program didn't
notice the end and is trying to do something it should never attempt. This is an excellent case for a
ReadPastEndException. Such behavior is outside the expected use of your stream class, and throwing
an exception is the right way to handle it.

Deciding which situations are expected and which are not is a fuzzy area. The point is not to abuse exceptions
as a way to report expected situations.

Exercise 12.2: Decide which way the following conditions should be communicated to the programmer:

Someone tries to set the capacity of a PassengerVehicle object to a negative value.•
A syntax error is found in a configuration file that an object uses to set its initial state.•
A method that searches for a programmer-specified word in a string array cannot find any occurrence
of the word.

•

A file provided to an "open" method does not exist.•
A file provided to an "open" method exists, but security prevents the user from using it.•
During an attempt to open a network connection to a remote server process, the remote machine
cannot be contacted.

•

In the middle of a conversation with a remote server process, the network connection stops operating.•

12.8. Assertions

An assertion is used to check an invariant, a condition that should always be true. If the assertion is found to
be false then an exception is thrown. If your code assumes that something is true, adding an assertion to test it
gives you a way to catch mistakes before they cause odd effects. For example, in a linked list the last element
in the list usually has a null reference to the next element:

public void append(Object value) {
 ListNode node = new ListNode(value);
 if (tail != null)
 tail.next = node;
 tail = node;
 assert tail.next == null;
}

When the append method has done its work, the assert double-checks that the last node is properly
formed. If it is not, then an AssertionError is thrown.

251

251

By default, assertions are not evaluated. It is possible to turn assertion evaluation on and off for packages,
classes, and entire class loaders, as you will soon see. When assertions are turned off, the assertions are not
evaluated at all. This means that you must be careful about side effects that affect non-assertion code. For
example, the following code is very dangerous:

assert ++i < max;

When assertions are being evaluated, the value of i will be incremented to the next value. But when someone
turns off assertions the entire expression will logically vanish from the code leaving i perpetually unchanged.
Don't ever do anything like this. Split it up:

i++;
assert i < max;

12.8.1. The assert Statement

The syntax for an assertion is:

assert eval-expr [: detail-expr];

where eval-expr is either a boolean or Boolean expression and detail-expr is an optional
expression that will be passed to the AssertionError constructor to help describe the problem. The detail
expression is optional; if present, it provides information to a person who looks at the statement or thrown
exception. If the detail is a Throwable it will become the cause of the AssertionError; that is, it will
be the value returned by the error's getCause method. Otherwise, the detail will be converted to a string and
become the detail message for the error.

When an assert is encountered in the code, the first expression is evaluated. If the resulting value is true,
the assertion passes. If it is false, the assertion fails, and an AssertionError will be constructed and
thrown.

12.9. When to Use Assertions

Assertions are typically used to make sure those things that "can't happen" are noticed if they do happen. This
is why a failed assertion throws a kind of Error instead of an Exception. A failed assertion means that
the current state is basically insane.

You should not use assertions to test for things that you know will actually happen sometimes
(IOException) or for which other means are common (IllegalArgumentException,
NullPointerException, …). You want to deal with these problems whether or not assertions are being
evaluated. Assertions are for testing for things that should never happenin a properly functioning program no
assertion should ever fail. The next few sections show some good examples of when to use assertions.

252

252

12.9.1. State Assertions

Some assertions are used to test that the current state is always as it should be.

public void setEnds(Point p1, Point p2) {
 this.p1 = p1;
 this.p2 = p2;
 distance = calculateDistance(p1, p2);
 assert (distance >= 0) : "Negative distance";
}

In the above code, setting the endpoints causes the distance field to be recalculated. The distance calculation
should always result in a positive value. Any bug that gives distance a negative value would produce odd
effects when the value is used in the future. The assertion shown will catch such a bug right at the source.
Simple assertions of this form can be used in many places to ensure the sanity of your state and algorithms.

The terms precondition and postcondition refer to particular kinds of state assertion. A precondition is
something that must be true before a particular chunk of code (usually a method) is executed; a postcondition
must be true after. You can use assert to check pre- and postconditions, such as:

public boolean remove(Object value) {
 assert count >= 0;
 if (value == null)
 throw new NullPointerException("value");
 int orig = count;
 boolean foundIt = false;
 try {
 // remove element from list (if it's there)
 return foundIt;
 } finally {
 assert ((!foundIt && count == orig) ||
 count == orig - 1);
 }
}

Here the method enforces the precondition that the list size must be non-negative before the operation, and the
postcondition that the list size should be reduced by one after removal of an element, unless the element was
not in the list.

Note that the check for whether the element to remove is null is not an assert, but instead throws a
NullPointerException. In general you should expect that users of your class will make mistakes, and
so, where possible, you should always check for them and have defined what happens for when they make
them, such as returning a flag value or throwing an exception. In effect an assertion is a way of checking that
there are no bugs or unexpected usage in the code, not that the code that calls it is bug freeso do not use
assertions to validate arguments passed to your non-private methods.

Assert statements may or may not be executed, so the compiler will not always consider them reachable. A
variable that is initialized only in an assert statement will be considered potentially uninitialized because if
asserts are disabled it will be uninitialized. This will be true even if all uses of the variable are in other assert
statements.

253

253

12.9.2. Control Flow Assertions

You can also use assertions to verify that the control flow of some code is always what you want it to be:

// value must always be present
private void replace(int val, int nval) {
 for (int i = 0; i < values.length; i++) {
 if (values[i] == val) {
 values[i] = nval;
 return;
 }
 }
 assert false : "replace: can't find " + val;
}

This loop should never reach the end, because some index in the loop ought to cause a return. If this doesn't
happen, the loop will unexpectedly fall out the bottom and the program will continue silently on its
unexpected way. The assertfalse after the loop means that if the control flow ever gets there you will be
told.

In this kind of case you can reasonably avoid the assertion mechanism entirely and go straight to throwing the
error yourself, replacing the assert with a throw:

throw new AssertionError("replace: can't find " + val);

Using a tHRow is especially valuable for methods that return values. Without a throw the compiler would
not know that the method cannot get to the bottom, so it insists that you return a value at the end. That code
typically looks like this:

return -1; // never happens

The comment "never happens" asserts something to be true but doesn't check or enforce it. Only a human
reading the code knows the invariant. And an assertfalse could be turned off, so the compiler would still
require the code to have a bogus return. The throw enforces what you already know.

The compiler will not let you have an assert statement it believes to be unreachable, just like it won't let
you have any other unreachable statement. When the compiler can determine that a line is unreachable, not
only do you need no assert, you may not put one there.

12.10. Turning Assertions On and Off

By default, assertion evaluation is turned off. You can turn on all assertion evaluation in a virtual machine, or
on a package, class, or class loader basis. Because they can be on or off, you must be careful to avoid side
effects that affect non-assertion code.

You control assertion evaluation either by passing command-line options to the virtual machinedescribed
shortlyor by using methods provided by the class loadersee "Controlling Assertions at Runtime" on page 444.

254

254

12.10.1. Why Turn Assertions On and Off?

The first question to answer is why you would want to be able to switch assertion evaluation on and off. The
usual example is to turn assertions on during development, but turn them off when your system is shipping.
The argument is that you will have caught any insanities during the development cycle so the overhead of
doing all the checks is not worth the effort.

This is tempting logic, but you can open yourself up to serious problems. The point of assertions is to catch
bugs early before they corrupt things and cause bizarre side effects. When someone else is running your code,
tracking down causes for problems is much more difficult, so catching them early and reporting them clearly
is much more important, even if it should happen a lot less often. You should only turn off assertions in code
where they have very noticeable performance effects. In those critical sections of code, though, you will want
to turn them off.

12.10.2. Controlling Assertions on the Command Line

Assertion evaluation is off by default. To change this, you can use standard command line options if you are
using a command-line-driven virtual machine:

-enableassertions/-ea[descriptor]

Enables (turns on) assertion evaluation as defined by the descriptor. If
there is no descriptor, assertions are enabled for all classes except those
loaded by the system class loadersee "Loading Classes" on page 435.

-disableassertions/-da[descriptor]

Disables (turns off) assertion evaluation for all classes as defined by the
descriptor. If there is no descriptor, assertions are disabled for all
classes.

The descriptor allows you to specify particular packages or classes that will be affected by the option. An
absent descriptor means the option applies to all non-system classes (that is, classes loaded by any class loader
but the system class loader). Packages are defined by name, followed by ... which means to apply the
option to all subpackages. For example, the option

 -enableassertions:com.acme...

would turn on assertions in all classes in com.acme and all its subpackages. If the descriptor consists only of
... it represents the unnamed package in the current working directory. Without the ... the descriptor is
assumed to be the full name of a class.

 -enableassertions:com.acme.Plotter

turns on assertions for the class com.acme.Plotter. So if you want to turn on all assertions in
com.acme, but the class com.acme.Evalutor is not relevant, you could say

 -enableassertions:com.acme... -da:com.acme.Evaluator

255

255

This applies the option to the Evaluator class and any of its nested types.

If you are using assertions in your code, the obvious thing you should do is always use ea with enough
specificity to get all your relevant code.

Multiple options are evaluated in order from the command line. Class-specific options take precedence over
package ones, and a more specific package option takes precedence over a less specific one. For example,
given

 -da:com.acme.Plotter -ea:com.acme... -da:com.acme.products
 -ea:com.acme.products.Rocket

assertions will be enabled for all classes and subpackages of com.acme, except the class
com.acme.Plotter, and disabled for all classes and subpackages of com.acme.products, except for
the class com.acme.products.Rocket.

The system classes are controlled separately because you are more likely to be searching for bugs in your code
than in the system code. To affect system classes, use the "system" variants of the options:
-enablesystemassertions/-esa and -disablesystemassertions/-dsa (the latter option is
primarily for symmetry).

The assertion status of a class is determined when that class is initializedsee "Preparing a Class for Use" on
page 441and never changes. This determination is made before any static initializers for the class are
executed, but after the initialization of the superclass. If a superclass static initializer causes a static method of
its own subclass to be executed, it is possible for that static method to execute before its own class is
initialized, and before the assertion status of that class has been determined. In such circumstances, the
execution of any assert statements must be dealt with as if assertions were enabled for the class.

12.10.3. Complete Removal

Even though assertions may never get executed at runtime, the code associated with them still exists, and they
can still consume virtual machine resources and add overhead to the performance of an application. For most
applications this isn't something you should worry aboutand a good just-in-time compiler will take care of the
overheadbut sometimes, in resource constrained environments, you do have to worry about it. The only way
to guarantee the complete removal of assertion related code is to edit the code and remove the assertions. But
there is a standard Java programming idiom that gives the source code compiler a hint that you don't want
certain sections of code present under some circumstances:

private static final boolean doAssert = true;

 if (doAssert)
 assert (cleared || size == origSize);

In the above code fragment, asserts will be checked only if the doAssert variable is true. The doAssert
variable is a compile-time constantit is static, final, and initialized with a constant valueand references to
compile-time constants are replaced, at compile time, with the value of that constant. If doAssert is false
nothing will ever cause the assert to get executed, so the if statement can be completely removed by the
compiler, if it chooses. You can also use this technique to elide debugging print statements, for example.

256

256

12.10.4. Making Assertions Required

Sometimes (rarely) you may need to ensure that some class never has its assertions turned off. You can do this
with code like the following

static {
 boolean assertsEnabled = false;
 assert assertsEnabled = true;
 if (!assertsEnabled)
 throw new IllegalStateException("Asserts required");
}

In this code we purposefully use a side effect of the assert statement so that the code can determine
whether asserts have been turned offif they have then the class will not load. This is a nearly unique case in
which side effects are a good thing.

Requiring assertions to be on complicates the running environment of the code since it must always turn on
assertions for this class even if they are off elsewhere. You should do this almost, if not actually, never.

The greatest of all faults is to be conscious of none.

Thomas Carlyle

Chapter 13. Strings and Regular Expressions

What's the use of a good quotation if you can't change it?

Dr. Who, The Two Doctors

Strings are standard objects with built-in language support. You have already seen many examples of using
string literals to create string objects. You've also seen the + and += operators that concatenate strings to
create new strings. The String class, however, has much more functionality to offer. String objects are
immutable (read-only), so you also have a StringBuilder class for mutable strings. This chapter
describes String and StringBuilder and some related classes, including utilities for regular expression
matching.

13.1. Character Sequences

As described in "Character Set" on page 161, the Java programming language represents text consisting of
Unicode characters as sequences of char values using the UTF-16 encoding format. The String class
defines objects that represent such character sequences. More generally, the java.lang.CharSequence
interface is implemented by any class that represents such a character sequencethis includes the String,
StringBuilder, and StringBuffer classes described in this chapter, together with the
java.nio.CharBuffer class that is used for performing I/O.

The CharSequence interface is simple, defining only four methods:

public char charAt(int index)

257

257

Returns the char in this sequence at the given index. Sequences are
indexed from zero to length()-1 (just as arrays are indexed). As this is a
UTF-16 sequence of characters, the returned value may be an actual character
or a value that is part of a surrogate pair. If the index is negative or not less
than the length of the sequence, then an IndexOutOfBoundsException
is thrown.

public int length()

Returns the length of this character sequence.

public CharSequence subSequence(int start, int end)

Returns a new CharSequence that contains the char values in this
sequence consisting of charAt(start) through to charAt(end-1). If
start is less than end or if use of either value would try to index outside
this sequence, then an IndexOutOfBoundsException is thrown. Be
careful to ensure that the specified range doesn't split any surrogate pairs.

public String toString()

Overrides the contract of Object.toString to specify that it returns the
character sequence represented by this CharSequence.

13.2. The String Class

Strings are immutable (read-only) character sequences: Their contents can never be changed after the string is
constructed. The String class provides numerous methods for working with stringssearching, comparing,
interacting with other character sequencesan overview of which is given in the following sections.

13.2.1. Basic String Operations

You can create strings implicitly either by using a string literal (such as "Gröçe") or by using + or += on
two String objects to create a new one.

You can also construct String objects explicitly using new. The String class supports the following
simple constructors (other constructors are shown in later sections):

public String()

Constructs a new String with the value ""an empty string.

public String(String value)

Constructs a new String that is a copy of the specified String object
valuethis is a copy constructor. Because String objects are immutable,
this is rarely used.

public String(StringBuilder value)

258

258

Constructs a new String with the same contents as the given
StringBuilder.

public String(StringBuffer value)

Constructs a new String with the same contents as the given
StringBuffer.

The most basic methods of String objects are length and charAt, as defined by the CharSequence
interface. This loop counts the number of each kind of character in a string:

for (int i = 0; i < str.length(); i++)
 counts[str.charAt(i)]++;

Note that length is a method for String, while for array it is a fieldit's common for beginners to confuse
the two.

In most String methods, a string index position less than zero or greater than length()-1 throws an
IndexOutOfBoundsException. Some implementations throw the more specific
StringIndexOutOfBoundsException, which can take the illegal index as a constructor argument and
then include it in a detailed message. Methods or constructors that copy values to or from an array will also
throw IndexOutOfBoundsException if any attempt is made to access outside the bounds of that array.

There are also simple methods to find the first or last occurrence of a particular character or substring in a
string. The following method returns the number of characters between the first and last occurrences of a
given character in a string:

static int countBetween(String str, char ch) {
 int begPos = str.indexOf(ch);
 if (begPos < 0) // not there
 return -1;
 int endPos = str.lastIndexOf(ch);
 return endPos - begPos - 1;
}

The countBetween method finds the first and last positions of the character ch in the string str. If the
character does not occur twice in the string, the method returns -1. The difference between the two character
positions is one more than the number of characters in between (if the two positions were 2 and 3, the number
of characters in between is zero).

Several overloads of the method indexOf search forward in a string, and several overloads of
lastIndexOf search backward. Each method returns the index of what it found, or 1 if the search was
unsuccessful:

Method Returns Index Of...

indexOf(int ch) first position of ch

indexOf(int ch, int start) first position of ch start

indexOf(String str) first position of str

indexOf(String str, int start) first position of str start

259

259

lastIndexOf(int ch) last position of ch

lastIndexOf(int ch, int start) last position of ch start

lastIndexOf(String str) last position of str

lastIndexOf(String str, int start) last position of str start

The indexing methods that take an int parameter for the character to look for will search for the given
character if the value is less than 0xFFFF, or else the code point with the given valuesee "Working with
UTF-16" on page 336.

If you don't care about the actual index of the substring, you can use the contains method, which returns
TRue if the current string contains a given CharSequence as a subsequence. If you want to find the index
of an arbitrary CharSequence you must invoke toString on the CharSequence and pass that to
indexOf instead.

Exercise 13.1: Write a method that counts the number of occurrences of a given character in a string.

Exercise 13.2: Write a method that counts the number of occurrences of a particular string in another string.

13.2.2. String Comparisons

The String class supports several methods to compare strings and parts of strings. Before we describe the
methods, though, you should be aware that internationalization and localization issues of full Unicode strings
are not addressed with these methods. For example, when you're comparing two strings to determine which is
"greater," characters in strings are compared numerically by their Unicode values, not by their localized
notion of order. To a French speaker, c and ç are the same letter, differing only by a small diacritical mark.
Sorting a set of strings in French should ignore the difference between them, placing "açb" before "acz"
because b comes before z. But the Unicode characters are differentc (\u0063) comes before ç (\u00e7)
in the Unicode character setso these strings will actually sort the other way around. Internationalization and
localization are discussed in Chapter 24.

The first compare operation is equals, which returns true if it is passed a reference to a String object
having the same contentsthat is, the two strings have the same length and exactly the same Unicode
characters. If the other object isn't a String or if the contents are different, String.equals returns
false. As you learned on page 100, this overrides Object.equals to define equivalence instead of
identity.

To compare strings while ignoring case, use the equalsIgnoreCase method. By "ignore case," we mean
that Ë and ë are considered the same but are different from E and e. Characters with no case distinctions, such
as punctuation, compare equal only to themselves. Unicode has many interesting case issues, including a
notion of "titlecase." Case issues in String are handled in terms of the case-related methods of the
Character class, as described in "Character" on page 192.

A String can be compared with an arbitrary CharSequence by using the contentEquals method,
which returns true if both objects represent exactly the same sequence of characters.

To sort strings, you need a way to order them, so String implements the interface
Comparable<String>the Comparable interface was described on page 118. The compareTo method
returns an int that is less than, equal to, or greater than zero when the string on which it is invoked is less
than, equal to, or greater than the other string. The ordering used is Unicode character ordering. The String
class also defines a compareToIgnoreCase method.

260

260

The compareTo method is useful for creating an internal canonical ordering of strings. A binary search, for
example, requires a sorted list of elements, but it is unimportant that the sorted order be local language order.
Here is a binary search lookup method for a class that has a sorted array of strings:

private String[] table;

public int position(String key) {
 int lo = 0;
 int hi = table.length - 1;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(table[mid]);
 if (cmp == 0) // found it!
 return mid;
 else if (cmp < 0) // search the lower part
 hi = mid - 1;

 else // search the upper part
 lo = mid + 1;
 }
 return -1; // not found
}

This is the basic binary search algorithm. It first checks the midpoint of the search range to determine whether
the key is greater than, equal to, or less than the element at that position. If they are the same, the element has
been found and the search is over. If the key is less than the element at the position, the lower half of the range
is searched; otherwise, the upper half is searched. Eventually, either the element is found or the lower end of
the range becomes greater than the higher end, in which case the key is not in the list.

In addition to entire strings, regions of strings can also be compared for equality. The method for this is
regionMatches, and it has two forms:

public boolean regionMatches(int start, String other, int
ostart, int count)

Returns true if the given region of this String has the same Unicode
characters as the given region of the string other. Checking starts in this
string at the position start, and in the other string at position ostart.
Only the first count characters are compared.

public boolean regionMatches(boolean ignoreCase, int start,
String other, int ostart, int count)

This version of regionMatches behaves exactly like the previous one, but
the boolean ignoreCase controls whether case is significant.

For example:

class RegionMatch {
 public static void main(String[] args) {
 String str = "Look, look!";
 boolean b1, b2, b3;

 b1 = str.regionMatches(6, "Look", 0, 4);
 b2 = str.regionMatches(true, 6, "Look", 0, 4);
 b3 = str.regionMatches(true, 6, "Look", 0, 5);

 System.out.println("b1 = " + b1);

261

261

 System.out.println("b2 = " + b2);
 System.out.println("b3 = " + b3);
 }
}

Here is its output:

b1 = false
b2 = true
b3 = false

The first comparison yields false because the character at position 6 of the main string is 'l' and the
character at position 0 of the other string is 'L'. The second comparison yields TRue because case is not
significant. The third comparison yields false because the comparison length is now 5 and the two strings
are not the same over five characters, even ignoring case.

In querying methods, such as regionMatches and those we mention next, any invalid indexes simply
cause false to be returned rather than throwing exceptions. Passing a null argument when an object is
expected generates a NullPointerException.

You can do simple tests for the beginnings and ends of strings by using startsWith and endsWith:

public boolean startsWith(String prefix, int start)

Returns true if this String starts (at start) with the given prefix.

public boolean startsWith(String prefix)

Equivalent to startsWith(prefix,0) .

public boolean endsWith(String suffix)

Returns TRue if this String ends with the given suffix.

13.2.3. String Literals, Equivalence and Interning

In general, using == to compare strings will give you the wrong results. Consider the following code:

if (str == "¿Peña?")
 answer(str);

This does not compare the contents of the two strings. It compares one object reference (str) to another (the
string object representing the literal "¿Peña?"). Even if str contains the string "¿Peña?" this ==
expression will almost always yield false because the two strings will be held in different objects. Using ==
on objects only tests whether the two references refer to the same object, not whether they are equivalent
objects.

However, any two string literals with the same contents will refer to the same String object. For example,
== works correctly in the following code:

262

262

String str = "¿Peña?";
// ...
if (str == "¿Peña?")
 answer(str);

Because str is initially set to a string literal, comparing with another string literal is equivalent to comparing
the strings for equal contents. But be carefulthis works only if you are sure that all string references involved
are references to string literals. If str is changed to refer to a manufactured String object, such as the
result of a user typing some input, the == operator will return false even if the user types ¿Peña? as the
string.

To overcome this problem you can intern the strings that you don't know for certain refer to string literals. The
intern method returns a String that has the same contents as the one it is invoked on. However, any two
strings with the same contents return the same String object from intern, which enables you to compare
string references to test equality, instead of the slower test of string contents. For example:

int putIn(String key) {
 String unique = key.intern();
 int i;
 // see if it's in the table already
 for (i = 0; i < tableSize; i++)
 if (table[i] == unique)
 return i;
 // it's not there--add it in
 table[i] = unique;
 tableSize++;
 return i;
}

All the strings stored in the table array are the result of an intern invocation. The table is searched for a
string that was the result of an intern invocation on another string that had the same contents as the key. If
this string is found, the search is finished. If not, we add the unique representative of the key at the end.
Dealing with the results of intern makes comparing object references equivalent to comparing string
contents, but much faster.

Any two strings with the same contents are guaranteed to have the same hash codethe String class
overrides Object.hashCodealthough two different strings might also have the same hash code. Hash
codes are useful for hashtables, such as the HashMap class in java.utilsee "HashMap" on page 590.

13.2.4. Making Related Strings

Several String methods return new strings that are like the old one but with a specified modification. New
strings are returned because String objects are immutable. You could extract delimited substrings from
another string by using a method like this one:

public static String delimitedString(
 String from, char start, char end)
{
 int startPos = from.indexOf(start);
 int endPos = from.lastIndexOf(end);
 if (startPos == -1) // no start found
 return null;
 else if (endPos == -1) // no end found
 return from.substring(startPos);

263

263

 else if (startPos > endPos) // start after end
 return null;
 else // both start and end found
 return from.substring(startPos, endPos + 1);
}

The method delimitedString returns a new String object containing the string inside from that is
delimited by start and endthat is, it starts with the character start and ends with the character end. If
start is found but not end, the method returns a new String object containing everything from the start
position to the end of the string. The method delimitedString works by using the two overloaded forms
of substring. The first form takes only an initial start position and returns a new string containing
everything in the original string from that point on. The second form takes both a start and an end position and
returns a new string that contains all the characters in the original string from the start to the endpoint,
including the character at the start but not the one at the end. This "up to but not including the end" behavior is
the reason that the method adds one to endPos to include the delimiter characters in the returned string. For
example, the string returned by

delimitedString("Il a dit «Bonjour!»", '«', '»');

is

«Bonjour!»

Here are the rest of the "related string" methods:

public String replace(char oldChar, char newChar)

Returns a String with all instances of oldChar replaced with the
character newChar.

public String replace(CharSequence oldSeq, CharSquence newSeq)

Returns a String with each occurrence of the subsequence oldSeq
replaced by the subsequence newSeq.

public String trim()

Returns a String with leading and trailing whitespace stripped. Whitespace
characters are those identified as such by the
Character.isWhitespace method and include space, tab, and newline.

A number of methods return related strings based on a match with a given regular expressionsee "Regular
Expression Matching" on page 321:

public String replaceFirst(String regex, String repStr)

Returns a String with the first substring that matches the regular
expression regex replaced by repStr. Invoked on str, this is equivalent
to
Pattern.compile(regex).matcher(str).replaceFirst(repStr).

264

264

public String replaceAll(String regex, String repStr)

Returns a String with all substrings that match the regular expression
regex replaced by repStr. Invoked on str, this is equivalent to
Pattern.compile(regex).matcher(str).replaceAll(repStr).

public String[] split(String regex)

Equivalent to split(regex,0) (see below).

public String[] split(String regex, int limit)

Returns an array of strings resulting from splitting up this string according to
the regular expression. Each match of the regular expression will cause a split
in the string, with the matched part of the string removed. The limit affects
the number of times the regular expression will be applied to the string to
create the array. Any positive number n limits the number of applications to
n1, with the remainder of the string returned as the last element of the array
(so the array will be no larger than n). Any negative limit means that there is
no limit to the number of applications and the array can have any length. A
limit of zero behaves like a negative limit, but trailing empty strings will be
discarded. Invoked on str, this is equivalent to
Pattern.compile(regex).split(str, limit).

This is easier to understand with an example. The following table shows the
array elements returned from split("--",n) invoked on the string
"w--x--y--" for n equal to 1, 0, 1, 2, 3, and 4:

 Limit: -1 0 1 2 3 4
Results
 [0]: w w w--x--y-- w w w
 [1]: x x x--y-- x x
 [2]: y y y-- y
 [3]: "" ""

With a negative or zero limit we remove all occurrences of "--", with the
difference between the two being the trailing empty string in the negative
case. With a limit of one we don't actually apply the pattern and so the whole
string is returned as the zeroth element. A limit of two applies the pattern
once, breaking the string into two substrings. A limit of three gives us three
substrings. A limit of four gives us four substrings, with the fourth being the
empty string due to the original string ending with the pattern we were
splitting on. Any limit greater than four will return the same results as a limit
of four.

In all the above, if the regular expression syntax is incorrect a PatternSyntaxException is thrown.

These are all convenience methods that avoid the need to work with Pattern and Matcher objects
directly, but they require that the regular expression be compiled each time. If you just want to know if a
given string matches a given regular expression, the matches method returns a boolean to tell you.

Case issues are locale sensitivethat is, they vary from place to place and from culture to culture. The platform
allows users to specify a locale, which includes language and character case issues. Locales are represented by
Locale objects, which you'll learn about in more detail in Chapter 24. The methods toLowerCase and

265

265

toUpperCase use the current default locale, or you can pass a specific locale as an argument:

public String toLowerCase()

Returns a String with each character converted to its lowercase equivalent
if it has one according to the default locale.

public String toUpperCase()

Returns a String with each character converted to its uppercase equivalent
if it has one according to the default locale.

public String toLowerCase(Locale loc)

Returns a String with each character converted to its lowercase equivalent
if it has one according to the specified locale.

public String toUpperCase(Locale loc)

Returns a String with each character converted to its uppercase equivalent
if it has one according to the specified locale.

The concat method returns a new string that is equivalent to the string returned when you use + on two
strings. The following two statements are equivalent:

newStr = oldStr.concat(" not");
newStr = oldStr + " not";

Exercise 13.3: As shown, the delimitedString method assumes only one such string per input string.
Write a version that will pull out all the delimited strings and return an array.

Exercise 13.4: Write a program to read an input string with lines of the form "type value", where type is
one of the wrapper class names (Boolean, Character, and so on) and value is a string that the type's
constructor can decode. For each such entry, create an object of that type with that value and add it to an
ArrayListsee "ArrayList" on page 582. Display the final result when all the lines have been read. Assume
a line is ended simply by the newline character '\n'.

13.2.5. String Conversions

You often need to convert strings to and from something else, such as integers or booleans. The convention is
that the type being converted to has the method that does the conversion. For example, converting from a
String to an int requires a static method in class Integer. This table shows all the types that you can
convert, and how to convert each to and from a String:

Type To String From String

boolean String.valueOf(boolean) Boolean.parseBoolean(String)

byte String.valueOf(int) Byte.parseByte(String, int base)

char String.valueOf(char) str.charAt(0)

short String.valueOf(int) Short.parseShort(String, int base)

266

266

int String.valueOf(int) Integer.parseInt(String, int base)

long String.valueOf(long) Long.parseLong(String, int base)

float String.valueOf(float) Float.parseFloat(String)

double String.valueOf(double) Double.parseDouble(String)

To convert a primitive type to a String you invoke one of the static valueOf methods of String, which
for numeric types produces a base 10 representation.

The Integer and Long wrapper classesas described in Chapter 8also provide methods
toBinaryString, toOctalString, and toHexString for other representations.

To convert, or more accurately to parse a string into a primitive type you invoke the static parseType
method of the primitives type's corresponding wrapper class. Each parsing method has its own rules about the
allowed format of the string, for example Float.parseFloat will accept a floating-point literal of the
form "3.14f", whereas Long.parseLong will not accept the string "25L". These numeric parsing
methods have two overloaded forms: one that takes a numeric base between 2 and 32 in addition to the string
to parse; and one that takes only the string and assumes base 10. These parsing methods will also reject the
string if it has characters representing the base of the number, such as "0x12FE" for a hexadecimal value, or
"\033" for an octal value. However, the Integer and Long wrapper classes also provide a static decode
method that will parse a string that does include this base information. For the numeric types, if the string
does not represent a valid value of that type, a NumberFormatException is thrown.

To convert a String to a char you simply extract the first char from the String.

Your classes can support string encoding and decoding by having an appropriate toString method and a
constructor that creates a new object given the string description. The method
String.valueOf(Objectobj) is defined to return either "null" (if obj is null) or the result of
obj.toString. The String class provides enough overloads of valueOf that you can convert any
value of any type to a String by invoking valueOf.

13.2.6. Strings and char Arrays

A String maps to an array of char and vice versa. You often want to build a string in a char array and
then create a String object from the contents. Assuming that the writable StringBuilder class
(described later) isn't adequate, several String methods and constructors help you convert a String to an
array of char, or convert an array of char to a String.

There are two constructors for creating a String from a char array:

public String(char[] chars, int start, int count)

Constructs a new String whose contents are the same as the chars array,
from index start up to a maximum of count characters.

public String(char[] chars)

Equivalent to String(chars,0, chars.length).

267

267

Both of these constructors make copies of the array, so you can change the array contents after you have
created a String from it without affecting the contents of the String.

For example, the following simple algorithm squeezes out all occurrences of a character from a string:

public static String squeezeOut(String from, char toss) {
 char[] chars = from.toCharArray();
 int len = chars.length;
 int put = 0;
 for (int i = 0; i < len; i++)
 if (chars[i] != toss)
 chars[put++] = chars[i];
 return new String(chars, 0, put);
}

The method squeezeOut first converts its input string from into a character array using the method
toCharArray. It then sets up put, which will be the next position into which to put a character. After that
it loops, copying into the array any character that isn't a toss character. When the method is finished looping
over the array, it returns a new String object that contains the squeezed string.

You can use the two static String.copyValueOf methods instead of the constructors if you prefer. For
instance, squeezeOut could have been ended with

return String.copyValueOf(chars, 0, put);

There is also a single-argument form of copyValueOf that copies the entire array. For completeness, two
static valueOf methods are also equivalent to the two String constructors.

The toCharArray method is simple and sufficient for most needs. When you need more control over
copying pieces of a string into a character array, you can use the getChars method:

public void getChars(int srcBegin, int srcEnd, char[] dst, int
dstBegin)

Copies characters from this String into the specified array. The characters
of the specified substring are copied into the character array, starting at
dst[dstBegin]. The specified substring is the part of the string starting at
srcBegin, up to but not including srcEnd.

13.2.7. Strings and byte Arrays

Strings represent characters encoded as char values with the UTF-16 encoding format. To convert those
char values into raw byte values requires that another encoding format be used. Similarly, to convert
individual "characters" or arrays of raw 8-bit "characters" into char values requires that the encoding format
of the raw bytes is known. For example, you would convert an array of ASCII or Latin-1 bytes to Unicode
characters simply by setting the high bits to zero, but that would not work for other 8-bit character set
encodings such as those for Hebrew. Different character sets are discussed shortly. In the following
constructors and methods, you can name a character set encoding or use the user's or platform's default
encoding:

public String(byte[] bytes, int start, int count)

268

268

Constructs a new String by converting the bytes, from index start up to
a maximum of count bytes, into characters using the default encoding for
the default locale.

public String(byte[] bytes)

Equivalent to String(bytes, 0, bytes.length).

public String(byte[] bytes, int start, int count, String enc)
throws UnsupportedEncodingException

Constructs a new String by converting the bytes, from index start up to
a maximum of count bytes, into characters using the encoding named by
enc.

public String(byte[] bytes, String enc) throws
UnsupportedEncodingException

Equivalent to String(bytes,0, bytes.length,enc) .

public byte[] getBytes()

Returns a byte array that encodes the contents of the string using the default
encoding for the default locale.

public byte[] getBytes(String enc) throws
UnsupportedEncodingException

Returns a byte array that encodes the contents of the string using the
encoding named by enc.

The String constructors for building from byte arrays make copies of the data, so further modifications to
the arrays will not affect the contents of the String.

13.2.8. Character Set Encoding

A character set encoding specifies how to convert between raw 8-bit "characters" and their 16-bit Unicode
equivalents. Character sets are named using their standard and common names. The local platform defines
which character set encodings are understood, but every implementation is required to support the following:

US-ASCII 7-bit ASCII, also known as ISO646-US, and as the Basic Latin block of the Unicode
character set

ISO-8859-1 ISO Latin Alphabet No. 1, also known as ISO-LATIN-1

UTF-8 8-bit Unicode Transformation Format

UTF-16BE 16-bit Unicode Transformation Format, big-endian byte order

UTF-16LE 16-bit Unicode Transformation Format, little-endian byte order

UTF-16 16-bit Unicode Transformation Format, byte order specified by a mandatory initial
byte-order mark (either order accepted on input, big-endian used on output)

269

269

Consult the release documentation for your implementation to see if any other character set encodings are
supported.

Character sets and their encoding mechanisms are represented by specific classes within the
java.nio.charset package:

Charset

A named mapping (such as US-ASCII or UTF-8) between sequences of
16-bit Unicode code units and sequences of bytes. This contains general
information on the sequence encoding, simple mechanisms for encoding and
decoding, and methods to create CharsetEncoder and
CharsetDecoder objects for richer abilities.

CharsetEncoder

An object that can transform a sequence of 16-bit Unicode code units into a
sequence of bytes in a specific character set. The encoder object also has
methods to describe the encoding.

CharsetDecoder

An object that can transform a sequence of bytes in a specific character set
into a sequence of 16-bit Unicode code units. The decoder object also has
methods to describe the decoding.

You can obtain a Charset via its own static forName method, though usually you will just specify the
character set name to some other method (such as the String constructor or an I/O operation) rather than
working with the Charset object directly. To test whether a given character set is supported use the
forName method, and if you get an UnsuppportedCharsetException then it is not.

You can find a list of available character sets from the static availableCharsets method, which returns
a SortedMap of names and Charset instances, of all known character sets. For example, to print out the
names of all the known character sets you can use:

for (String name : Charset.availableCharsets().keySet())
 System.out.println(name);

Every instance of the Java virtual machine has a default character set that is determined during
virtual-machine startup and typically depends on the locale and encoding being used by the underlying
operating system. You can obtain the default Charset using the static defaultCharset method.

13.3. Regular Expression Matching

The package java.util.regex provides you a way to find if a string matches a general description of a
category of strings called a regular expression. A regular expression describes a class of strings by using
wildcards that match or exclude groups of characters, markers to require matches in particular places, etc. The
package uses a common kind of regular expression, quite similar to those used in the popular perl
programming language, which itself evolved from those used in several Unix utilities.

270

270

You can use regular expressions to ask if strings match a pattern and pick out parts of strings using a rich
expression language. First you will learn what regular expressions are. Then you will learn how to compile
and use them.

13.3.1. Regular Expressions

A full description of regular expressions is complex and many other works describe them. So we will not
attempt a complete tutorial, but instead will simply give some examples of the most commonly used features.
(A full reference alone would take several pages.) A list of resources for understanding regular expressions is
in "Further Reading" on page 758.

Regular expressions search in character sequences, as defined by java.lang.CharSequence,
implemented by String and StringBuilder. You can implement it yourself if you want to provide new
sources.

A regular expression defines a pattern that can be applied to a character sequence to search for matches. The
simplest form is something that is matched exactly; the pattern xyz matches the string xyzzy but not the
string plugh. Wildcards make the pattern more general. For example, . (dot) matches any single character,
so the pattern .op matches both hop and pop, and * matches zero or more of the thing before it, so xyz*
matches xy, xyz, and xyzzy.

Other useful wildcards include simple sets (p[aeiou]p matches pop and pup but not pgp, while [a-z]
matches any single lowercase letter); negations ([^aeiou] matches anything that is not a single lowercase
vowel); predefined sets (\d matches any digit; \s any whitespace character); and boundaries (^twisty
matches the word "twisty" only at the beginning of a line; \balike matches "alike" only after a word
boundary, that is, at the beginning of a word).

Special symbols for particular characters include \t for tab; \n for newline; \a for the alert (bell) character;
\e for escape; and \\ for backslash itself. Any character that would otherwise have a special meaning can be
preceded by a \ to remove that meaning; in other words \c always represents the character c. This is how,
for example, you would match a * in an expressionby using *.

Special symbols start with the \ character, which is also the character used to introduce an escape character.
This means, for example, that in the string expression "\balike", the actual pattern will consist of a
backspace character followed by the word "alike", while "\s" would not be a pattern for whitespace but
would cause a compile-time error because \s is not valid escape character. To use the special symbols within
a string expression the leading \ must itself be escaped using \\, so the example strings become
"\\balike" and "\\s", respectively. To include an actual backslash in a pattern it has to be escaped
twice, using four backslash characters: "\\\\". Each backslash pair becomes a single backslash within the
string, resulting in a single backslash pair being included in the pattern, which is then interpreted as a single
backslash character.

Regular expressions can also capture parts of the string for later use, either inside the regular expression itself
or as a means of picking out parts of the string. You capture parts of the expression inside parentheses. For
example, the regular expression (.)-(.*)-\2-\1 matches x-yup-yup-x or ñ-å-å-ñ or any other
similar string because \1 matches the group (.) and \2 matches the group (.*).[1] Groups are numbered
from one, in order of the appearance of their opening parenthesis.

[1] The .* means "zero or more characters," because . means "any character" and * means
"zero or more of the thing I follow," so together they mean "zero or more of any character."

271

271

13.3.2. Compiling and Matching with Regular Expressions

Evaluating a regular expression can be compute intensive, and in many instances a single regular expression
will be used repeatedly. This can be addressed by compiling the regular expression once and using the result.
In addition, a single character sequence might be checked repeatedly against the same pattern to find multiple
matches, which can be done fastest by remembering some information about previous matches. To address
both these opportunities for optimization, the full model of using a regular expression is this:

1. First you turn your regular expression string into a Pattern object that is the compiled version of the
pattern.

2. Next you ask the Pattern object for a Matcher object that applies that pattern to a particular
CharSequence (such as a String or StringBuilder).

3. Finally you ask the Matcher to perform operations on the sequence using the compiled pattern.

Or, expressed in code:

Pattern pat = Pattern.compile(regularExpression);
Matcher matcher = pat.matcher(sequence);
boolean foundMatch = matcher.find();

If you are only using a pattern once, or are only matching each string against that pattern once, you need not
actually deal with the intermediate objects. As you will see, there are convenience methods on Pattern for
matching without a Matcher, and methods that create their own Pattern and Matcher. These are easy to
use, but inefficient if you are using the same pattern multiple times, or matching against the same string with
the same pattern repeatedly.

The Pattern class has the following methods:

public static Pattern compile(String regex) tHRows
PatternSyntaxException

Compiles the given regular expression into a pattern.

public static Pattern compile(String regex, int flags) tHRows
PatternSyntaxException

Compiles the given regular expression into a pattern with the given flags. The
flags control how certain interesting cases are handled, as you will soon
learn.

public String pattern()

Returns the regular expression from which this pattern was compiled.

public int flags()

Returns this pattern's match flags.

public Matcher matcher(CharSequence input)

272

272

Creates a matcher that will match the given input against this pattern.

public String[] split(CharSequence input, int limit)

A convenience method that splits the given input sequence around matches of
this pattern. Useful when you do not need to reuse the matcher.

public String[] split(CharSequence input)

A convenience method that splits the given input sequence around matches of
this pattern. Equivalent to split(input,0) .

public static boolean matches(String regex, CharSequence input)

A convenience method that compiles the given regular expression and
attempts to match the given input against it. Useful when you do not need to
reuse either parser or matcher. Returns true if a match is found.

public static String quote(String str)

Returns a string that can be used to create a pattern that would match with
str.

The toString method of a Pattern also returns the regular expression from which the pattern was
compiled.

The flags you can specify when creating the pattern object affect how the matching will be done. Some of
these affect the performance of the matching, occasionally severely, but they may be functionality you need.

Flag Meaning

CASE_INSENSITIVE Case-insensitive matching. By default, only handle case for the ASCII characters.

UNICODE_CASE Unicode-aware case folding when combined with CASE_INSENSITIVE

CANON_EQ Canonical equivalence. If a character has multiple expressions, treat them as
equivalent. For example, å is canonically equivalent to a\u030A.

DOTALL Dot-all mode, where . matches line breaks, which it otherwise does not.

MULTILINE Multiline mode, where ^ and $ match at lines embedded in the sequence, not just
at the start end of the entire sequence

UNIX_LINES Unix lines mode, where only \n is considered a line terminator.

COMMENTS Comments and whitespace in pattern. Whitespace will be ignored, and comments
starting with # are ignored up to the next end of line.

LITERAL Enable literal parsing of the pattern

The Matcher class has methods to match against the sequence. Each of these returns a boolean indicating
success or failure. If successful, the position and other state associated with the match can then be retrieved
from the Matcher object via the start, end, and group methods. The matching queries are

public boolean matches()

273

273

Attempts to match the entire input sequence against the pattern.

public boolean lookingAt()

Attempts to match the input sequence, starting at the beginning, against the
pattern. Like the matches method, this method always starts at the
beginning of the input sequence; unlike that method, it does not require that
the entire input sequence be matched.

public boolean find()

Attempts to find the next subsequence of the input sequence that matches the
pattern. This method starts at the beginning of the input sequence or, if a
previous invocation of find was successful and the matcher has not since
been reset, at the first character not matched by the previous match.

public boolean find(int start)

Resets this matcher and then attempts to find the next subsequence of the
input sequence that matches the pattern, starting at the specified index. If a
match is found, subsequent invocations of the find method will start at the
first character not matched by this match.

Once matching has commenced, the following methods allow the state of the matcher to be modified:

public Matcher reset()

Resets this matcher. This discards all state and resets the append position (see
below) to zero. The returned Matcher is the one on which the method was
invoked.

public Matcher reset(CharSequence input)

Resets this matcher to use a new input sequence. The returned Matcher is
the one on which the method was invoked.

public Matcher usePattern(Pattern pattern)

Changes the pattern used by this matcher to be pattern. Any group
information is discarded, but the input and append positions remain the same.

Once a match has been found, the following methods return more information about the match:

public int start()

Returns the start index of the previous match.

public int end()

Returns the index of the last character matched, plus one.

public String group()

Returns the input subsequence matched by the previous match; in other

274

274

words, the substring defined by start and end.

public int groupCount()

Returns the number of capturing groups in this matcher's pattern. Group
numbers range from zero to one less than this count.

public String group(int group)

Returns the input subsequence matched by the given group in the previous
match. Group zero is the entire matched pattern, so group(0) is equivalent
to group().

public int start(int group)

Returns the start index of the given group from the previous match.

public int end(int group)

Returns the index of the last character matched of the given group, plus one.

Together these methods form the MatchResult interface, which allows a match result to be queried but not
modified. You can convert the current matcher state to a MatchResult instance by invoking its
toMatchResult method. Any subsequent changes to the matcher state do not affect the existing
MatchResult objects.

13.3.3. Replacing

You will often want to pair finding matches with replacing the matched characters with new ones. For
example, if you want to replace all instances of sun with moon, your code might look like this:[2]

[2] The StringBuffer class (see page 335) is an appendable character sequence (you can
modify its contents). The Matcher class should have been updated in the 5.0 release to work
with any appendable character sequence, such as StringBuilder, but this was
overlooked.

Pattern pat = Pattern.compile("sun");
Matcher matcher = pat.matcher(input);
StringBuffer result = new StringBuffer();
boolean found;
while ((found = matcher.find()))
 matcher.appendReplacement(result, "moon");
matcher.appendTail(result);

The loop continues as long as there are matches to sun. On each iteration through the loop, all the characters
from the append position (the position after the last match; initially zero) to the start of the current match are
copied into the string buffer. Then the replacement string moon is copied. When there are no more matches,
appendTail copies any remaining characters into the buffer.

The replacement methods of Matcher are

public String replaceFirst(String replacement)

275

275

Replaces the first occurrence of this matcher's pattern with the replacement
string, returning the result. The matcher is first reset and is not reset after the
operation.

public String replaceAll(String replacement)

Replaces all occurrences of this matcher's pattern with the replacement string,
returning the result. The matcher is first reset and is not reset after the
operation.

public Matcher appendReplacement(StringBuffer buf, String
replacement)

Adds to the string buffer the characters between the current append and
match positions, followed by the replacement string, and then moves the
append position to be after the match. As shown above, this can be used as
part of a replacement loop. Returns this matcher.

public StringBuffer appendTail(StringBuffer buf)

Adds to the string buffer all characters from the current append position until
the end of the sequence. Returns the buffer.

So the previous example can be written more simply with replaceAll:

Pattern pat = Pattern.compile("sun");
Matcher matcher = pat.matcher(input);
String result = matcher.replaceAll("moon");

As an example of a more complex usage of regular expressions, here is code that will replace every number
with the next largest number:

Pattern pat = Pattern.compile("[-+]?[0-9]+");
Matcher matcher = pat.matcher(input);
StringBuffer result = new StringBuffer();
boolean found;
while ((found = matcher.find())) {
 String numStr = matcher.group();
 int num = Integer.parseInt(numStr);
 String plusOne = Integer.toString(num + 1);
 matcher.appendReplacement(result, plusOne);
}
matcher.appendTail(result);

Here we decode the number found by the match, add one to it, and replace the old value with the new one.

The replacement string can contain a $g, which will be replaced with the value from the gth capturing group
in the expression. The following method uses this feature to swap all instances of two adjacent words:

public static String
 swapWords(String w1, String w2, String input)
{
 String regex = "\\b(" + w1 + ")(\\W+)(" + w2 + ")\\b";
 Pattern pat = Pattern.compile(regex);

276

276

 Matcher matcher = pat.matcher(input);
 return matcher.replaceAll("$3$2$1");
}

First we build a pattern from the two words, using parenthesis to capture groups of characters. A \b in a
pattern matches a word boundary (otherwise the word "crow" would match part of "crown"), and \W matches
any character that would not be part of a word. The original pattern matches groups one (the first word), two
(the separator characters), and three (the second word), which the "$3$2$1" replacement string inverts.

For example, the invocation

swapWords("up", "down",
 "The yo-yo goes up, down, up, down, ...");

would return the string

The yo-yo goes down, up, down, up, ...

If we only wanted to swap the first time the words were encountered we could use replaceFirst:

public static String
 swapFirstWords(String w1, String w2, String input) {

 String regex = "\\b(" + w1 + ")(\\W+)(" + w2 + ")\\b";
 Pattern pat = Pattern.compile(regex);
 Matcher matcher = pat.matcher(input);
 return matcher.replaceFirst("$3$2$1");
}

13.3.4. Regions

A Matcher looks for matches in the character sequence that it is given as input. By default, the entire
character sequence is considered when looking for a match. You can control the region of the character
sequence to be used, through the method region which takes a starting index and an ending index to define
the subsequence in the input character sequence. The methods regionStart and regionEnd return,
respectively, the current start index and the current end index.

You can control whether a region is considered to be the true start and end of the input, so that matching with
the beginning or end of a line will work, by invoking useAnchoringBounds with an argument of true
(the default). If you don't want the region to match with the line anchors then use false. The method
hasAnchoringBounds will return the current setting.

Similarly, you can control whether the bounds of the region are transparent to matching methods that want to
look-ahead, look-behind, or detect a boundary. By default bounds are opaquethat is, they will appear to be
hard bounds on the input sequencebut you can change that with useTransparentBounds. The
hasTransparentBounds method returns the current setting.

277

277

13.3.5. Efficiency

Suppose you want to parse a string into two parts that are separated by a comma. The pattern (.*),(.*) is
clear and straightforward, but it is not necessarily the most efficient way to do this. The first .* will attempt
to consume the entire input. The matcher will have to then back up to the last comma and then expand the rest
into the second .*. You could help this along by being clear that a comma is not part of the group:
([^,]*),([^,]*). Now it is clear that the matcher should only go so far as the first comma and stop,
which needs no backing up. On the other hand, the second expression is somewhat less clear to the casual user
of regular expressions.

You should avoid trading clarity for efficiency unless you are writing a performance critical part of the code.
Regular expressions are by nature already cryptic. Sophisticated techniques make them even more difficult to
understand, and so should be used only when needed. And when you do need to be more efficient be sure that
you are doing things that are more efficientas with all optimizations, you should test carefully what is actually
faster. In the example we give, a sufficiently smart pattern compiler and matcher might make both patterns
comparably quick. Then you would have traded clarity for nothing. And even if today one is more efficient
than the other, a better implementation tomorrow may make that vanish. With regular expressions, as with any
other part of programming, choosing optimization over clarity is a choice to be made sparingly.

13.4. The StringBuilder Class

If immutable strings were the only kind available, you would have to create a new String object for each
intermediate result in a sequence of String manipulations. Consider, for example, how the compiler would
evaluate the following expression:

public static String guillemete(String quote) {
 return '«' + quote + '»';
}

If the compiler were restricted to String expressions, it would have to do the following:

quoted = String.valueOf('«').concat(quote)
 .concat(String.valueOf('»'));

Each valueOf and concat invocation creates another String object, so this operation would construct
four String objects, of which only one would be used afterward. The others strings would have incurred
overhead to create, to set to proper values, and to garbage collect.

The compiler is more efficient than this. It uses a StringBuilder object to build strings from expressions,
creating the final String only when necessary. StringBuilder objects can be modified, so new objects
are not needed to hold intermediate results. With StringBuilder, the previous string expression would be
represented as

quoted = new StringBuilder().append('«')
 .append(quote).append('»').toString();

This code creates just one StringBuilder object to hold the construction, appends stuff to it, and then

278

278

uses toString to create a String from the result.

To build and modify a string, you probably want to use the StringBuilder class. StringBuilder
provides the following constructors:

public StringBuilder()

Constructs a StringBuilder with an initial value of "" (an empty string)
and a capacity of 16.

public StringBuilder(int capacity)

Constructs a StringBuilder with an initial value of "" and the given
capacity.

public StringBuilder(String str)

Constructs a StringBuilder with an initial value copied from str.

public StringBuilder(CharSequence seq)

Constructs a StringBuilder with an initial value copied from seq.

StringBuilder is similar to String, and it supports many methods that have the same names and
contracts as some String methodsindexOf, lastIndexof, replace, substring. However,
StringBuilder does not extend String nor vice versa. They are independent implementations of
CharSequence.

13.4.1. Modifying the Buffer

There are several ways to modify the buffer of a StringBuilder object, including appending to the end
and inserting in the middle. The simplest method is setCharAt, which changes the character at a specific
position. The following replace method does what String.replace does, except that it uses a
StringBuilder object. The replace method doesn't need to create a new object to hold the results, so
successive replace calls can operate on one buffer:

public static void
 replace(StringBuilder str, char oldChar, char newChar) {

 for (int i = 0; i < str.length(); i++)
 if (str.charAt(i) == oldChar)
 str.setCharAt(i, newChar);
}

The setLength method truncates or extends the string in the buffer. If you invoke setLength with a
length smaller than the length of the current string, the string is truncated to the specified length. If the length
is longer than the current string, the string is extended with null characters ('\\u0000').

There are also append and insert methods to convert any data type to a String and then append the
result to the end or insert the result at a specified position. The insert methods shift characters over to make
room for inserted characters as needed. The following types are converted by these append and insert
methods:

279

279

Object String CharSequence char[]

boolean char int long

float double

There are also append and insert methods that take part of a CharSequence or char array as an
argument. Here is some code that uses various append invocations to create a StringBuilder that
describes the square root of an integer:

String sqrtInt(int i) {
 StringBuilder buf = new StringBuilder();

 buf.append("sqrt(").append(i).append(')');
 buf.append(" = ").append(Math.sqrt(i));
 return buf.toString();
}

The append and insert methods return the StringBuilder object itself, enabling you to append to the
result of a previous append.

A few append methods together form the java.lang.Appendable interface. These methods are

public Appendable append(char c)
public Appendable append(CharSequence seq)
public Appendable append(CharSequence seq, int start, int end)

The Appendable interface is used to mark classes that can receive formatted output from a
java.util.Formatter objectsee "Formatter" on page 624.

The insert methods take two parameters. The first is the index at which to insert characters into the
StringBuilder. The second is the value to insert, after conversion to a String if necessary. Here is a
method to put the current date at the beginning of a buffer:

public static StringBuilder addDate(StringBuilder buf) {
 String now = new java.util.Date().toString();
 buf.insert(0, now).insert(now.length(), ": ");
 return buf;
}

The addDate method first creates a string with the current time using java.util.Date, whose default
constructor creates an object that represents the time it was created. Then addDate inserts the string that
represents the current date, followed by a simple separator string. Finally, it returns the buffer it was passed so
that invoking code can use the same kind of method concatenation that proved useful in StringBuilder's
own methods.

The reverse method reverses the order of characters in the StringBuilder. For example, if the contents
of the buffer are "good", the contents after reverse are "doog".

280

280

You can remove part of the buffer with delete, which takes a starting and ending index. The segment of the
string up to but not including the ending index is removed from the buffer, and the buffer is shortened. You
can remove a single character by using deleteCharAt.

You can also replace characters in the buffer:

public StringBuilder replace(int start, int end, String str)

Replace the characters starting at start up to but not including end with
the contents of str. The buffer is grown or shrunk as the length of str is
greater than or less than the range of characters replaced.

13.4.2. Getting Data Out

To get a String object from a StringBuilder object, you simply invoke the toString method. If you
need a substring of the buffer, the substring methods works analogously to those of String. If you want
some or all of the contents as a character array, you can use getChars, which is analogous to
String.getChars.

public void getChars(int srcBegin, int srcEnd, char[] dst, int
dstBegin)

Copies characters from this StringBuilder into the specified array. The
characters of the specified substring are copied into the character array,
starting at dst[dstBegin]. The specified substring is the part of the string
buffer from srcBegin up to but not including srcEnd.

Here is a method that uses getChars to remove part of a buffer:

public static StringBuilder
 remove(StringBuilder buf, int pos, int cnt) {

 if (pos < 0 || cnt < 0 || pos + cnt > buf.length())
 throw new IndexOutOfBoundsException();

 int leftover = buf.length() - (pos + cnt);
 if (leftover == 0) { // a simple truncation
 buf.setLength(pos);
 return buf;
 }

 char[] chrs = new char[leftover];
 buf.getChars(pos + cnt, buf.length(), chrs, 0);
 buf.setLength(pos);
 buf.append(chrs);
 return buf;
}

First remove ensures that the array references will stay in bounds. You could handle the actual exception
later, but checking now gives you more control. Then remove calculates how many characters follow the
removed portion. If there are none, it truncates and returns. Otherwise, remove retrieves them using
getChars and then truncates the buffer and appends the leftover characters before returning.

281

281

13.4.3. Capacity Management

The buffer of a StringBuilder object has a capacity, which is the length of the string it can store before it
must allocate more space. The buffer grows automatically as characters are added, but it is more efficient to
specify the size of the buffer only once.

You set the initial size of a StringBuilder object by using the constructor that takes a single int:

public StringBuilder(int capacity)

Constructs a StringBuilder with the given initial capacity and an
initial value of "".

public void ensureCapacity(int minimum)

Ensures that the capacity of the buffer is at least the specified minimum.

public int capacity()

Returns the current capacity of the buffer.

public void trimToSize()

Attempts to reduce the capacity of the buffer to accommodate the current
sequence of characters. There is no guarantee that this will actually reduce
the capacity of the buffer, but this gives a hint to the system that it may be a
good time to try and reclaim some storage space.

You can use these methods to avoid repeatedly growing the buffer. Here, for example, is a rewrite of the
sqrtInt method from page 332 that ensures that you allocate new space for the buffer at most once:

String sqrtIntFaster(int i) {
 StringBuilder buf = new StringBuilder(50);
 buf.append("sqrt(").append(i).append(')');
 buf.append(" = ").append(Math.sqrt(i));
 return buf.toString();
}

The only change is to use a constructor that creates a StringBuilder object large enough to contain the
result string. The value 50 is somewhat larger than required; therefore, the buffer will never have to grow.

13.4.4. The StringBuffer Class

The StringBuffer class is essentially identical to the StringBuilder class except for one thing: It
provides a thread-safe implementation of an appendable character sequencesee Chapter 14 for more on thread
safety. This difference would normally relegate discussion of StringBuffer to a discussion on thread-safe
data structures, were it not for one mitigating factor: The StringBuffer class is older, and previously
filled the role that StringBuilder does now as the standard class for mutable character sequences. For
this reason, you will often find methods that take or return StringBuffer rather than StringBuilder,
CharSequence, or Appendable. These historical uses of StringBuffer are likely to be enshrined in
the existing APIs for many years to come.

282

282

Exercise 13.5: Write a method to convert strings containing decimal numbers into comma-punctuated
numbers, with a comma every third digit from the right. For example, given the string "1543729", the
method should return the string "1,543,729".

Exercise 13.6: Modify the method to accept parameters specifying the separator character to use and the
number of digits between separator characters.

13.5. Working with UTF-16

In "Working with UTF-16" on page 196, we described a number of utility methods provided by the
Character class to ease working with the supplementary Unicode characters (those greater in value than
0xFFFF that require encoding as a pair of char values in a CharSequence). Each of the String,
StringBuilder, and StringBuffer classes provides these methods:

public int codePointAt(int index)

Returns the code point defined at the given index in this, taking into
account that it may be a supplementary character represented by the pair
this.charAt(index) and this.charAt(index+1).

public int codePointBefore(int index)

Returns the code point defined at the given index in this, taking into
account that it may be a supplementary character represented by the pair
this.charAt(index-2) and this.charAt(index-1).

public int codePointCount(int start, int end)

Returns the number of code points defined in this.charAt(start) to
this.charAt(end), taking into account surrogate pairs. Any unpaired
surrogate values count as one code point each.

public int offsetByCodePoints(int index, int
numberOfCodePoints)

Returns the index into this that is numberOfCodePoints away from
index, taking into account surrogate pairs.

In addition, the StringBuilder and StringBuffer classes define the appendCodePoint method
that takes an int representing an arbitrary Unicode character, encodes it as a surrogate pair if needed, and
appends it to the end of the buffer. Curiously, there is no corresponding insertCodePoint method.

Finally, the String class also provides the following constructor:

public String(int[] codePoints, int start, int count)

Constructs a new String with the contents from codePoints[start]
up to a maximum of count code points, with supplementary characters
encoded as surrogate pairs as needed. If any value in the array is not a valid
Unicode code point, then IllegalArgumentException is thrown.

When ideas fail, words come in very handy.

283

283

Johann Wolfgang von Goethe

Chapter 14. Threads

At some point, you have to jump out of the plane under the assumption that you can get the
parachute sewn together in time to deploy it.

Jack Rickard

We usually write programs that operate one step at a time, in a sequence. In the following picture, the value of
a bank balance is fetched, it is increased by the value of the deposit, and then it is copied back into the account
record:

Real bank tellers and computer programs go through similar sequences. In a computer, a sequence of steps
executed one at a time is called a thread. This single-threaded programming model is the one most
programmers use.

In a real bank, more than one thing happens at a time:

284

284

Inside a computer, the analogue to having multiple real-world bank tellers is called multithreading. A thread,
like a bank teller, can perform a task independent of other threads. And just as two bank tellers can use the
same filing cabinets, threads can share access to objects.

This shared access is simultaneously one of the most useful features of multithreading and one of its greatest
pitfalls. This kind of getmodifyset sequence has what is known as a race hazard or race condition. A race
hazard exists when two threads can potentially modify the same piece of data in an interleaved way that can
corrupt data. In the bank example, imagine that someone walks up to a bank teller to deposit money into an
account. At almost the same time, a second customer asks another teller to handle a deposit into the same
account. Each teller

goes to the filing cabinet to get the current account balance (assuming this is an old-fashioned bank that still
uses paper files) and gets the same information. Then the tellers go back to their stations, add in the deposit,
and return to the filing cabinet to record their separately calculated results. With this procedure, only the last
deposit recorded actually affects the balance. The first modification is lost.

A real bank can handle this problem by having the first teller put a note into the file that says, "I'm working on
this one, wait until I'm finished." Essentially the same thing is done inside the computer: A lock is associated

285

285

with an object to tell when the object is or is not being used.

Many real-world software problems can best be solved by using multiple threads of control. For example, an
interactive program that graphically displays data often needs to let users change display parameters in real
time. Interactive programs often obtain their best dynamic behavior by using threads. Single-threaded systems
usually provide an illusion of multiple threads either by using interrupts or by polling. Polling mixes the
display and user input parts of an application. In particular, the display code must be written so it will poll
often enough to respond to user input in fractions of a second. Display code either must ensure that display
operations take minimal time or must interrupt its own operations to poll. The resulting mixture of two
unrelated functional aspects of a program leads to complex and often unmaintainable code.

These kinds of problems are more easily solved in a multithreaded system. One thread of control updates the
display with current data, and another thread responds to user input. If user input is complexfor example,
filling out a form display code can run independently until it receives new data. In a polling model, either
display updates must pause for complex input or complicated handshaking must be used so that display
updates can continue while the user types data into the form. Such a model of shared control within a process
can be directly supported in a multithreaded system instead of being handcrafted for each new polling case.

This chapter describes the basic constructs, classes, and methods that control multithreading in the Java
programming language, but it cannot teach you effective multithreaded program design. The package
java.util.concurrent and its subpackages provide higher-level concurrency utilities to ease the task
of writing sophisticated multithreaded programs, but again the detailed use of such tools is beyond the scope
of this bookan overview is given in Section 25.9.1 on page 733. You can read Concurrent Programming in
Java™, Second Edition, a book in this series, to get advice on how to create well-designed multithreaded
programs. "Further Reading" on page 755 has other useful references to give you a background in thread and
synchronization design.

14.1. Creating Threads

To create a thread of control, you start by creating a THRead object:

Thread worker = new Thread();

After a THRead object is created, you can configure it and then run it. Configuring a thread involves setting
its initial priority, name, and so on. When the thread is ready to run, you invoke its start method. The
start method spawns a new thread of control based on the data in the Thread object, then returns. Now
the virtual machine invokes the new thread's run method, making the thread active. You can invoke start
only once for each threadinvoking it again results in an IllegalThreadStateException.

When a thread's run method returns, the thread has exited. You can request that a thread cease running by
invoking its interrupt methoda request a well-written thread will always respond to. While a thread is
running you can interact with it in other ways, as you shall soon see.

The standard implementation of Thread.run does nothing. To get a thread that does something you must
either extend Thread to provide a new run method or create a Runnable object and pass it to the thread's
constructor. We first discuss how to create new kinds of threads by extending THRead. We describe how to
use Runnable in the next section.

Here is a simple two-threaded program that prints the words "ping" and "PONG" at different rates:

public class PingPong extends Thread {

286

286

 private String word; // what word to print
 private int delay; // how long to pause

 public PingPong(String whatToSay, int delayTime) {
 word = whatToSay;
 delay = delayTime;
 }

 public void run() {
 try {
 for (;;) {
 System.out.print(word + " ");
 Thread.sleep(delay); // wait until next time
 }
 } catch (InterruptedException e) {
 return; // end this thread
 }
 }
 public static void main(String[] args) {
 new PingPong("ping", 33).start(); // 1/30 second
 new PingPong("PONG", 100).start(); // 1/10 second
 }
}

We define a type of thread called PingPong. Its run method loops forever, printing its word field and
sleeping for delay milliseconds. PingPong.run cannot throw exceptions because Thread.run, which
it overrides, doesn't throw any exceptions. Accordingly, we must catch the InterruptedException that
sleep can throw (more on InterruptedException later).

Now we can create some working threads, and PingPong.main does just that. It creates two PingPong
objects, each with its own word and delay cycle, and invokes each thread object's start method. Now the
threads are off and running. Here is some example output:

ping PONG ping ping PONG ping ping ping PONG ping
ping PONG ping ping ping PONG ping ping PONG ping
ping ping PONG ping ping PONG ping ping ping PONG
ping ping PONG ping ping ping PONG ping ping PONG
ping ping ping PONG ping ping PONG ping ping ping
PONG ping ping PONG ping ping ping PONG ping ping ...

You can give a thread a name, either as a String parameter to the constructor or as the parameter of a
setName invocation. You can get the current name of a thread by invoking getName. Thread names are
strictly for programmer conveniencethey are not used by the runtime systembut a thread must have a name
and so if none is specified, the runtime system will give it one, usually using a simple numbering scheme like
Thread-1, Thread-2, and so on.

You can obtain the Thread object for the currently running thread by invoking the static method
THRead.currentThread. There is always a currently running thread, even if you did not create one
explicitlymain itself is executed by a thread created by the runtime system.

Exercise 14.1: Write a program that displays the name of the thread that executes main.

287

287

14.2. Using Runnable

Threads abstract the concept of a workeran entity that gets something done. The work done by a thread is
packaged up in its run method. When you need to get some work done, you need both a worker and the
workthe Runnable interface abstracts the concept of work and allows that work to be associated with a
workerthe thread. The Runnable interface declares a single method:

public void run();

The THRead class itself implements the Runnable interface because a thread can also define a unit of
work.

You have seen that Thread can be extended to provide specific computation for a thread, but this approach
is awkward in many cases. First, class extension is single inheritanceif you extend a class to make it runnable
in a thread, you cannot extend any other class, even if you need to. Also, if your class needs only to be
runnable, inheriting all the overhead of Thread is more than you need.

Implementing Runnable is easier in many cases. You can execute a Runnable object in its own thread by
passing it to a Thread constructor. If a Thread object is constructed with a Runnable object, the
implementation of THRead.run will invoke the runnable object's run method.

Here is a Runnable version of the PingPong class. If you compare the versions, you will see that they
look almost identical. The major differences are in the supertype (implementing Runnable versus extending
Thread) and in main.

class RunPingPong implements Runnable {
 private String word; // what word to print
 private int delay; // how long to pause

 RunPingPong(String whatToSay, int delayTime) {
 word = whatToSay;
 delay = delayTime;
 }

 public void run() {
 try {
 for (;;) {
 System.out.print(word + " ");
 Thread.sleep(delay); // wait until next time
 }
 } catch (InterruptedException e) {
 return; // end this thread
 }
 }

 public static void main(String[] args) {
 Runnable ping = new RunPingPong("ping", 33);
 Runnable pong = new RunPingPong("PONG", 100);
 new Thread(ping).start();
 new Thread(pong).start();
 }
}

First, a new class that implements Runnable is defined. Its implementation of the run method is the same
as PingPong's. In main, two RunPingPong objects with different timings are created; a new THRead

288

288

object is then created for each object and is started immediately.

Five Thread constructors enable you to specify a Runnable object:

public Thread(Runnable target)

Constructs a new THRead that uses the run method of the specified
target.

public Thread(Runnable target, String name)

Constructs a new Thread with the specified name and uses the run
method of the specified target.

public Thread(ThreadGroup group, Runnable target)

Constructs a new Thread in the specified ThreadGroup and uses the run
method of the specified target. You will learn about ThreadGroup later.

public Thread(ThreadGroup group, Runnable target, String name)

Constructs a new THRead in the specified THReadGroup with the
specified name and uses the run method of the specified target.

public THRead(ThreadGroup group, Runnable target, String name,
long stacksize)

Constructs a new THRead in the specified ThreadGroup with the
specified name and uses the run method of the specified target. The
stackSize parameter allows a stack size for the thread to be suggested.
The values appropriate for a stack size are completely system dependent and
the system does not have to honor the request. Such a facility is not needed
by the vast majority of applications, but like most things of this nature, when
you do need it, it is indispensable.

Classes that have only a run method are not very interesting. Real classes define complete state and behavior,
where having something execute in a separate thread is only a part of their functionality. For example,
consider a print server that spools print requests to a printer. Clients invoke the print method to submit print
jobs. But all the print method actually does is place the job in a queue and a separate thread then pulls jobs
from the queue and sends them to the printer. This allows clients to submit print jobs without waiting for the
actual printing to take place.

class PrintServer implements Runnable {
 private final PrintQueue requests = new PrintQueue();
 public PrintServer() {
 new Thread(this).start();
 }
 public void print(PrintJob job) {
 requests.add(job);
 }
 public void run() {
 for(;;)
 realPrint(requests.remove());
 }
 private void realPrint(PrintJob job) {
 // do the real work of printing

289

289

 }
}

When a PrintServer is created, it creates a new Thread to do the actual printing and passes itself as the
Runnable instance. Starting a thread in a constructor in this way can be risky if a class can be extended. If it
becomes extended, the thread could access fields of the object before the extended class constructor had been
executed.

The requests queue takes care of synchronizing the different threads that access itthose calling print and
our own internal threadwe look at such synchronization in later sections and define the PrintQueue class
on page 356.

You may be wondering about the fact that we don't have a reference to the thread we createddoesn't that mean
that the thread can be garbage collected? The answer is no. While we didn't keep a reference to the thread,
when the thread itself was created, it stored a reference to itself in its ThreadGroupwe talk more about
thread groups later.

The work that you define within a run method is normally of a fairly private natureit should be performed
only by the worker to whom the work was assigned. However, as part of an interface, run is public and so
can be invoked indiscriminately by anyone with access to your objectsomething you usually don't desire. For
example, we definitely don't want clients to invoke the run method of PrintServer. One solution is to use
Thread.currentThread to establish the identity of the thread that invokes run and to compare it with
the intended worker thread. But a simpler solution is not to implement Runnable, but to define an inner
Runnable object. For example, we can rewrite PrintServer as follows:

class PrintServer2 {
 private final PrintQueue requests = new PrintQueue();
 public PrintServer2() {
 Runnable service = new Runnable() {
 public void run() {
 for(;;)
 realPrint(requests.remove());
 }
 };
 new Thread(service).start();
 }
 public void print(PrintJob job) {
 requests.add(job);
 }
 private void realPrint(PrintJob job) {
 // do the real work of printing
 }
}

The run method is exactly the same as before, but now it is part of an anonymous inner class that implements
Runnable. When the thread is created we pass service as the Runnable to execute. Now the work to be
performed by the thread is completely private and can't be misused.

Using Runnable objects you can create very flexible multithreaded designs. Each Runnable becomes a
unit of work and each can be passed around from one part of the system to another. We can store Runnable
objects in a queue and have a pool of worker threads servicing the work requests in the queuea very common
design used in multithreaded server applications.

290

290

Exercise 14.2: Modify the first version of PrintServer so that only the thread created in the constructor
can successfully execute run, using the identity of the thread as suggested.

14.3. Synchronization

Recall the bank teller example from the beginning of this chapter. When two tellers (threads) need to use the
same file (object), there is a possibility of interleaved operations that can corrupt the data. Such potentially
interfering actions are termed critical sections or critical regions, and you prevent interference by
synchronizing access to those critical regions. In the bank, tellers synchronize their actions by putting notes in
the files and agreeing to the protocol that a note in the file means that the file can't be used. The equivalent
action in multithreading is to acquire a lock on an object. Threads cooperate by agreeing to the protocol that
before certain actions can occur on an object, the lock of the object must be acquired. Acquiring the lock on
an object prevents any other thread from acquiring that lock until the holder of the lock releases it. If done
correctly, multiple threads won't simultaneously perform actions that could interfere with each other.

Every object has a lock associated with it, and that lock can be acquired and released through the use of
synchronized methods and statements. The term synchronized code describes any code that is inside a
synchronized method or statement.

14.3.1. synchronized Methods

A class whose objects must be protected from interference in a multithreaded environment usually has
appropriate methods declared synchronized("appropriate" is defined later). If one thread invokes a
synchronized method on an object, the lock of that object is first acquired, the method body executed, and
then the lock released. Another thread invoking a synchronized method on that same object will block
until the lock is released:

Synchronization forces execution of the two threads to be mutually exclusive in time. Unsynchronized access
does not wait for any locks but proceeds regardless of locks that may be held on the object.

291

291

Locks are owned per thread, so invoking a synchronized method from within another method synchronized on
the same object will proceed without blocking, releasing the lock only when the outermost synchronized
method returns. This per-thread behavior prevents a thread from blocking on a lock it already has, and permits
recursive method invocations and invocations of inherited methods, which themselves may be synchronized.

The lock is released as soon as the synchronized method terminateswhether normally, with a return
statement or by reaching the end of the method body, or abnormally by throwing an exception. In contrast to
systems in which locks must be explicitly acquired and released, this synchronization scheme makes it
impossible to forget to release a lock.

Synchronization makes the interleaved execution example work: If the code is in a synchronized method, then
when the second thread attempts to access the object while the first thread is using it, the second thread is
blocked until the first one finishes.

For example, if the BankAccount class were written to live in a multithreaded environment it would look
like this:

public class BankAccount {
 private long number; // account number
 private long balance; // current balance (in cents)
 public BankAccount(long initialDeposit) {
 balance = initialDeposit;
 }
 public synchronized long getBalance() {
 return balance;
 }
 public synchronized void deposit(long amount) {
 balance += amount;
 }
 // ... rest of methods ...
}

Now we can explain what is "appropriate" in synchronizing methods.

The constructor does not need to be synchronized because it is executed only when creating an object,
and that can happen in only one thread for any given new object. Constructors, in fact, cannot be declared
synchronized.

The balance field is defended from unsynchronized modification by the synchronized accessor
methods. If the value of a field can change, its value should never be read at the same time another thread is
writing it. If one thread were reading the value while another was setting it, the read might return an invalid
value. Even if the value were valid, a getmodifyset sequence requires that the value not change between being
read and being set, otherwise the set value will be wrong. Access to the field must be synchronized. This
is yet another reason to prefer accessor methods to public or protected fields: Using methods, you can
synchronize access to the data, but you have no way to do so if the fields can be accessed directly outside your
class.

With the synchronized declaration, two or more running threads are guaranteed not to interfere with each
other. Each of the methods will execute in mutual exclusiononce one invocation of a method starts execution,
no other invocations of any of the methods can commence until the original has completed. However, there is
no guarantee as to the order of operations. If the balance is queried about the same time that a deposit occurs,
one of them will complete first but you can't tell which. If you want actions to happen in a guaranteed order,
threads must coordinate their activities in some application-specific way.

292

292

You can ask whether the current thread holds the lock on a given object by passing that object to the Thread
class's static holdsLock method, which returns true if the current thread does hold the lock on that object.
This is typically used to assert that a lock is held when needed. For example, a private method that expects to
be invoked only from synchronized public methods might assert that fact:

assert Thread.holdsLock(this);

You will also occasionally find it important that a certain lock not be held in a method. And in some rare
circumstances you might want to choose whether or not to acquire a given lock depending on whether or not
another lock is held.

When an extended class overrides a synchronized method, the new method can be synchronized or
not. The superclass's method will still be synchronized when it is invoked. If the unsynchronized method
uses super to invoke the superclass's method, the object's lock will be acquired at that time and will be
released when the superclass's method returns. Synchronization requirements are a part of the implementation
of a class. An extended class may be able to modify a data structure such that concurrent invocations of a
method do not interfere and so the method need not be synchronized; conversely the extended class may
enhance the behavior of the method in such a way that interference becomes possible and so it must be
synchronized.

14.3.2. Static synchronized Methods

Static methods can also be declared synchronized. Associated with every class is a Class objectsee
"The Class Class" on page 399. A static synchronized method acquires the lock of the Class object for its
class. Two threads cannot execute static synchronized methods of the same class at the same time, just as two
threads cannot execute synchronized methods on the same object at the same time. If static data is shared
between threads then access to it must be protected by static synchronized methods.

Acquiring the Class object lock in a static synchronized method has no effect on any objects of that class.
You can still invoke synchronized methods on an object while another thread holds the Class object lock in
a static synchronized method. Only other static synchronized methods are blocked.

14.3.3. synchronized Statements

The synchronized statement enables you to execute synchronized code that acquires the lock of any
object, not just the current object, or for durations less than the entire invocation of a method. The
synchronized statement has two parts: an object whose lock is to be acquired and a statement to execute
when the lock is obtained. The general form of the synchronized statement is

synchronized (expr) {
statements

}

The expression expr must evaluate to an object reference. After the lock is obtained, the statements in
the block are executed. At the end of the block the lock is releasedif an uncaught exception occurs within the
block, the lock is still released. A synchronized method is simply a syntactic shorthand for a method
whose body is wrapped in a synchronized statement with a reference to this.

293

293

Here is a method to replace each element in an array with its absolute value, relying on a synchronized
statement to control access to the array:

/** make all elements in the array non-negative */
public static void abs(int[] values) {
 synchronized (values) {
 for (int i = 0; i < values.length; i++) {
 if (values[i] < 0)
 values[i] = -values[i];
 }
 }
}

The values array contains the elements to be modified. We synchronize values by naming it as the object
of the synchronized statement. Now the loop can proceed, guaranteed that the array is not changed during
execution by any other code that is similarly synchronized on the values array. This is an example of what
is generally termed client-side synchronizationall the clients using the shared object (in this case the array)
agree to synchronize on that object before manipulating it. For objects such as arrays, this is the only way to
protect them when they can be shared directly, since they have no methods that can be synchronized.

The synchronized statement has a number of uses and advantages over a synchronized method. First, it
can define a synchronized region of code that is smaller than a method. Synchronization affects
performancewhile one thread has a lock another thread can't get itand a general rule of concurrent
programming is to hold locks for as short a period as possible. Using a synchronized statement, you can
choose to hold a lock only when it is absolutely neededfor example, a method that performs a complex
calculation and then assigns the result to a field often needs to protect only the actual field assignment not the
calculation process.

Second, synchronized statements allow you to synchronize on objects other than this, allowing a
number of different synchronization designs to be implemented. Sometimes you want to increase the
concurrency level of a class by using a finer granularity of locking. It may be that different groups of methods
within a class act on different data within that class, and so while mutual exclusion is needed within a group,
it is not needed between groups. Instead of making all the methods synchronized, you can define separate
objects to be used as locks for each such group and have the methods use synchronized statements with
the appropriate lock object. For example:

class SeparateGroups {
 private double aVal = 0.0;
 private double bVal = 1.1;
 protected final Object lockA = new Object();
 protected final Object lockB = new Object();

 public double getA() {
 synchronized (lockA) {
 return aVal;
 }
 }
 public void setA(double val) {
 synchronized (lockA) {
 aVal = val;
 }
 }
 public double getB() {
 synchronized (lockB) {
 return bVal;
 }
 }
 public void setB(double val) {

294

294

 synchronized (lockB) {
 bVal = val;
 }
 }
 public void reset() {
 synchronized (lockA) {
 synchronized (lockB) {
 aVal = bVal = 0.0;
 }

}
}

}

The two lock references are protected so that an extended class can correctly synchronize its own
methodssuch as a method to set aVal and bVal to the same value. Also notice how reset acquires both
locks before modifying both values.

Another common use of the synchronized statement is for an inner object to synchronize on its enclosing
object:

public class Outer {
 private int data;
 // ...

 private class Inner {
 void setOuterData() {
 synchronized (Outer.this) {
 data = 12;
 }
 }
 }
}

Like any other object, an inner object is independently synchronizedacquiring the lock of an inner object has
no effect on its enclosing object's lock, nor does acquiring the lock of an enclosing object affect any enclosed
inner objects. An inner class that needs to synchronize with its enclosing object must do so explicitly and a
synchronized statement is a perfect toolthe alternative is to declare a synchronized method in the
enclosing class just for the inner class to use.

If you need a synchronized statement to use the same lock used by static synchronized methods, you can
use the class literal for your class (see example below). This also applies if you need to protect access to static
data from within non-static code. For example, consider the Body class. It maintains a static field, nextID,
to hold the next identifier for a new Body object. That field is accessed in the Body class's no-arg
constructor. If Body objects were created concurrently, interference could occur when the nextID field is
updated. To prevent that from happening you can use a synchronized statement within the Body
constructor that uses the lock of the Body.class object:

Body() {
 synchronized (Body.class) {
 idNum = nextID++;
 }
}

295

295

The synchronized statement in the constructor acquires the lock of the Class object for Body in the
same way a synchronized static method of the class would. Synchronizing on this would use a different
object for each invocation and so would not prevent threads from accessing nextID concurrently. It would
also be wrong to use the Object method getClass to retrieve the Class object for the current instance:
In an extended class, such as AttributedBody, that would return the Class object for
AttributedBody not Body, and so again, different locks would be used and interference would not be
prevented. The simplest rule is to always protect access to static data using the lock of the Class object for
the class in which the static data was declared.

In many cases, instead of using a synchronized statement you can factor the code to be protected into a
synchronized method of its own. You'll need to use your own experience and judgment to decide when
this is preferable. For example, in the Body class we could encapsulate access to nextID in a static
synchronized method getNextID.

Finally, the ability to acquire locks of arbitrary objects with synchronized statements makes it possible to
perform the client-side synchronization that you saw in the array example. This capability is important, not
only for protecting access to objects that don't have synchronized methods, but also for synchronizing a series
of accesses to an object. We look more at this in the next section.

14.3.4. Synchronization Designs

Designing the appropriate synchronization for a class can be a complex matter and it is beyond the scope of
this book to delve too deeply into these design issues. We can take a brief look at some of the issues involved.

Client-side synchronization is done by having all the clients of a shared object use synchronized
statements to lock the object before using it. Such a protocol is fragileit relies on all of the clients doing the
right thing. It is generally better to have shared objects protect access to themselves by making their methods
synchronized (or using appropriate synchronized statements inside those methods). This makes it
impossible for a client to use the object in a way that is not synchronized. This approach is sometimes termed
server-side synchronization, but it is just an extension of the object-oriented perspective that objects
encapsulate their own behavior, in this case synchronization.

Sometimes a designer hasn't considered a multithreaded environment when designing a class, and none of the
class's methods are synchronized. To use such a class in a multithreaded environment, you have to decide
whether to use client-side synchronization via synchronized statements or to create an extended class to
override the appropriate methods, declare them synchronized, and forward method calls through the
super reference.

If you are working with an interface instead of a class, you can provide an alternate implementation that wraps
the methods of the interface in synchronized methods that forward the calls to another unsynchronized object
that implements the same interface. This will work with any implementation of the interface, and is therefore
a better solution than extending each class to use super in a synchronized method. This flexibility is another
reason to use interfaces to design your system. You can see an example of this synchronized wrapper
technique in the collections classes; see "The Synchronized Wrappers" on page 602.

The synchronization you have learned about so far is the simplest notion of "thread safety"the idea that
methods on objects can be invoked by multiple threads concurrently and each thread will have the method
perform its expected job. Synchronization, however, has to extend to more complex situations involving
multiple method invocations on an object, or even method invocations on multiple objects. If these series of
invocations must appear as an atomic action you will need synchronization. In the case of multiple method
invocations, you can encapsulate the series of invocations within another method and synchronize that
method, but generally this is impracticalyou can't define all combinations of the basic methods as methods
themselves, nor are you likely to know at the time the class is designed which method combinations may be

296

296

needed. In the case of operations on multiple objects, where could you put a synchronized method?

In these situations, the ability to use client-side synchronization through synchronized statements is often
the only practical approach. An object can have its lock acquired, which prevents any of its synchronized
methods from being invoked except by the lock holder performing the series of invocations. Similarly, you
can acquire the locks of each of the objects involved and then invoke the series of methods on those
objectsbut watch out for deadlock (see Section 14.7 on page 362). As long as the object's methods are already
synchronized on the current object's lock, then other clients of the object need not use client-side
synchronization.

The way that synchronization is enforced in a class is an implementation detail. The fact that it is enforced is
an important part of the contract of the class and must be clearly documentedthe presence of the
synchronized modifier on a method might only be an implementation detail of the class, not part of a
binding contract. Additionally, the synchronization mechanism used within a class may need to be
documented and made accessible to users of the class and/or to extended classes. An extended class needs to
adhere to the synchronization policy enforced by its superclass and it can do that only if the programmer
knows what that policy is and has access to the mechanisms that enforce it. For example, a class that uses a
private field as a lock object prevents an extended class from using the same synchronization mechanismthe
extended class would have to define its own lock object (perhaps this) and override every method of the
superclass to use this new synchronization mechanism. Users of a class may need to know what
synchronization mechanism is used so that they can safely apply client-side synchronization to invoke
multiple methods on an object, without needing all users of that object to apply client-side synchronization.

Exercise 14.3: Write a class whose objects hold a current value and have a method that will add to that value,
printing the new value. Write a program that creates such an object, creates multiple threads, and invokes the
adding method repeatedly from each thread. Write the class so that no addition can be lost.

Exercise 14.4: Modify your code from Exercise 14.3 to use static data and methods.

Exercise 14.5: Modify your code from Exercise 14.4 so that threads can safely decrement the value without
using a static synchronized method.

14.4. wait, notifyAll, and notify

The synchronized locking mechanism suffices for keeping threads from interfering with each other, but
you also need a way to communicate between threads. For this purpose, the wait method lets one thread wait
until some condition occurs, and the notification methods notifyAll and notify tell waiting threads that
something has occurred that might satisfy that condition. The wait and notification methods are defined in
class Object and are inherited by all classes. They apply to particular objects, just as locks do.

There is a standard pattern that is important to use with wait and notification. The thread waiting for a
condition should always do something like this:

synchronized void doWhenCondition() {
 while (!condition)
 wait();

… Do what must be done when the condition is true …
}

A number of things are going on here:

297

297

Everything is executed within synchronized code. If it were not, the state of the object would not be
stable. For example, if the method were not declared synchronized, then after the while
statement, there would be no guarantee that the condition remained TRue: Another thread might have
changed the situation that the condition tests.

•

One of the important aspects of the definition of wait is that when it pauses the thread, it atomically
releases the lock on the object. Saying that the thread suspension and lock release are atomic means
that they happen together, indivisibly. Otherwise, there would be a race hazard: A notification could
happen after the lock is released but before the thread is suspended. The notification would have no
effect on the thread, effectively getting lost. When a thread is restarted after being notified, the lock is
atomically reacquired.

•

The condition test should always be in a loop. Never assume that being awakened means that the
condition has been satisfiedit may have changed again since being satisfied. In other words, don't
change the while to an if.

•

On the other side, the notification methods are invoked by synchronized code that changes one or more
conditions on which some other thread may be waiting. Notification code typically looks something like this:

synchronized void changeCondition() {
… change some value used in a condition test …

 notifyAll(); // or notify()
}

Using notifyAll wakes up all waiting threads, whereas notify picks only one thread to wake up.

Multiple threads may be waiting on the same object, possibly for different conditions. If they are waiting for
different conditions, you should always use notifyAll to wake up all waiting threads instead of using
notify. Otherwise, you may wake up a thread that is waiting for a different condition from the one you
satisfied. That thread will discover that its condition has not been satisfied and go back to waiting, while some
thread waiting on the condition you did satisfy will never get awakened. Using notify is an optimization
that can be applied only when:

All threads are waiting for the same condition•
At most one thread can benefit from the condition being met•
This is contractually true for all possible subclasses•

Otherwise you must use notifyAll. If a subclass violates either of the first two conditions, code in the
superclass that uses notify may well be broken. To that end it is important that waiting and notification
strategies, which include identifying the reference used (this or some other field), are documented for use
by extended classes.

The following example implements the PrintQueue class that we used with the PrintServer on page
343. We reuse the SingleLinkQueue class that we defined in Chapter 11 to actually store the print jobs,
and add the necessary synchronization:

class PrintQueue {
 private SingleLinkQueue<PrintJob> queue =
 new SingleLinkQueue<PrintJob>();

 public synchronized void add(PrintJob j) {
 queue.add(j);
 notifyAll(); // Tell waiters: print job added
 }

 public synchronized PrintJob remove()

298

298

 throws InterruptedException
 {
 while (queue.size() == 0)
 wait(); // Wait for a print job

 return queue.remove();
 }
}

In contrast to SingleLinkQueue itself, the methods are synchronized to avoid interference. When an item
is added to the queue, waiters are notified; and instead of returning null when the queue is empty, the
remove method waits for some other thread to insert something so that take will block until an item is
available. Many threads (not just one) may be adding items to the queue, and many threads (again, not just
one) may be removing items from the queue. Because wait can throw InterruptedException, we
declare that in the throws clauseyou'll learn about InterruptedException a little later.

Looking back at the PrintServer example, you can now see that although the internal thread appears to sit
in an infinite loop, continually trying to remove jobs from the queue, the use of wait means that the thread is
suspended whenever there is no work for it to do. In contrast, if we used a queue that returned null when
empty, the printing thread would continually invoke remove, using the CPU the whole timea situation known
as busy-waiting. In a multithreaded system you very rarely want to busy-wait. You should always suspend
until told that what you are waiting for may have happened. This is the essence of thread communication with
the wait and notifyAll/notify mechanism.

14.5. Details of Waiting and Notification

There are three forms of wait and two forms of notification. All of them are methods in the Object class,
and all are final so that their behavior cannot be changed:

public final void wait(long timeout) tHRows InterruptedException

The current thread waits until one of four things happens: notify is
invoked on this object and this thread is selected to be runnable;
notifyAll is invoked on this object; the specified timeout expires; or
the thread has its interrupt method invoked. timeout is in
milliseconds. If timeout is zero, the wait will not time out but will wait
indefinitely for notification. During the wait the lock of the object is released
and is automatically reacquired before wait completesregardless of how or
why wait completes. An InterruptedException is thrown if the wait
completes because the thread is interrupted.

public final void wait(long timeout, int nanos) tHRows
InterruptedException

A finer-grained wait, with the time-out interval as the sum of the two
parameters: timeout in milliseconds and nanos in nanoseconds, in the
range 0999999).

public final void wait() throws InterruptedException

Equivalent to wait(0).

public final void notifyAll()

299

299

Notifies all the threads waiting for a condition to change. Threads will return
from the wait invocation once they can reacquire the object's lock.

public final void notify()

Notifies at most one thread waiting for a condition to change. You cannot
choose which thread will be notified, so use this form of notify only when
you are sure you know which threads are waiting for what at which times. If
you are not sure of any of these factors, you should use notifyAll.

If no threads are waiting when either notifyAll or notify is invoked, the notification is not remembered.
If a thread subsequently decides to wait, an earlier notification will have no effect on it. Only notifications
that occur after the wait commences will affect a waiting thread.

You can invoke these methods only from within synchronized code, using the lock for the object on which
they are invoked. The invocation can be directly made from the synchronized code, or can be made indirectly
from a method invoked in such code. You will get an IllegalMonitorStateException if you attempt
to invoke these methods on an object when you don't hold its lock.

When a wait completes because the time-out period expires, there is no indication that this occurred rather
than the thread being notified. If a thread needs to know whether or not it timed out, it has to track elapsed
time itself. The use of a time-out is a defensive programming measure that allows you to recover when some
condition should have been met but for some reason (probably a failure in another thread) has not. Because
the lock of the object must be reacquired, the use of a time-out cannot guarantee that wait will return in a
finite amount of time.

It is also possible that some virtual machine implementations will allow so-called "spurious wakeups" to
occurwhen a thread returns from wait without being the recipient of a notification, interruption, or time-out.
This is another reason that wait should always be performed in a loop that tests the condition being waited
on.

Exercise 14.6: Write a program that prints the elapsed time each second from the start of execution, with
another thread that prints a message every fifteen seconds. Have the message-printing thread be notified by
the time-printing thread as each second passes by. Add another thread that prints a different message every
seven seconds without modifying the time-printing thread.

14.6. Thread Scheduling

Threads perform different tasks within your programs and those tasks can have different importance levels
attached to them. To reflect the importance of the tasks they are performing, each thread has a priority that is
used by the runtime system to help determine which thread should be running at any given time. Programs can
be run on both single- and multiprocessor machines and you can run with multiple threads or a single thread,
so the thread scheduling guarantees are very general. On a system with N available processors, you will
usually see N of the highest-priority runnable threads executing. Lower-priority threads generally run only
when higher-priority threads are blocked (not runnable). But lower-priority threads might, in fact, run at other
times to prevent starvationa feature generally known as priority agingthough you cannot rely on it.

A running thread continues to run until it performs a blocking operation (such as wait, sleep, or some
types of I/O) or it is preempted. A thread can be preempted by a higher-priority thread becoming runnable or
because the thread scheduler decides it's another thread's turn to get some cyclesfor example, time slicing
limits the amount of time a single thread can run before being preempted.

300

300

Exactly when preemption can occur depends on the virtual machine you have. There are no guarantees, only a
general expectation that preference is typically given to running higher-priority threads. Use priority only to
affect scheduling policy for efficiency. Do not rely on thread priority for algorithm correctness. To write
correct, cross-platform multithreaded code you must assume that a thread could be preempted at any time, and
so you always protect access to shared resources. If you require that preemption occur at some specific time,
you must use explicit thread communication mechanisms such as wait and notify. You also can make no
assumptions about the order in which locks are granted to threads, nor the order in which waiting threads will
receive notificationsthese are all system dependent.

A thread's priority is initially the same as the priority of the thread that created it. You can change the priority
using setPriority with a value between THRead's constants MIN_PRIORITY and MAX_PRIORITY.
The standard priority for the default thread is NORM_PRIORITY. The priority of a running thread can be
changed at any time. If you assign a thread a priority lower than its current one, the system may let another
thread run because the original thread may no longer be among those with the highest priority. The
getPriority method returns the priority of a thread.

Generally, if you are to worry about priorities at all, the continuously running part of your application should
run in a lower-priority thread than the thread dealing with rarer events such as user input. When users push a
"Cancel" button, for example, they expect the application to cancel what it's doing. If display update and user
input are at the same priority and the display is updating, considerable time may pass before the user input
thread reacts to the button. If you put the display thread at a lower priority, it will still run most of the time
because the user interface thread will be blocked waiting for user input. When user input is available, the user
interface thread will typically preempt the display thread to act on the user's request. For this reason, a thread
that does continual updates is often set to NORM_PRIORITY-1 so that it doesn't hog all available cycles,
while a user interface thread is often set to NORM_PRIORITY+1.

Using small "delta" values around the normal priority level is usually preferable to using MIN_PRIORITY or
MAX_PRIORITY directly. Exactly what effect priorities have depends on the system you are running on. In
some systems your thread priorities not only assign an importance relative to your program, they assign an
importance relative to other applications running on the system.[1] Extreme priority settings may result in
undesirable behavior and so should be avoided unless their effects are known and needed.

[1] Check the release notes for your virtual-machine implementation; some implementations
treat ranges of priority values as the same, thus reducing the number of distinct scheduling
classes.

Some algorithms are sensitive to the number of processors available to the virtual machine to run threads on.
For example, an algorithm might split work up into smaller chunks to take advantage of more parallel
processing power. The availableProcessors method of the Runtime class (see Chapter 23) returns
the number of processors currently available. Note that the number of processors can change at any time, so
you want to check this number when it is important rather than remember the number from a previous check.

14.6.1. Voluntary Rescheduling

Several methods of the Thread class allow a thread to relinquish its use of the CPU. By convention, static
methods of the THRead class always apply to the currently executing thread, and since you can never take the
CPU from another thread, these voluntary rescheduling methods are all static:

public static void sleep(long millis) tHRows
InterruptedException

Puts the currently executing thread to sleep for at least the specified number
of milliseconds. "At least" means there is no guarantee the thread will wake

301

301

up in exactly the specified time. Other thread scheduling can interfere, as can
the granularity and accuracy of the system clock, among other factors. If the
thread is interrupted while it is sleeping, then an
InterruptedException is thrown.

public static void sleep(long millis, int nanos) tHRows
InterruptedException

Puts the currently executing thread to sleep for at least the specified number
of milliseconds and nanoseconds. Nanoseconds are in the range 0999999.

public static void yield()

Provides a hint to the scheduler that the current thread need not run at the
present time, so the scheduler may choose another thread to run. The
scheduler may follow or ignore this suggestion as it sees fityou can generally
rely on the scheduler to "do the right thing" even though there is no
specification of exactly what that is.

The following program illustrates how yield can affect thread scheduling. The application takes a list of
words and creates a thread for each that is responsible for printing that word. The first parameter to the
application says whether each thread will yield after each println; the second parameter is the number of
times each thread should repeat its word. The remaining parameters are the words to be repeated:

class Babble extends Thread {
 static boolean doYield; // yield to other threads?
 static int howOften; // how many times to print
 private String word; // my word

 Babble(String whatToSay) {
 word = whatToSay;
 }

 public void run() {
 for (int i = 0; i < howOften; i++) {
 System.out.println(word);
 if (doYield)
 Thread.yield(); // let other threads run
 }
 }

 public static void main(String[] args) {
 doYield = new Boolean(args[0]).booleanValue();
 howOften = Integer.parseInt(args[1]);

 // create a thread for each word
 for (int i = 2; i < args.length; i++)
 new Babble(args[i]).start();
 }
}

When the threads do not yield, each thread gets large chunks of time, usually enough to finish all the prints
without any other thread getting any cycles. For example, suppose the program is run with doYield set to
false in the following way:

Babble false 2 Did DidNot

302

302

The output may well look like this:

Did
Did
DidNot
DidNot

If each thread yields after each println, other printing threads will have a chance to run. Suppose we set
doYield to true with an invocation such as this:

Babble true 2 Did DidNot

The yields give the other threads a chance to run, and the other threads will yield in turn, producing an output
more like this:

Did
DidNot
DidNot
Did

The output shown is only approximateperhaps you expected the words to alternate? A different thread
implementation could give different results, or the same implementation might give different results on
different runs of the application. But under all implementations, invoking yield can give other threads a
more equitable chance at getting cycles.

Two other factors affect the behavior of this program (and many like it that try to demonstrate scheduling
behavior). The first is that println uses synchronization, so the different threads must all contend for the
same lock.

The second factor is that there are three threads in the program, not two. The main thread has to create and
start the two Babble tHReads and that means that it contends with them for scheduling as well. It is entirely
possible that the first Babble tHRead will run to completion before the main thread even gets the chance to
create a second Babble tHRead.

Exercise 14.7: Run Babble multiple times and examine the output: Is it always the same? If possible, run it
on different systems and compare.

14.7. Deadlocks

Whenever you have two threads and two objects with locks, you can have a deadlock, in which each thread
has the lock on one of the objects and is waiting for the lock on the other object. If object X has a
synchronized method that invokes a synchronized method on object Y, which in turn has a
synchronized method invoking a synchronized method on object X, two threads may wait for each
other to complete in order to get a lock, and neither thread will be able to run. This situation is also called a
deadly embrace. Here's a Friendly class in which one friend, upon being hugged, insists on hugging back:

303

303

class Friendly {
 private Friendly partner;
 private String name;

 public Friendly(String name) {
 this.name = name;
 }

 public synchronized void hug() {
 System.out.println(Thread.currentThread().getName()+
 " in " + name + ".hug() trying to invoke " +
 partner.name + ".hugBack()");
 partner.hugBack();
 }

 private synchronized void hugBack() {
 System.out.println(Thread.currentThread().getName()+
 " in " + name + ".hugBack()");
 }

 public void becomeFriend(Friendly partner) {
 this.partner = partner;
 }
}

Now consider this scenario, in which jareth and cory are two Friendly objects that have become
friends:

Thread number 1 invokes synchronized method jareth.hug. Thread number 1 now has the
lock on jareth.

1.

Thread number 2 invokes synchronized method cory.hug. Thread number 2 now has the lock
on cory.

2.

Now jareth.hug invokes synchronized method cory.hugBack. THRead number 1 is now
blocked waiting for the lock on cory (currently held by thread number 2) to become available.

3.

Finally, cory.hug invokes synchronized method jareth.hugBack. Thread number 2 is
now blocked waiting for the lock on jareth (currently held by thread number 1) to become
available.

4.

We have now achieved deadlock: cory won't proceed until the lock on jareth is released and vice versa,
so the two threads are stuck in a permanent embrace.

We can try to set up this scenario:

public static void main(String[] args) {
 final Friendly jareth = new Friendly("jareth");
 final Friendly cory = new Friendly("cory");

 jareth.becomeFriend(cory);
 cory.becomeFriend(jareth);

 new Thread(new Runnable() {
 public void run() { jareth.hug(); }
 }, "Thread1").start();

 new Thread(new Runnable() {
 public void run() { cory.hug(); }
 }, "Thread2").start();
}

304

304

And when you run the program, you might get the following output before the program "hangs":

Thread1 in jareth.hug() trying to invoke cory.hugBack()
Thread2 in cory.hug() trying to invoke jareth.hugBack()

You could get lucky, of course, and have one thread complete the entire hug without the other one starting. If
steps 2 and 3 happened to occur in the opposite order, jareth would complete both hug and hugBack
before cory needed the lock on jareth. But a future run of the same application might deadlock because of
a different choice of the thread scheduler. Several design changes would fix this problem. The simplest would
be to make hug and hugBack not synchronized but have both methods synchronize on a single object
shared by all Friendly objects. This technique would mean that only one hug could happen at a time in all
the threads of a single application, but it would eliminate the possibility of deadlock. Other, more complicated
techniques would enable multiple simultaneous hugs without deadlock.

You are responsible for avoiding deadlock. The runtime system neither detects nor prevents deadlocks. It can
be frustrating to debug deadlock problems, so you should solve them by avoiding the possibility in your
design. One common technique is to use resource ordering. With resource ordering you assign an order on all
objects whose locks must be acquired and make sure that you always acquire locks in that order. This makes it
impossible for two threads to hold one lock each and be trying to acquire the lock held by the otherthey must
both request the locks in the same order, and so once one thread has the first lock, the second thread will block
trying to acquire that lock, and then the first thread can safely acquire the second lock.

Exercise 14.8: Experiment with the Friendly program. How often does the deadlock actually happen on
your system? If you add yield calls, can you change the likelihood of deadlock? If you can, try this exercise
on more than one kind of system. Remove the deadlock potential without getting rid of the synchronization.

14.8. Ending Thread Execution

A thread that has been started becomes alive and the isAlive method will return TRue for that thread. A
thread continues to be alive until it terminates, which can occur in one of three ways:

The run method returns normally.•
The run method completes abruptly.•
The application terminates.•

Having run return is the normal way for a thread to terminate. Every thread performs a task and when that
task is over the thread should go away. If something goes wrong, however, and an exception occurs that is not
caught, then that will also terminate the threadwe look at this further in Section 14.12 on page 379. By the
time a thread terminates it will not hold any locks, because all synchronized code must have been exited by
the time run has completed.

A thread can also be terminated when its application terminates, which you'll learn about in "Ending
Application Execution" on page 369.

14.8.1. Cancelling a Thread

There are often occasions when you create a thread to perform some work and then need to cancel that work
before it is completethe most obvious example being a user clicking a cancel button in a user interface. To

305

305

make a thread cancellable takes a bit of work on the programmer's part, but it is a clean and safe mechanism
for getting a thread to terminate. You request cancellation by interrupting the thread and by writing the thread
such that it watches for, and responds to, being interrupted. For example:

Thread 1

Thread 2

Interrupting the thread advises it that you want it to pay attention, usually to get it to halt execution. An
interrupt does not force the thread to halt, although it will interrupt the slumber of a sleeping or waiting
thread.

Interruption is also useful when you want to give the running thread some control over when it will handle an
event. For example, a display update loop might need to access some database information using a transaction
and would prefer to handle a user's "cancel" after waiting until that transaction completes normally. The
user-interface thread might implement a "Cancel" button by interrupting the display thread to give the display
thread that control. This approach will work well as long as the display thread is well behaved and checks at
the end of every transaction to see whether it has been interrupted, halting if it has.

The following methods relate to interrupting a thread: interrupt, which sends an interrupt to a thread;
isInterrupted, which tests whether a thread has been interrupted; and interrupted, a static
method that tests whether the current thread has been interrupted and then clears the "interrupted" state of the
thread. The interrupted state of a thread can be cleared only by that threadthere is no way to "uninterrupt"
another thread. There is generally little point in querying the interrupted state of another thread, so these
methods tend to be used by the current thread on itself. When a thread detects that it has been interrupted, it
often needs to perform some cleanup before actually responding to the interrupt. That cleanup may involve
actions that could be affected if the thread is left in the inter rupted state, so the thread will test and clear its
interrupted state using interrupted.

Interrupting a thread will normally not affect what it is doing, but a few methods, such as sleep and wait,
throw InterruptedException. If your thread is executing one of these methods when it is interrupted,
the method will throw the InterruptedException. Such a thrown interruption clears the interrupted
state of the thread, so handling code for InterruptedException commonly looks like this:

void tick(int count, long pauseTime) {
 try {
 for (int i = 0; i < count; i++) {
 System.out.println('.');
 System.out.flush();
 Thread.sleep(pauseTime);
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
}

306

306

The tick method prints a dot every pauseTime milliseconds up to a maximum of count timessee "Timer
and TimerTask" on page 653 for a better way to do this. If something interrupts the thread in which tick is
running, sleep will throw InterruptedException. The ticking will then cease, and the catch clause
will reinterrupt the thread. You could instead declare that tick itself throws InterruptedException
and simply let the exception percolate upward, but then every invoker of tick would have to handle the
same possibility. Reinterrupting the thread allows tick to clean up its own behavior and then let other code
handle the interrupt as it normally would.

In general any method that performs a blocking operation (either directly or indirectly) should allow that
blocking operation to be cancelled with interrupt and should throw an appropriate exception if that
occurs. This is what sleep and wait do. In some systems, blocking I/O operations will respond to
interruption by throwing InterruptedIOException (which is a subclass of the general IOException
that most I/O methods can throwsee Chapter 20 for more details on I/O). Even if the interruption cannot be
responded to during the I/O operation, systems may check for interruption at the start of the operation and
throw the exceptionhence the need for an interrupted thread to clear its interrupted state if it needs to perform
I/O as part of its cleanup. In general, however, you cannot assume that interrupt will unblock a thread
that is performing I/O.

Every method of every class executes in some thread, but the behavior defined by those methods generally
concerns the state of the object involved, not the state of the thread executing the method. Given that, how do
you write methods that will allow threads to respond to interrupts and be cancellable? If your method can
block, then it should respond to interruption as just discussed. Otherwise, you must decide what interruption
or cancellation would mean for your method and then make that behavior part of the methods contractin the
majority of cases methods need not concern themselves with interruption at all. The golden rule, however, is
to never hide an interrupt by clearing it explicitly or by catching an InterruptedException and
continuing normallythat prevents any thread from being cancellable when executing your code.

The interruption mechanism is a tool that cooperating code can use to make multithreading effective. Neither
it, nor any other mechanism, can deal with hostile or malicious code.

14.8.2. Waiting for a Thread to Complete

One thread can wait for another thread to terminate by using one of the join methods. The simple form waits
forever for a particular thread to complete:

class CalcThread extends Thread {
 private double result;

 public void run() {
 result = calculate();
 }

 public double getResult() {
 return result;
 }

 public double calculate() {
 // ... calculate a value for "result"
 }
}

class ShowJoin {
 public static void main(String[] args) {
 CalcThread calc = new CalcThread();
 calc.start();
 doSomethingElse();
 try {
 calc.join();

307

307

 System.out.println("result is "
 + calc.getResult());
 } catch (InterruptedException e) {
 System.out.println("No answer: interrupted");
 }
 }
 // ... definition of doSomethingElse ...
}

First, a new thread type, CalcThread, is defined to calculate a result. We start a CalcThread, do
something else for a while, and then join that thread. When join returns, CalcThread.run is
guaranteed to have finished, and result will be set. If CalcThread is already finished when
doSomethingElse has completed, join returns immediately. When a thread dies, its Thread object
doesn't go away, so you can still access its state. You are not required to join a thread before it can terminate.

Two other forms of join take time-out values analogous to wait. Here are the three forms of join:

public final void join(long millis) tHRows InterruptedException

Waits for this thread to finish or for the specified number of milliseconds to
elapse, whichever comes first. A time-out of zero milliseconds means to wait
forever. If the thread is interrupted while it is waiting you will get an
InterruptedException.

public final void join(long millis, int nanos) tHRows
InterruptedException

Waits for this thread to finish, with more precise timing. Again, a total
time-out of zero nanoseconds means to wait forever. Nanoseconds are in the
range 0999,999.

public final void join() throws InterruptedException

Equivalent to join(0).

Internally, join is defined in terms of isAlive and can be logically considered to act as if written as

while (isAlive())
 wait();

with the understanding that the runtime system will invoke notifyAll when the thread actually terminates.

14.9. Ending Application Execution

Each application starts with one threadthe one that executes main. If your application creates no other
threads, the application will finish when main returns. But if you create other threads, what happens to them
when main returns?

There are two kinds of threads: user and daemon. The presence of a user thread keeps the application running,
whereas a daemon thread is expendable. When the last user thread is finished, any daemon threads are
terminated and the application is finished. This termination is like that of invoking destroyabrupt and with

308

308

no chance for any cleanupso daemon threads are limited in what they can do. You use the method
setDaemon(true) to mark a thread as a daemon thread, and you use isDaemon to test that flag. By
default, daemon status is inherited from the thread that creates the new thread and cannot be changed after a
thread is started; an IllegalThreadStateException is thrown if you try.

If your main method spawns a thread, that thread inherits the user-thread status of the original thread. When
main finishes, the application will continue to run until the other thread finishes, too. There is nothing special
about the original threadit just happened to be the first one to get started for a particular run of an application,
and it is treated just like any other user thread. An application will run until all user threads have completed.
For all the runtime system knows, the original thread was designed to spawn another thread and die, letting
the spawned thread do the real work. If you want your application to exit when the original thread dies, you
can mark all the threads you create as daemon threads.

You can force an application to end by invoking either the System or Runtime method exit. This method
terminates the current execution of the Java virtual machine and again is like invoking destroy on each
thread. However, an application can install special threads to be run before the application shuts downthe
methods for doing this are described in "Shutdown" on page 672.

Many classes implicitly create threads within an application. For example, the Abstract Window Toolkit
(AWT), described briefly in Chapter 25, provides an event-based graphical user-interface and creates a special
thread for dealing with all associated events. Similarly, Remote Method Invocation, also mentioned in
Chapter 25, creates threads for responding to remote method invocations. Some of these threads may be
daemons and others may not, so use of these classes can keep your application running longer than you may
intend. In these circumstances the use of the exit method becomes essential if there is no other way to
terminate the threads.

14.10. The Memory Model: Synchronization and volatile

Any mutable (that is, changeable) value shared between different threads should always be accessed under
synchronization to prevent interference from occurring. Synchronization comes at a cost, however, and may
not always be necessary to prevent interference. The language guarantees that reading or writing any
variables, other than those of type long or double, is atomicthe variable will only ever hold a value that
was written by some thread, never a partial value intermixing two different writes. This means, for example,
that an atomic variable that is only written by one thread and read by many threads need not have access to it
synchronized to prevent corruption because there is no possibility of interference. This does not help with
getmodifyset sequences (such as ++), which always require synchronization.

Atomic access does not ensure that a thread will always read the most recently written value of a variable. In
fact, without synchronization, a value written by one thread may never become visible to another thread. A
number of factors affect when a variable written by one thread becomes visible to another thread. Modern
multiprocessing hardware can do very strange things when it comes to the way in which shared memory
values get updated, as can dynamic compilation environments at runtime. Further, in the absence of
synchronization the order in which variables are seen to be updated by different threads can be completely
different. To the programmer these things are not only strange, they often seem completely unreasonable and
invariably not what the programmer wanted. The rules that determine how memory accesses are ordered and
when they are guaranteed to be visible are known as the memory model of the Java programming language.

The actions of a thread are determined by the semantics of the statements in the methods that it executes.
Logically, these statements are executed in the order the statements are writtenan order known as program
order. However, the values of any variables read by the thread are determined by the memory model. The
memory model defines the set of allowed values that can be returned when a variable is read. In this context
variables consist only of fields (both static and non-static) and array elements. From a programmer's

309

309

perspective this set of values should only consist of a single value: that value most recently written by some
thread. However, as we shall see, in the absence of proper synchronization, the actual set of values available
may consist of many different values.

For example, suppose you had a field, currentValue, that was continuously displayed by a graphics
thread and that could be changed by other threads using a non-synchronized method:

public void updateCurrent() {
 currentValue = (int) Math.random();
}

The display code might look something like this:

currentValue = 5;
for (;;) {
 display.showValue(currentValue);
 Thread.sleep(1000); // wait 1 second
}

When the loop is first entered (assuming no calls to updateCurrent have occurred in other threads) the
only possible value for currentValue is 5. However, because there is no synchronization, each time a
thread invokes updateCurrent the new value is added to the set of possible values to be read. By the time
currentValue is read in the loop, the possible values might consist of 5, 25, 42, and 326, any of which
may be returned by the read. According to the rules of the memory model any value written by some thread
(but not some "out of thin air" value) may be returned by the read. In practical terms, if there is no way for
showValue to change the value of currentValue, the compiler can assume that it can treat
currentValue as unchanged inside the loop and simply use the constant 5 each time it invokes
showValue. This is consistent with the memory model because 5 is one of the available values and the
memory model doesn't control which value gets returned. For the program to work as desired we have to do
something such that when currentValue is written, that written value becomes the only value that the
memory model will allow to be read. To do that we have to synchronize the writes and the reads of variables.

14.10.1. Synchronization Actions

Certain actions a thread performs are defined as synchronization actions, and the order in which these actions
are executed is termed the synchronization order of the programthe synchronization order is always consistent
with the program order. These synchronization actions synchronize reads and writes of variables.

The most familiar synchronization action is the use of synchronized methods and blocks to ensure exclusive
access to shared variables. The release of a monitor lock is said to synchronize with all subsequent
acquisitions and releases of that monitor lock. If all reads and writes to a variable occur only when a specific
monitor is held, then each read of the variable is guaranteed by the memory model to return the value that was
most recently written to it.

There is a second synchronization mechanism that doesn't provide the exclusive access of monitors, but that
again ensures that each read of a variable returns the most recently written valuethe use of volatile variables.
Fields (but not array elements) can be declared with the volatile modifier. A write to a volatile variable
synchronizes with all subsequent reads of that variable. If currentValue was declared as volatile then the
example code we showed would be correctly synchronized and the latest value would always be displayed.
The use of volatile variables is seldom a replacement for the use of synchronized methods or statements on its
own, because they don't provide atomicity across different actions. Rather, volatile variables are most often

310

310

used for simple flags to indicate something has occurred, or for writing lock-free algorithms that incorporate
use of the atomic variables mentioned in Section 25.9.1 on page 733.

An additional effect of making a variable volatile is that reads and writes are guaranteed to be atomic. This
extends the basic atomicity guarantee to cover long and double variables.

A few other synchronization actions help make multithreading work nicely:

Starting a thread synchronizes with the first action performed by that thread when it executes. This
ensures that a newly started thread sees any data that was initialized by the creating threadincluding
the thread's own fields.

•

The final action of a thread synchronizes with any action that detects that the thread has
terminatedsuch as calling isAlive or invoking join on that thread. This ensures, for example, that
if you join a thread you can see all data written by that thread before it terminatedsuch as the results of
its computation.

•

Interrupting a thread synchronizes with any other action that determines that the thread has been
interrupted, such as the thread throwing InterruptedException or another thread invoking
isInterrupted on the thread.

•

The write of the default value (zero, null, or false) to any field synchronizes with the first action in
any thread. This ensures that even in incorrectly synchronized programs a thread will never see
arbitrary values in fieldseither a specific value written by some thread will be seen or the default value
of the field will be seen.

•

14.10.2. Final Fields and Security

We described in Section 2.2.3 on page 46 how final fields are used to define immutable values; indeed you
can use final fields to define immutable objects. There is a common misconception that shared access to
immutable objects does not require any synchronization because the state of the object never changes. This is
a misconception in general because it relies on the assumption that a thread will be guaranteed to see the
initialized state of the immutable object, and that need not be the case. The problem is that, while the shared
object is immutable, the reference used to access the shared object is itself shared and often
mutableconsequently, a correctly synchronized program must synchronize access to that shared reference, but
often programs do not do this, because programmers do not recognize the need to do it. For example, suppose
one thread creates a String object and stores a reference to it in a static field. A second thread then uses that
reference to access the string. There is no guarantee, based on what we've discussed so far, that the values
written by the first thread when constructing the string will be seen by the second thread when it accesses the
string.

The memory model defines the semantics for multithreaded programs and tells you what you need to do to
correctly synchronize your programs. But additionally, you need safeguards that ensure that incorrectly
synchronized programs cannot violate the integrity of the language, or the virtual machine implementation, or
the security architecture that prevents sensitive APIs from being misusedsee "Security" on page 677. These
safeguards come in the form of additional rules in the memory model covering the use of final fields.

The first rule for final fields covers the situation we described with the shared string. Basically, the rule states
that if a reference to an object is stored after the object has been constructed, then any thread that reads that
reference is guaranteed to see initialized values for the object's final fields. Note that there is no guarantee
concerning non-final fields of the object that are read without synchronization.

The second rule expands on the first to apply transitively to objects reachable via final fields. There is little
point being guaranteed to see a reference stored in a final field, if the fields of that object are not guaranteed to
be seen. What the second rule states, in general terms, is that if you read a reference from a final field, then
any non-final fields in the referenced object will have a value at least as recent as the value they had when the

311

311

reference was written. For example, this means that if one thread constructs an object and uses methods on
that object to set its state, then a second thread will see the state set by the first thread if the reference used to
access the object was written to a final field after the state changes were made. Any final fields in such objects
are covered by the first rule.

To preserve the integrity of the system, classes must use final fields appropriately to protect sensitive data, if
correct synchronization cannot be relied on. For this reason, the String class uses final fields internally so
that String values are both immutable and guaranteed to be visible.

14.10.3. The Happens-Before Relationship

The description of synchronizations actions above is a simplification of the operation of the memory model.
The use of synchronized blocks and methods and the use of volatile variables provide guarantees concerning
the reading and writing of variables beyond the volatile variables themselves or the variables accessed within
the synchronized block. These synchronization actions establish what is called a happens-before relationship
and it is this relationship that determines what values can be returned by a read of a variable. The
happens-before relationship is transitive, and a statement that occurs ahead of another in program order
happens-before that second statement. This allows actions other than synchronization actions to become
synchronized across threads. For example, if a non-volatile variable is written before a volatile variable, and
in another thread the same volatile variable is read before reading the non-volatile variable, then the write of
the non-volatile variable happens-before the read of that variable and so the read is guaranteed to return the
value written. Consider the following:

If the read of dataReady by thread-2 yields true, then the write of dataReady by thread-1
happened-before that read. Since the write to data by thread-1 happens-before the write to dataReady by
thread-1, it follows that it also happens-before the read of dataReady by thread-2, hence the read of data
by thread-2. In short, if thread-2 sees dataReady is true then it is guaranteed to see the new Data object
created by thread-1. This is true because dataReady is a volatile variable,[2] even though data is not itself
a volatile variable.

[2] The same would be true if dataReady were not volatile but instead had synchronized
get and set methods.

Finally, note that the actual execution order of instructions and memory accesses can be in any order as long
as the actions of the thread appear to that thread as if program order were followed, and provided all values
read are allowed for by the memory model. This allows the programmer to fully understand the semantics of
the programs they write, and it allows compiler writers and virtual machine implementors to perform complex
optimizations that a simpler memory model would not permit.

This discussion gives you an idea of how the memory model interacts with multithreading. The full details of
the memory model are beyond the scope of this book. Fortunately, if you pursue a straightforward locking

312

312

strategy using the tools in this book, the subtleties of the memory model will work for you and your code will
be fine.

14.11. Thread Management, Security, and THReadGroup

When you're programming multiple threadssome of them created by library classesit can be useful to organize
them into related groups, manage the threads in a group as a unit, and, if necessary, place limitations on what
threads in different groups can do.

Threads are organized into thread groups for management and security reasons. A thread group can be
contained within another thread group, providing a hierarchyoriginating with the top-level or system thread
group. Threads within a group can be managed as a unit, for example, by interrupting all threads in the group
at once, or placing a limit on the maximum priority of threads in a group. The thread group can also be used to
define a security domain. Threads within a thread group can generally modify other threads in that group,
including any threads farther down the hierarchy. In this context "modifying" means invoking any method that
could affect a thread's behaviorsuch as changing its priority, or interrupting it. However, an application can
define a security policy that prevents a thread from modifying threads outside of its group. Threads within
different thread groups can also be granted different permissions for performing actions within the
application, such as performing I/O.

Generally speaking, security-sensitive methods always check with any installed security manager before
proceeding. If the security policy in force forbids the action, the method throws a SecurityException.
By default there is no security manager installed when an application starts. If your code is executed in the
context of another application, however, such as an applet within a browser, you can be fairly certain that a
security manager has been installed. Actions such as creating threads, controlling threads, performing I/O, or
terminating an application, are all security sensitive. For further details, see "Security" on page 677.

Every thread belongs to a thread group. Each thread group is represented by a ThreadGroup object that
describes the limits on threads in that group and allows the threads in the group to be interacted with as a
group. You can specify the thread group for a new thread by passing it to the thread constructor. By default
each new thread is placed in the same thread group as that of the thread that created it, unless a security
manager specifies differently. For example, if some event-handling code in an applet creates a new thread, the
security manager can make the new thread part of the applet thread group rather than the system thread group
of the event-processing thread. When a thread terminates, the Thread object is removed from its group and
so may be garbage collected if no other references to it remain.

There are four Thread constructors that allow you to specify the ThreadGroup of the thread. You saw
three of them on page 343 when looking at Runnable. The fourth is:

public Thread(ThreadGroup group, String name)

Constructs a new thread in the specified thread group with the given name.

To prevent threads from being created in arbitrary thread groups (which would defeat the security
mechanism), these constructors can themselves throw SecurityException if the current thread is not
permitted to place a thread in the specified thread group.

The ThreadGroup object associated with a thread cannot be changed after the thread is created. You can
get a thread's group by invoking its getThreadGroup method. You can also check whether you are
allowed to modify a THRead by invoking its checkAccess method, which throws
SecurityException if you cannot modify the thread and simply returns if you can (it is a void method).

313

313

A thread group can be a daemon groupwhich is totally unrelated to the concept of daemon threads. A daemon
THReadGroup is automatically destroyed when it becomes empty. Setting a ThreadGroup to be a
daemon group does not affect whether any thread or group contained in that group is a daemon. It affects only
what happens when the group becomes empty.

Thread groups can also be used to set an upper limit on the priority of the threads they contain. After you
invoke setMaxPriority with a maximum priority, any attempt to set a thread priority higher than the
thread group's maximum is silently reduced to that maximum. Existing threads are not affected by this
invocation. To ensure that no other thread in the group will ever have a higher priority than that of a particular
thread, you can set that thread's priority and then set the group's maximum priority to be less than that. The
limit also applies to the thread group itself. Any attempt to set a new maximum priority for the group that is
higher than the current maximum will be silently reduced.

static synchronized void
 maxThread(Thread thr, int priority)
{
 ThreadGroup grp = thr.getThreadGroup();
 thr.setPriority(priority);
 grp.setMaxPriority(thr.getPriority() - 1);
}

This method works by setting the thread's priority to the desired value and then setting the group's maximum
allowable priority to less than the thread's priority. The new group maximum is set to one less than the
thread's actual prioritynot to priority- 1 because an existing group maximum might limit your ability to
set the thread to that priority. Of course, this method assumes that no thread in the group already has a higher
priority.

ThreadGroup supports the following constructors and methods:

public ThreadGroup(String name)

Creates a new ThreadGroup. Its parent will be the ThreadGroup of the
current thread. Like Thread names, the name of a group is not used by the
runtime systembut it can be null.

public ThreadGroup(ThreadGroup parent, String name)

Creates a new THReadGroup with a specified name in the
ThreadGroupparent . A NullPointerException is thrown if
parent is null.

public final String getName()

Returns the name of this ThreadGroup.

public final ThreadGroup getParent()

Returns the parent ThreadGroup, or null if it has none (which can only
occur for the top-level thread group).

public final void setDaemon(boolean daemon)

Sets the daemon status of this thread group.

314

314

public final boolean isDaemon()

Returns the daemon status of this thread group.

public final void setMaxPriority(int maxPri)

Sets the maximum priority of this thread group.

public final int getMaxPriority()

Gets the current maximum priority of this thread group.

public final boolean parentOf(ThreadGroup g)

Checks whether this thread group is a parent of the group g, or is the group
g. This might be better thought of as "part of," since a group is part of itself.

public final void checkAccess()

Throws SecurityException if the current thread is not allowed to
modify this group. Otherwise, this method simply returns.

public final void destroy()

Destroys this thread group. The thread group must contain no threads or this
method throws IllegalThreadStateException. If the group
contains other groups, they must also be empty of threads. This does not
destroy the threads in the group.

You can examine the contents of a thread group using two parallel sets of methods: One gets the threads
contained in the group, and the other gets the thread groups contained in the group.

public int activeCount()

Returns an estimate of the number of active threads in this group, including
threads contained in all subgroups. This is an estimate because by the time
you get the number it may be out of date. Threads may have died, or new
ones may have been created, during or after the invocation of
activeCount. An active thread is one for which isAlive returns true.

public int enumerate(Thread[] threadsInGroup, boolean recurse)

Fills the threadsInGroup array with a reference to every active thread in
the group, up to the size of the array, and returns the number of threads
stored. If recurse is false, only threads directly in the group are
included; If it is TRue, all threads in the group's hierarchy will be included.
ThreadGroup.enumerate gives you control over whether you recurse,
but THReadGroup.activeCount does not. You can get a reasonable
estimate of the size of an array needed to hold the results of a recursive
enumeration, but you will overestimate the size needed for a non-recursive
enumerate.

public int enumerate(Thread[] threadsInGroup)

315

315

Equivalent to enumerate(threadsInGroup,true) .

public int activeGroupCount()

Like activeCount, but counts groups, instead of threads, in all subgroups.
"Active" means "existing." There is no concept of an inactive group; the term
"active" is used for consistency with activeCount.

public int enumerate(ThreadGroup[] groupsInGroup, boolean
recurse)

Like the similar enumerate method for threads, but fills an array of
ThreadGroup references instead of THRead references.

public int enumerate(ThreadGroup[] groupsInGroup)

Equivalent to enumerate(groupsInGroup,true) .

You can also use a ThreadGroup to manage threads in the group. Invoking interrupt on a group
invokes the interrupt method on each thread in the group, including threads in all subgroups. This method
is the only way to use a ThreadGroup to directly affect threadsthere used to be others but they have been
deprecated.

There are also two static methods in the Thread class to act on the current thread's group. They are
shorthands for invoking currentThread, invoking getThreadGroup on that thread, and then invoking
the method on that group.

public static int activeCount()

Returns the number of active threads in the current thread's ThreadGroup.

public static int enumerate(Thread[] threadsInGroup)

Equivalent to invoking the method enumerate(threadsInGroup) on
the THReadGroup of the current thread.

The ThreadGroup class also supports a method that is invoked when a thread dies because of an uncaught
exception:

public void uncaughtException(Thread thr, Throwable exc)

We'll look at this in more detail in the next section.

Exercise 14.9: Write a method that takes a thread group and starts a thread that periodically prints the
hierarchy of threads and thread groups within that group, using the methods just described. Test it with a
program that creates several short-lived threads in various groups.

14.12. Threads and Exceptions

Exceptions always occur in a specific thread, due to the actions of that threadfor example, trying to perform
division by zero, or explicitly throwing an exception. Such exceptions are synchronous exceptions and always

316

316

remain within the thread. If a "parent" thread wants to know why a "child" terminated, the child will have to
store that information somewhere the "parent" can get it. Placing a thread start invocation in a
TRy-catch block does not catch exceptions that may be thrown by the new threadit simply catches any
exception thrown by start.

When an exception is thrown it causes statements to complete abruptly and propagates up the call stack as
each method invocation completes abruptly. If the exception is not caught by the time the run method
completes abruptly then it is, by definition, an uncaught exception. At that point the thread that experienced
the exception has terminated and the exception no longer exists. Because uncaught exceptions are usually a
sign of a serious error, their occurrence needs to be tracked in some way. To enable this, every thread can
have associated with it an instance of UncaughtExceptionHandler. The
UncaughtExceptionHandler interface is a nested interface of class THRead and declares a single
method:

public void uncaughtException(Thread thr, Throwable exc)

Invoked when thr terminated due to exc being thrown.

A thread's uncaught exception handler can be set, if security permissions allow it, using its
setUncaughtExceptionHandler method.

When a thread is about to terminate due to an uncaught exception, the runtime queries it for its handler by
invoking the getUncaughtExceptionHandler method on it, and invokes the returned handler's
uncaughtException method, passing the thread and the exception as parameters.

The getUncaughtExceptionHandler method will return the handler explicitly set by the thread's
setUncaughtExceptionHandler method, or if no handler has been explicitly set, then the thread's
ThreadGroup object is returned. Once a thread has terminated, and it has no group,
getUncaughtExceptionHandler may return null.

The default implementation of the THReadGroupuncaughtException method invokes
uncaughtException on the group's parent group if there is one. If the thread group has no parent, then
the system is queried for a default uncaught exception handler, using the static Thread class method
getdefaultUncaughtExceptionHandler. If such a default handler exists, its
uncaughtException method is called with the thread and exception. If there is no default handler,
ThreadGroup's uncaughtException method simply invokes the exception's printStackTrace
method to display information about the exception that occurred (unless it is an instance of ThreadDeath in
which case nothing further happens).

An application can control the handling of uncaught exceptions, both for the threads it creates, and threads
created by libraries it uses, at three levels:

At the system level, by setting a default handler using the static Thread class method
setDefaultUncaughtExceptionHandler. This operation is security checked to ensure the
application has permission to control this.

•

At the group level, by extending ThreadGroup and overriding it's definition of
uncaughtException.

•

At the thread level, by invoking setUncaughtExceptionHandler on that thread.•

For example, if you were writing a graphical environment, you might want to display the stack trace in a
window rather than simply print it to System.err, which is where the method printStackTrace puts
its output. You could define your own UncaughtExceptionHandler that implement
uncaughtException to create the window you need and redirect the stack trace into the window.

317

317

14.12.1. Don't stop

We mentioned in Chapter 12 that two forms of asynchronous exceptions are definedinternal errors in the Java
virtual machine, and exceptions caused by the invocation of the deprecated Thread.stop method.

As a general rule we don't discuss deprecated methods in this book, but stop is specialpartly because of what
it does, but mostly because it is, as they say, "out there" and you may well come across code that uses it (or
tries to).

The stop method causes an asynchronous ThreadDeath exception to be thrown in the thread on which it
is invoked. There is nothing special about this exceptionjust like any other exception it can be caught, and if it
is not caught it will propagate until eventually the thread terminates. The exception can occur at almost any
point during the execution of a thread, but not while trying to acquire a lock.

The intent of stop was to force a thread to terminate in a controlled manner. By throwing an exception that
was unlikely to be caught, it allowed the normal cleanup procedure of using finally clauses to tidy up as
the thread's call stack unwound. But stop failed to achieve this in two ways. First, it couldn't force any
thread to terminate because a thread could catch the exception that was thrown and ignore ithence it was
ineffective against malicious code. Second, rather than allowing a controlled cleanup, it actually allowed the
corruption of objects. If stop was invoked while a thread was in a critical section, the synchronization lock
would be released as the exception propagated, but the object could have been left in a corrupt state due to the
partial completion of the critical section. Because of these serious flaws stop was deprecated. Instead,
interrupt should be used for cooperative cancellation of a thread's actions.

A second form of stop took any THRowable object as an argument and caused that to be the exception
thrown in the target threadthis is even more insidious because it allows "impossible" checked exceptions to be
thrown from code that doesn't declare them.

14.12.2. Stack Traces

Any thread that is alive, can be queried for its current execution stack trace. The getStackTrace method
returns an array of StackTraceElement objectsas described in "Stack Traces" on page 294where the
zeroth element represents the currently executing method of the thread. If the thread is not alive then a
zero-length array is returned.

You can access the stack traces of all threads in the system using the static THRead class method
getAllStackTraces, which returns a map from each thread to its corresponding
StackTraceElement array.

Stack trace information is generally used for debugging and monitoring purposesfor example, if your
application "hangs," a monitoring thread might display all the stack traces, showing you what each thread is
doing. Of course, if your application hangs because of an error in your code, any such monitoring thread may
itself not get a chance to execute. The virtual machine is not required to produce non-zero-length stack traces
for any given thread, and it is also allowed to omit some methods from the stack trace information.

14.13. THReadLocal Variables

The THReadLocal class allows you to have a single logical variable that has independent values in each
separate thread. Each THReadLocal object has a set method that lets you set the value of the variable in
the current thread, and a get method that returns the value for the current thread. It is as if you had defined a
new field in each thread class, but without the need to actually change any thread class. This is a feature you

318

318

may well never need, but if you do need it THReadLocal may simplify your work.

For example, you might want to have a user object associated with all operations, set on a per-thread basis.
You could create a ThreadLocal object to hold each thread's current user object:

public class Operations {
 private static ThreadLocal<User> users =
 new ThreadLocal<User>() {
 /** Initially start as the "unknown user". */
 protected User initialValue() {
 return User.UNKNOWN_USER;
 }
 };

 private static User currentUser() {
 return users.get();
 }

 public static void setUser(User newUser) {
 users.set(newUser);
 }
 public void setValue(int newValue) {
 User user = currentUser();
 if (!canChange(user))
 throw new SecurityException();
 // ... modify the value ...
 }

 // ...
}

The static field users holds a ThreadLocal variable whose initial value in each thread will be
User.UNKNOWN_USER. This initial value is defined by overriding the method initialValue, whose
default behavior is to return null. The programmer can set the user for a given thread by invoking
setUser. Once set, the method currentUser will return that value when invoked in that thread. As
shown in the method setValue, the current user might be used to determine privileges.

You can clear the value in a ThreadLocal by invoking its remove method. If get is invoked again, then
initialValue will again be used to determine what to return.

When a thread dies, the values set in THReadLocal variables for that thread are not reachable, and so can be
collected as garbage if not otherwise referenced.

When you spawn a new thread, the values of THReadLocal variables for that thread will be the value
returned by its initialValue method. If you want the value in a new thread to be inherited from the
spawning thread, you can use the class InheritableThreadLocal, a subclass of THReadLocal. It has
a protected method childValue that is invoked to get the child's (spawned thread's) initial value. The
method is passed the parent's value for the variable and returns the value for the child. The default
implementation of childValue returns the parent's value, but you can subclass to do something different,
such as cloning the parent's value for the child.

Use of ThreadLocal objects is an inherently risky tool. You should use them only where you thoroughly
understand the thread model that will be used. The problems arise with thread pooling, a technique that is
sometimes used to reuse threads instead of creating new ones for each task. In a thread pooling system a
thread might be used several times. Any ThreadLocal object used in such an environment would contain
the state set by the last code that happened to use the same thread, instead of an uninitialized state expected at
the beginning of a new thread of execution. If you write a general class that uses ThreadLocal objects and

319

319

someone uses your class in a thread pool, the behavior might be dangerously wrong.

For example, the users variable in the Operations example above could have just this problemif an
Operations object was used in multiple threads, or different Operations objects were used in the same
thread, the "current user" notion could easily be wrong. Programmers who use Operations objects must
understand this and only use the objects in threading situations that match the assumptions of the class's code.

14.14. Debugging Threads

A few THRead methods are designed to help you debug a multithreaded application. These print-style
debugging aids can be used to print the state of an application. You can invoke the following methods on a
THRead object to help you debug your threads:

public String toString()

Returns a string representation of the thread, including its name, its priority,
and the name of its thread group.

public long getId()

Returns a positive value that uniquely identifies this thread while it is alive.

public Thread.State getState()

Returns the current state of this thread. Thread.State is a nested enum
that defines the constants: NEW, RUNNABLE, BLOCKED, WAITING,
TIMED_WAITING, and TERMINATED. A newly created thread has state
NEW, until it is started, at which time it becomes RUNNABLE until it
terminates and becomes TERMINATED. While a thread is runnable, but
before it terminates it can switch between being RUNNABLE and being
BLOCKED (such as acquiring a monitor lock), WAITING (having invoked
wait), or TIMED_WAITING (having invoked a timed version of wait).

public static void dumpStack()

Prints a stack trace for the current thread on System.err.

There are also debugging aids to track the state of a thread group. You can invoke the following methods on
ThreadGroup objects to print their state:

public String toString()

Returns a string representation of the ThreadGroup, including its name
and priority.

public void list()

Lists this ThreadGroup recursively to System.out. This prints the
toString value for each of the threads and thread groups within this group.

I'll play it first and tell you what it is later.

Miles Davis

320

320

Chapter 15. Annotations

I don't like spinach, and I'm glad I don't, because if I liked it I'd eat it, and I just hate it.

Clarence Darrow

The source code for our programs is usually accompanied by copious amounts of informal documentation that
typically is contained within comments in the source code file. For example, many organizations have a
standard preamble that they place at the top of class source files that contains things like copyright
information, the programmers name, the date the class was created, the date the class was last modified, the
current revision number, and so forth. Other comments may reflect intended usage of a class or a method, or
usage limitations, such as documenting that the instances of a class are not thread-safe and so shouldn't be
used concurrently. Other comments may be provided for processing by external tools that assist in the
management and deployment of an application, such as version control in a source code management system,
or deployment descriptors on how a class should be managed by an application server. These comment-based
annotations serve a useful purpose, but they are informal and ad hoc. A better way to document these things is
to annotate the program elements directly using annotation types to describe the form of the annotations.
Annotation types present the information in a standard and structured way that is amenable to automated
processing by tools.

While this chapter presents the syntax and semantics of using annotations and defining annotation types, it
can't tell you what annotations to use when because very few such annotations exist within the language. The
annotations you use will be those supported by the tools in your development or deployment environment.
Annotation is centered on types in the package java.lang.annotation, and the standard types
introduced in this chapter come from this package.

15.1. A Simple Annotation Example

Consider an informal, comment-based class preamble:

/*-------------------------------
 Created: Jan 31 2005
 Created By: James Gosling
 Last Modified: Feb 9 2005
 Last Modified By: Ken Arnold
 Revision: 3
---------------------------------*/
public class Foo {
 // ...
}

You can define an annotation type that can hold all of the desired information:

@interface ClassInfo {
 String created();
 String createdBy();
 String lastModified();
 String lastModifiedBy();
 int revision();
}

321

321

An annotation type is a special kind of interface, designated by the @ character preceding the interface
keyword.[1] Annotations are applied to program elements, such as a class or field declaration. What appear to
be methods in the annotation type are actually special annotation element declarations. An annotation element
is rather like a field, and has a value for each program element that has that type of annotation. So a
ClassInfo annotation contains four string elements and one int element. When you annotate (apply an
annotation to) a program element, you supply values for each of the annotation elements. Annotations are
modifiers and can appear anywhere a modifier is allowed. Here's how you would use ClassInfo with class
Foo:

[1] The @ character was chosen because it is pronounced "at": A-T, short for Annotation Type.

@ClassInfo (
 created = "Jan 31 2005",
 createdBy = "James Gosling",
 lastModified = "Feb 9 2005",
 lastModifiedBy = "Ken Arnold",
 revision = 3
)
public class Foo {
 // ...
}

The annotation is introduced using the @ character again, followed by the name of the annotation type. Values
for the annotation elements are provided by a comma-separated list of name=value statements within
parentheses. As you can see, an annotation can contain a lot of textual information that can easily obscure the
actual program, so it is strongly recommended that you follow a consistent practice of always specifying
annotations first, ahead of any other modifiers, and always on a separate line.

To use the ClassInfo annotation, a programmer should update the value for each changed element
whenever they edit the source for Foo. Such updates could be automated through development tools that
understand annotations.

15.2. Annotation Types

Annotation types are a special kind of interface, declared, as you have seen, with the interface keyword
preceded by the @ character. Annotation types can be declared anywhere an interface can be declaredthat is, as
a top-level annotation type or nested within another typeand can have the same modifiers applied as
interfaces. Characterizing annotation types as interfaces is a little misleading, however, as aside from
borrowing some syntax and some associated usage rules, annotation types bear little resemblance to interfaces
in normal use.[2]

[2] Except when accessed reflectively at runtimesee "Annotation Queries" on page 414.

The methods declared in an annotation type are known as the elements of the annotation type. These elements
are constrained by strict rules:

The type of the element can only be a primitive type, String, an enum type, another annotation
type, Class (or a specific generic invocation of Class), or an array of one of the preceding types.

•

The element cannot declare any parameters.•
The element cannot have a throws clause.•
The element cannot define a type parameter (that is, it can't be a generic method).•

322

322

In essence, the elements of an annotation type are like the fields of an object, that is instantiated for each
program element the annotation type is applied to. The values of these fields are determined by the initializers
given when the annotation is applied or by the default value of the element if it has one.

You can give an element a default value by following the empty parameter list with the keyword default
and a suitable value. For example, suppose you want to represent a revision number as a pair of integers for
the major and minor revision, you could define the following annotation type that has a default revision
number of 1.0:

@interface Revision {
 int major() default 1;
 int minor() default 0;
}

The values themselves must be constant expressions or literals (such as a class literal), but not null.

The Revision annotation type could be used to annotate a class or interfacewe show you how to enforce
this a little lateror used by other annotation types. In particular we can redefine the ClassInfo annotation
type to use it:

@interface ClassInfo {
 String created();
 String createdBy();
 String lastModified();
 String lastModifiedBy();
 Revision revision();
}

When we first created class Foo we might have used ClassInfo:

@ClassInfo (
 created = "Jan 31 2005",
 createdBy = "James Gosling",
 lastModified = "Jan 31 2005",
 lastModifiedBy = "James Gosling",
 revision = @Revision
)
public class Foo {
 // ...
}

Notice how the initialization expression for an element of an annotation type uses the annotation syntax. In
this case @Revision initializes the revision element with the default values for major and minor. When
Foo is later edited, the revision element would be changed accordingly, for example:

@ClassInfo (
 created = "Jan 31 2005",
 createdBy = "James Gosling",
 lastModified = "Feb 9 2005",
 lastModifiedBy = "Ken Arnold",
 revision = @Revision(major = 3)
)
public class Foo {
 // ...

323

323

}

This updates the revision to be 3.0, by specifying the major value and again allowing the minor value to
default to 0.

An annotation type can have zero elements, in which case it is called a marker annotationsimilar to a marker
interface. For example, the annotation type java.lang.Deprecated is a marker annotation that
identifies a program element that should no longer be used. The compiler can issue a warning when a program
element annotated with @Deprecated is used, as could an annotation-aware development environment.

If an annotation type has but a single element, then that element should be named value. This permits some
syntactic shorthand that is described in the next section.

There are further restrictions on the form of an annotation type. An annotation type may not explicitly declare
that it extends another interface, but all annotation types implicitly extend the interface Annotation. An
annotation type is not allowed to be a generic type. Finally, an annotation type is not allowed to directly, or
indirectly, have an element of its own type.[3]

[3] This restriction is aimed at preventing the possibility of infinite recursion if an annotation
type had an element of its own type with a default value. Curiously, there are no attempts to
prevent a similar infinite recursion with class types.

If an interface explicitly extends Annotation it is not an annotation typeand Annotation itself is not an
annotation type. Similarly, if an interface declares that it extends an annotation type, that interface is not itself
an annotation type. Extending or implementing an annotation type is pointless, but if you do it, the annotation
type is just a plain interface with the declared set of methods (including those inherited from Annotation).

Finally, just like any other interface, an annotation type can declare constants and (implicitly static) nested
types.

15.3. Annotating Elements

The program elements that can be annotated are all those for which modifiers can be specified: type
declarations (classes, interfaces, enums, and annotation types), field declarations, method and constructor
declarations, local variable declarations, and even parameter declarations. There is also a special mechanism
to annotate packages, described in Section 18.5 on page 476.

As you have seen, to annotate an element you provide the name of the annotation type being applied, preceded
by @ and followed by a parenthesized list of initializers for each element of the annotation type. A given
program element can only be annotated once per annotation type.

If the annotation type is a marker annotation or if all its elements have default values, then the list of
initializers can be omitted. For example, you can mark a method as deprecated:

@Deprecated
public void badMethod() { /* ... */ }

Equivalently, you can just specify an empty list of initializers:

@Deprecated()

324

324

public void badMethod() { /* ... */ }

Otherwise, for each element that does not have a default value you must list an initializer, of the form
name=value, as you have seen with ClassInfo. The order of initializers is not significant, but each
element can only appear once. If an element has a default value then it need not appear, but you can include it
if you want to override the default value with a specific one, as you saw in the Revision annotation type
with ClassInfo.

If an element has an array type, then it is initialized with an array initializer expression. For example, an
annotation to track the bug fixes applied to a class might look like this:

@interface BugsFixed {
 String[] bugIDs();
}

The intent is that as each bug is fixed, its identifier is appended to the initializer list for bugIDs. Here's how
it might be used:

@BugsFixed(bugIDs = { "457605", "532456"})
class Foo { /* ... */ }

If an array has only a single element, then you can use a shorthand to initialize the array, dispensing with the
braces around the array elements. For example, the first bug fixed in Foo could be annotated like this:

@BugsFixed(bugIDs = "457605")

If an annotation type, like BugsFixed, has only a single element, then naming that element value allows
for some additional shorthand:

@interface BugsFixed {
 String[] value();
}

The first use of BugsFixed above can now be written simply as

@BugsFixed({ "457605", "532456"})

If there is a single initializer expression, then it is assumed to initialize an element called value. If there is no
such element by that name, then you will get a compile-time error. Combining this shorthand with the
shorthand for arrays with one element, you can rewrite the second use of BugsFixed to be

@BugsFixed("457605")

325

325

You can have more than one element in the annotation type and still call one of them value. If you do, and
all other elements have default values, then you can still use the shorthand form to initialize the value
element. However, once you have more than one initializer expression, you must explicitly name each
element.

Finally, you can annotate an annotation type with itself. For example, the Documented marker annotation
indicates that the program element that is annotated should have its documentation comments processedsee
Chapter 19. Because Documented should itself be documented it is annotated with itself:

@Documented
@interface Documented { }

Self-annotation is quite different from having an element of the annotation type within the annotation
typewhich, as you know, is not permitted.

15.4. Restricting Annotation Applicability

Annotations can appear anywhere a modifier is allowed, but as you can imagine, not every annotation makes
sense for every program elementconsider applying ClassInfo to a method parameter! You can restrict the
applicability of an annotation type by annotating it with the @Target annotation. An annotation on an
annotation type is known as a meta-annotation.

The Target annotation type is one of a small number of annotation types defined in the
java.lang.annotation packageall the types mentioned here are in that package unless otherwise
stated. Target is applied to annotation types, and controls where those types are themselves applicable. It
has a single elementan array of the enum type ElementTypewhich following convention is called value.
ElementType represents the different kinds of program elements to which annotations can be applied, and
defines the constants ANNOTATION_TYPE, CONSTRUCTOR, METHOD, FIELD, LOCAL_VARIABLE,
PARAMETER, PACKAGE, and TYPE. The compiler will check that any annotation applied to a program
element is allowed to be applied to that kind of program element.

The ClassInfo annotation type should only be applied to type declarations (classes, interfaces, enums, or
annotation types), so it should be declared:

@Target(ElementType.TYPE)
@interface ClassInfo {
 String created();
 String createdBy();
 String lastModified();
 String lastModifiedBy();
 Revision revision();
}

Now if you tried to annotate a parameter declaration with ClassInfo, you'd get a compile-time error.

You can specify multiple element types when applying the Target annotation. For example, an annotation
type that only applies to fields or local variables would be annotated with

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

326

326

Our Revision annotation type could also be annotated with:

@Target(ElementType.TYPE)

to restrict its applicability to type declarations. If an annotation type has no @Target meta-annotation then it
is applicable anywhere.

Don't confuse the applicability of an annotation type with the accessibility of the annotation type. If an
annotation is public then it can be used anywhere, but its applicability might restrict what elements it can be
applied to. Conversely, you can't apply an annotation if it is inaccessible, even if you are trying to apply it to
the right kind of element. Restricting the applicability of an annotation does not affect its use within other
annotation types. For example, if Revision were restricted to use on local variables (not that it makes
sense), that doesn't stop ClassInfo from having an element of type Revision.

15.5. Retention Policies

Annotations can serve many different purposes and may be intended for different readers. Most of the
annotations you have seen are intended to be read by programmers, or perhaps a development tool. Others,
such as @Deprecated, are intended for the compiler to read. In some cases a tool may need to extract the
annotations from a binary representation of a class, such as to determine how an application should be
deployed. And sometimes annotations will need to be inspected at runtime.

Associated with every annotation type is a retention policy that determines when the annotation can be
accessed. This retention policy is defined by the RetentionPolicy enum, and is controlled by the use of
the Retention meta-annotation. There are three retention policy values:

SOURCE Annotations exist only in the source file, and are discarded by the compiler when producing
a binary representation.

•

CLASS Annotations are preserved in the binary representation of the class, but need not be available
at runtime.

•

RUNTIME Annotations are preserved in the binary representation of the class and must be available at
runtime via the reflection mechanism.

•

The default retention policy is CLASS. Regardless of the retention policy, annotations on local variables are
never available in the binary representation or at runtime. There is no place to store the information in the
binary representation.

The reflection methods for accessing annotations at runtime are discussed in Section 16.2 on page 414. In
essence, for each annotated element, the runtime system creates an object that implements the interface
defined by the annotation type. You get the values of the annotation elements for that program element by
invoking the corresponding method on that object.

15.6. Working with Annotations

Annotations can be very powerful, but they can easily be misused. It is easy to achieve annotation-overload
when the number and verbosity of the annotations totally obscure the code itself. Annotations should be used
sparingly and wisely.

327

327

The second problem with annotations is that anyone can define their own. A key benefit of annotations is their
suitability for automatic analysis, generally via annotation processing tools, or APTs. But automation is most
helpful if there are common, standard annotations. While you have seen how annotation types can be defined,
in practice very few programmers should need to define their own types. There are currently only a few
defined annotation types:[4]

[4] Under the Java Community Process, JSR 250 is defining common annotations for future
use.

The meta-annotations @Target and @Retention, which you have seen.•
The @Deprecated and @Documented annotations, which you have also seen.•
The @Inherited meta-annotation that indicates an annotation should be inherited. For example, if
a class Foo is queried for a specific annotation type that is not present on Foo, but that annotation
type has the @Inherited meta-annotation, then Foo's superclass will be queried, and so forth.

•

The @Override annotation, which informs the compiler that a method is meant to override an
inherited method from a superclass. This allows the compiler to warn you if you mistakenly overload
the method instead of overriding it (a common mistake).

•

The @SuppressWarnings annotation tells the compiler to ignore certain warnings, as defined by
the strings used to initialize the annotation. Unfortunately, there is no predefined set of warning
strings, meaning that interoperability between different compilers could be a problem.

•

Without standards in this area, the effective use of annotations could be stifled.

Finally, another potential problem with annotations is that they could be misused to change the semantics of
the code they are applied to. According to the Java Language Specification, "annotations are not permitted to
affect the semantics of programs in the Java programming language in any way." Indeed, any unrecognized
annotations should just be ignored by the compiler, the virtual machine, and any other annotation processing
tool. However, it is easy to see how, with a suitable processing tool, annotations could be used to achieve a
style of metaprogramming, that allows people to create specialized dialects of the Java programming language
to meet their own specific needs. If programs become dependent on specialized annotation support, then the
portability benefits of the Java platform will be lost.

I don't care who does the electin' as long as I get to do the nominatin'.

Boss Tweed

Chapter 16. Reflection

A sense of humor keen enough to show a man his own absurdities will keep him from the
commission of all sins, or nearly all, save those that are worth committing.

Samuel Butler

The package java.lang.reflect contains the reflection package, the classes you can use to examine a
type in detail. You can write a complete type browser using these classes, or you can write an application that
interprets code that a user writes, turning that code into actual uses of classes, creation of objects, invocations
of methods, and so on. Almost all the types mentioned in this discussion on reflection are contained in the
package java.lang.reflect, except for the classes Class and Package, which are part of the
package java.lang, and Annotation, which is part of the java.lang.annotation package.

Reflection starts with a Class object. From the Class object you can obtain a complete list of members of
the class, find out all the types of the class (the interfaces it implements, the classes it extends), and find out

328

328

information about the class itself, such as the modifiers applied to it (public, abstract, final, and so
on) or the package it is contained in. Reflection is also sometimes called introspection; both terms use the
metaphor of asking the type to look at itself and tell you something. These capabilities can be used by type
browsers to show the structure of an application. They also form the first step for you to dynamically create
and manipulate objects.

Here's a simple example of a "type browser." Given the name of a class this program shows the class's
immediate superclass and lists all the public methods it declares:

import java.lang.reflect.*;
import static java.lang.System.out;
import static java.lang.System.err;

public class SimpleClassDesc {
 public static void main(String[] args) {
 Class type = null;
 try {
 type = Class.forName(args[0]);
 } catch (ClassNotFoundException e) {
 err.println(e);
 return;
 }

 out.print("class " + type.getSimpleName());
 Class superclass = type.getSuperclass();
 if (superclass != null)
 out.println(" extends " +
 superclass.getCanonicalName());
 else
 out.println();

 Method[] methods = type.getDeclaredMethods();
 for (Method m : methods)
 if (Modifier.isPublic(m.getModifiers()))
 out.println(" " + m);
 }
}

Given the fully qualified name of a class (such java.lang.String) the program first tries to obtain a
Class object for that class, using the static method Class.forName. If the class can't be found an
exception is thrown which the program catches and reports. Otherwise, the simple name of the classString,
for exampleis printed. Next the Class object is asked for its superclass's Class object. As long as the
named class is not Object and is a class rather than an interface, getSuperclass will return a
superclass's Class object. The name of the super class is printed in full using getCanonicalName (there
are a number of ways to name a class as you'll see in Section 16.1.4 on page 411). Next, the Class object is
asked for all the methods that it declares. The declared methods include all methods actually declared in the
class but none that are inherited. Since we're only interested in public methods, we ask the Method object for
the method's modifiers and ask the Modifier class if those modifiers include public. If so the method is
printed, otherwise it is ignored. Here's the output when given the name of the Attr class from page 76:

class Attr extends java.lang.Object
 public java.lang.String Attr.getName()
 public java.lang.String Attr.toString()
 public java.lang.Object Attr.getValue()
 public java.lang.Object Attr.setValue(java.lang.Object)

329

329

Over the next few pages you'll see how to perform a much more detailed examination of a class's supertypes
and its members.

Reflection also allows you to write code that performs actions that you can more simply execute directly in
code if you know what you are doing. Given the name of a class (which may not have existed when the
program was written) you can obtain a Class object and use that Class object to create new instances of
that class. You can interact with those objects just as you would with an object created via new. You can, for
example, invoke a method using reflection, as you will soon see, but it is much harder to understand than a
direct method invocation. You should use reflection only when you have exhausted all other object-oriented
design mechanisms. For example, you should not use a Method object as a "method pointer," because
interfaces and abstract classes are better tools. There are times when reflection is necessaryusually when
you're interpreting or displaying some other codebut use more direct means whenever possible.

Figure 16-1 (see next page) shows the classes and interfaces that support introspection. At the top, Type
represents all types that can exist in a Java programit is a marker interface containing no methods. All
concrete types are represented by an instance of class Class. The other types pertain to generic types:
parameterized types, type variables, wildcards, and generic arrays. The Constructor, Method, and
Field classes represent constructors, methods and fields, respectively. These are all Member instances and
are also subclasses of AccessibleObject (which pertains to access control). The classes Class,
Constructor, and Method are all GenericDeclaration instances because they can be declared in a
generic way. Finally, the class Class, the AccessibleObject subclasses, and the Package class are all
instances of AnnotatedElement because they can have annotations applied to them.

Figure 16-1. The Introspection Hierarchy

330

330

16.1. The Class Class

There is a Class object for every type. This includes each class, enum, interface, annotation, array, and the
primitive types. There is also a special Class object representing the keyword void. These objects can be
used for basic queries about the type and, for the reference types, to create new objects of that type.

The Class class is the starting point for reflection. It also provides a tool to manipulate classes, primarily for
creating objects of types whose names are specified by strings, and for loading classes using specialized
techniques, such as across the network. We look in more detail at class loading in Section 16.13 on page 435.

You get a Class object in four ways: ask an object for its Class object using its getClass method; use a
class literal (the name of the class followed by .class, as in String.class); look it up by its fully
qualified name (all packages included) using the static method Class.forName; or get it from one of the
reflection methods that return Class objects for nested classes and interfaces (such as
Class.getClasses).

15.7.1. Type Tokens

Class is a generic class, declared as Class<T>. Each Class object for a reference type is of a
parameterized type corresponding to the class it represents. For example, the type of String.class is
Class<String>, the type of Integer.class is Class<Integer>, and so forth. The type of the
Class object for a primitive type is the same type as that of its corresponding wrapper class. For example,
the type of int.class is Class<Integer>, but note that int.class and Integer.class are two
different instances of the same type of class. Parameterized types all share the Class object of their raw
typefor example, the Class object for List<Integer> is the same as that for List<String> and the
same as that for List.class, and its type is Class<List>.

A parameterized Class type is known as the type token for a given class. The easiest way to obtain a type
token is to use a class literal, such as String.class, since this provides you with the exact type token. In
contrast, Class.forName is declared to return a wildcard, Class<?>, that represents an unidentified type
tokento use this type token effectively you need to establish its actual type, as you'll soon see. The Object
method getClass returns the type token for the type of object it is invoked on, and its return type is also
Class<?>, another wildcard. However, getClass receives special treatment by the compiler: If
getClass is invoked on a reference with static type T, then the compiler treats the return type of
getClass as being Class<?extends T>.[1] So this works:

[1] It actually treats it as being Class<? extends S>, where S is the erasure of T.
Parameterized types share the same Class object so the erasure is used to remove any
parameterized types from the wildcard's bounds. For example, given List<String> l,
then l.getClass() has the type Class<? extends List>.

String str = "Hello";
Class<String> c1 = String.class; // exact type token
Class<? extends String> c2 =
 str.getClass(); // compiler magic

but this won't compile:

Class<? extends String> c3 =
 Class.forName("java.lang.String"); // INVALID

331

331

Taking an unknown type token Class<?> and turning it into a type token of a known type is a common
action when working with reflection. What you need is something that acts like a cast, but as you already
know, you can't perform casts involving parameterized types. The solution to this is another piece of "magic"
in the shape of the asSubclass method of class Class:

public <T> Class<? extends T> asSubclass(Class<T> subType)

Returns the Class object on which it is invoked, after casting it to represent
a subclass of the given Class object. If the current Class object does not
represent a type that is a subtype of subType's type (or subType itself),
then ClassCastException is thrown.

The asSubclass method doesn't change the Class object at all; it simply changes the type of the
expression it is invoked on, so we can use the additional type informationjust as a cast does. For example,
here's how you can use asSubclass with forName to fix the previous problem:

Class<? extends String> c3 =
 Class.forName("java.lang.String").
 asSubclass(String.class); // OK

Note that you can't convert the unknown type token to be exactly Class<String>, but having
Class<?extends String> should be sufficient. Of course, String is not a practical example for using
reflection. A more typical example would be when you are loading an unknown class that implements a
known interface and you want to create an instance of that class; you'll see an example of this in the Game
class on page 436.

16.1.2. Class Inspection

The Class class provides a number of methods for obtaining information about a particular class. Some of
these provide information on the type of the classthe interfaces it implements, the class it extendsand others
return information on the members of the class, including nested classes and interfaces. You can ask if a class
represents an interface or an array, or whether a particular object is an instance of that class. We look at these
different methods over the next few pages.

The most basic Class methods are those that walk the type hierarchy, displaying information about the
interfaces implemented and the classes extended. As an example, this program prints the complete type
hierarchy of the type represented by a string passed as an argument:

import java.lang.reflect.*;

public class TypeDesc {
 public static void main(String[] args) {
 TypeDesc desc = new TypeDesc();
 for (String name : args) {
 try {
 Class<?> startClass = Class.forName(name);
 desc.printType(startClass, 0, basic);
 } catch (ClassNotFoundException e) {
 System.err.println(e); // report the error
 }
 }
}

// by default print on standard output
private java.io.PrintStream out = System.out;

332

332

// used in printType() for labeling type names
private static String[]
 basic = { "class", "interface",
 "enum", "annotation" },
 supercl = { "extends", "implements" },
 iFace = { null, "extends" };

private void printType(
 Type type, int depth, String[] labels)
{
 if (type == null) // stop recursion -- no supertype
 return;

 // turn the Type into a Class object
 Class<?> cls = null;
 if (type instanceof Class<?>)
 cls = (Class<?>) type;
 else if (type instanceof ParameterizedType)
 cls = (Class<?>)
 ((ParameterizedType)type).getRawType();
 else
 throw new Error("Unexpected non-class type");

 // print this type
 for (int i = 0; i < depth; i++)
 out.print(" ");
 int kind = cls.isAnnotation() ? 3 :
 cls.isEnum() ? 2 :
 cls.isInterface() ? 1 : 0;
 out.print(labels[kind] + " ");
 out.print(cls.getCanonicalName());

 // print generic type parameters if present
 TypeVariable<?>[] params = cls.getTypeParameters();
 if (params.length > 0) {
 out.print('<');
 for (TypeVariable<?> param : params) {
 out.print(param.getName());
 out.print(", ");
 }
 out.println("\b\b>");
 }
 else
 out.println();

 // print out all interfaces this class implements
 Type[] interfaces = cls.getGenericInterfaces();
 for (Type iface : interfaces) {
 printType(iface, depth + 1,
 cls.isInterface() ? iFace : supercl);
 }
 // recurse on the superclass
 printType(cls.getGenericSuperclass(),
 depth + 1, supercl);
 }
}

This program loops through the names provided on the command line, obtains the Class object for each
named type and invokes printType on each of them. It must do this inside a TRy block in case there is no
class of the specified name. Here is its output when invoked on the utility class java.util.HashMap:

class java.util.HashMap<K, V>

333

333

 implements java.util.Map<K, V>
 implements java.lang.Cloneable
 implements java.io.Serializable
 extends java.util.AbstractMap<K, V>
 implements java.util.Map<K, V>
 extends java.lang.Object

After the main method is the declaration of the output stream to use, by default System.out. The String
arrays are described shortly.

The printType method prints its own type parameter's description and then invokes itself recursively to
print the description of type's supertypes. Because we initially have general Type objects, we first have to
convert them to Class objects. The depth parameter keeps track of how far up the type hierarchy it has
climbed, indenting each description line according to its depth. The depth is incremented at each recursion
level. The labels array specifies how to label the classlabels[0] is the label if the type is a class;
labels[1] is for interfaces; labels[2] for enums; and labels[3] for annotation types. Note the order
in which we check what kind of type we havean enum type is a class, and an annotation type is an interface,
so we have to check for these more specific kinds of type first.

Three arrays are defined for these labels: basic is used at the top level, supercl is used for superclasses,
and iFace is used for superinterfaces of interfaces, which extend, not implement, each other. After we print
the right prefix, we use getCanonicalName to print the full name of the type. The Class class provides a
toString method, but it already adds "class" or "interface" in front. We want to control the prefix, so we
must create our own implementation. We look more at class names a little later.

Next, the type is examined to see if it is a generic type. All classes implement GenericDeclaration,
which defines the single method getTypeParameters that returns an array of TypeVariable objects.
If we have one or more type parameters then we print each of their names between angle brackets, just as they
would appear in your source code.

After printing the type description, printType invokes itself recursively, first on all the interfaces that the
original type implements and then on the superclass this type extends (if any), passing the appropriate label
array to each. Eventually, it reaches the Class object for Object, which implements no interfaces and
whose getGenericSuperclass method returns null, and the recursion ends.

Some simple query methods, a few of which you saw in the example, examine the kind of Class object that
you are dealing with:

public boolean isEnum()

Returns true if this Class object represents an enum.

public boolean isInterface()

Returns true if this Class object represents an interface (which includes
annotation types).

public boolean isAnnotation()

Returns true if this Class object represents an annotation type.

public boolean isArray()

Returns TRue if this Class object represents an array.

334

334

public boolean isPrimitive()

Returns true if this Class object is one of the Class objects representing
the eight primitive types or void.

public boolean isSynthetic()

Returns TRue if this Class object represents a synthetic type introduced by
the compiler. A synthetic program element is anything for which there does
not exist a corresponding construct in the source code.

public int getModifiers()

Returns the modifiers for the type, encoded as an integer. The value should
be decoded using the constants and methods of class Modifier; see Section
16.3 on page 416. Type modifiers include the access modifiers (public,
protected, private) as well as abstract, final, and static. For
convenience, whether a type is an interface is also encoded as a modifier.
Primitive types are always public and final. Array types are always
final and have the same access modifier as their component type. In this
context, an annotation is not considered a modifier because this encoding
scheme pre-dates the addition of annotations to the language.

You can also ask whether you have a top-level type or a nested type, and if nested, some information about
which kind of nested type:

public boolean isMemberClass()

Returns true if this Class object represents a type that is a member of
another typethat is, it is a nested type. If this method returns false, then
you have a top-level type. Despite the name, this method applies to nested
interfaces, as well as nested classes.

public boolean isLocalClass()

Returns true if this class represents a local inner class.

public boolean isAnonymousClass()

Returns true if this class represents an anonymous inner class.

Note that there is no way to determine if a member class is a static nested class or an inner class.

The example showed the two methods you can use to find out where a type fits in the type hierarchy:

public Type[] getGenericInterfaces()

Returns an array of Type objects for each of the interfaces implemented by
this type. If no interfaces are implemented you will get a zero-length array. If
an implemented interface is a parameterized type, then the Type object will
be an instance of ParameterizedType; otherwise, the Type object will
be a Class object.

public Type getGenericSuperclass()

335

335

Returns the Type object for the superclass of this type. This returns null if
this Class object represents the Object class, an interface, void, or
primitive type, since these have no superclass. If this Class object
represents an array, the Class object for Object is returned. By invoking
this recursively you can determine all superclasses of a class. If the
superclass is a parameterized type, the Type object will be an instance of
ParameterizedType; otherwise, the Type object will be a Class
object.

The legacy methods getInterfaces and getSuperclass are similar to the above except they return
Class objects instead of Type objects. Any parameterized type is returned as the Class object for the
corresponding raw type.

Given all the different kinds of types there are, some methods only apply to a subset of those different kinds:

public Class<?> getComponentType()

Returns the Class object representing the component type of the array
represented by this Class object. If this Class object doesn't represent an
array, null is returned. For example, given an array of int, the getClass
method will return a Class object for which isArray returns TRue and
whose getComponentType method returns the same object as
int.class.

public T[] getEnumConstants()

Returns the elements of this enum class, or null if this Class object does
not represent an enum.

public Class<?> getdeclaringClass()

Returns the Class object for the type in which this nested type was declared
as a member. If this type is not a nested member type, null is returned. For
example, when invoked on a local inner class or an anonymous inner class,
this method returns null.

public Class<?> getEnclosingClass()

Returns the Class object for the enclosing type in which this type was
declared. If this type is a top-level type, null is returned.

public Constructor<?> getEnclosingConstructor()

Returns the Constructor object (discussed shortly) for the constructor in
which this local or anonymous inner class was declared. If this isn't a local or
anonymous inner class declared in a constructor, then null is returned.

public Method getEnclosingMethod()

Returns the Method object (discussed shortly) for the method in which this
local or anonymous inner class was declared. If this isn't a local or
anonymous inner class declared in a method, then null is returned.

Exercise 16.1: Modify TypeDesc to skip printing anything for the Object class. It is redundant because

336

336

everything ultimately extends it. Use the reference for the Class object for the Object type.

Exercise 16.2: Modify TypeDesc to show whether the named type is a nested type, and if so, what other
type it is nested within.

16.1.3. Examining Class Members

The Class class contains a set of methods you can use to examine the class's components: its fields,
methods, constructors, and nested types. Special types are defined to represent each of these, which you will
learn about in detail in later sections: Field objects for fields, Method objects for methods,
Constructor objects for constructors, and for nested types, the Class objects you have already seen.

These methods come in four variants depending on whether you want all members or a particular member,
only public members or any members, only members declared in the current class or inherited members as
well.

You can request all the public members of a specific kind that are either declared in the class (interface) or
inherited, by using one of the following:[2]

[2] A number of methods return arrays of raw types, such as Class[] or Constructor[].
These methods should have been generified to return wildcard types: Class<?>[] or
Constructor<?>[].

public Constructor[] getConstructors()
public Field[] getFields()
public Method[] getMethods()
public Class[] getClasses()

Because constructors are not inherited, getConstructors returns Constructor objects only for public
constructors declared in the current class.

You can also ask for the members of a specific kind that are actually declared in the class (interface), as
opposed to being inherited. Such members need not be public:

public Constructor[] getDeclaredConstructors()
public Field[] getDeclaredFields()
public Method[] getDeclaredMethods()
public Class[] getDeclaredClasses()

In each case, if there is no member of that kind, you will get an empty array. The getClasses and
getdeclaredClasses methods return both nested classes and nested interfaces.

Requesting a particular member requires you to supply further information. For nested types this is simply the
name of the nested type and, in fact, there are no special methods to do this because Class.forName can
be used for this purpose. Particular fields are requested using their name:

public Field getField(String name)
public Field getDeclaredField(String name)

337

337

The first form finds a public field that is either declared or inherited, while the second finds only a declared
field that need not be public. If the named field does not exist, a NoSuchFieldException is thrown. Note
that the implicit length field of an array is not returned when these methods are invoked on an array type.

Particular methods are identified by their signaturetheir name and a sequence of Class objects representing
the number and type of their parameters. Remember that for a varargs method the last parameter will actually
be an array.

public Method
getMethod(String name, Class... parameterTypes)

public Method
getDeclaredMethod(String name, Class... parameterTypes)

Similarly, constructors are identified by their parameter number and types:

public Constructor<T>
getConstructor(Class... parameterTypes)

public Constructor<T>
getDeclaredConstructor(Class... parameterTypes)

In both cases, if the specified method or constructor does not exist, you will get a
NoSuchMethodException.

Note that when you ask for a single constructor you get a parameterized constructor type,
Constructor<T>, that matches the type of the Class object, while the array returned for a group of
constructors is not parameterized by T. This is because you can't create a generic array. Any constructor
extracted from the array is essentially of an unknown kind, but this only affects use of the invoke method,
which we discuss a little later.

All the above methods require a security check before they can proceed and so will interact with any installed
security managersee "Security" on page 677. If no security manager is installed then all these methods will be
allowed. Typically, security managers will allow any code to invoke methods that request information on the
public members of a typethis enforces the normal language level access rules. However, access to non-public
member information will usually be restricted to privileged code within the system. Note that the only
distinction made is between public and non-public memberssecurity managers do not have enough
information to enforce protected or package-level access. If access is not allowed, a SecurityException
is thrown.

The following program lists the public fields, methods, and constructors of a given class:

import java.lang.reflect.*;

 public class ClassContents {
 public static void main(String[] args) {
 try {
 Class<?> c = Class.forName(args[0]);
 System.out.println(c);
 printMembers(c.getFields());
 printMembers(c.getConstructors());
 printMembers(c.getMethods());
 } catch (ClassNotFoundException e) {
 System.out.println("unknown class: " + args[0]);
 }
 }

338

338

 private static void printMembers(Member[] mems) {
 for (Member m : mems) {
 if (m.getDeclaringClass() == Object.class)
 continue;
 String decl = m.toString();
 System.out.print(" ");
 System.out.println(strip(decl, "java.lang."));
 }
 }

 // ... definition of strip ...
}

We first get the Class object for the named class. We then get and print the arrays of member objects that
represent all the public fields, constructors, and methods of the class. The printMembers method uses the
Member object's toString method to get a string that describes the member, skipping members that are
inherited from Object (using getDeclaringClass to see which class the member belongs to) since these are
present in all classes and so are not very useful to repeat each time (strip removes any leading
"java.lang." from the name). Here is the output when the program is run on the Attr class from page
76:

class Attr
 public Attr(String)
 public Attr(String, Object)
 public String Attr.toString()
 public String Attr.getName()
 public Object Attr.getValue()
 public Object Attr.setValue(Object)

Exercise 16.3: Modify ClassContents to show information for all declared and all public inherited
members. Make sure you don't list anything twice.

16.1.4. Naming Classes

The Class objects in the TypeDesc program are obtained using the static method Class.forName,
which takes a string argument and returns a Class object for the type with that name. The name must be the
binary name of a class or interface, or else be a specially named array typethese are defined below.

Every type is represented by a number of different names. The actual class or interface name is the simple
name of the type. This is the shortest name you could write in your program to represent a given type. For
example, the simple name of java.lang.Object is Object, the simple name of the nested EnTRy
interface in the java.util.Map interface is EnTRy, the simple name of the type representing an array of
Object instances is Object[], and the simple name of an array of int is int[]. All types except for
anonymous inner classes have simple names. You can get the simple name of a type from the Class method
getSimpleName.

The canonical name of a type is its full name, as you would write it in your programs, including, if applicable,
the package and enclosing type in which the type was declared. For example, the canonical name of Object
is java.lang.Object; for the nested EnTRy interface it is java.util.Map.Entry; for an array of
Object instances it is java.lang.Object[]; and for an array of int is int[]. In more specific terms,
the canonical name of a top-level class or interface is its package name followed by dot, followed by its
simple name. The canonical name of a nested type is the canonical name of the type in which it is declared,
followed by dot, followed by its simple name. The canonical name of an array type is the canonical name of

339

339

its element type followed by []. Local inner classes and anonymous inner classes do not have canonical
names. You can get the canonical name of a type from the Class method getCanonicalName.

The canonical name is an example of a fully qualified namethe simple name qualified by the package and
enclosing type, if applicable. While simple names might be ambiguous in a given context, a fully qualified
name uniquely determines a type. Each type has only one canonical name, but nested types (and so arrays of
nested types) can have multiple fully qualified names. For example, the java.util.SortedMap interface
extends java.util.Map and inherits the nested Entry interface. Consequently, you can identify the
Entry type by the fully qualified name java.util.SortedMap.Entry.

The binary name of a class or interface (not array) is a name used to communicate with the virtual machine,
such as by passing it to Class.forName to ask the virtual machine for a specific Class object. The binary
name of a top-level class or interface is its canonical name. For nested types there is a special naming
convention, as you learned in "Implementation of Nested Types" on page 149. Static nested types and inner
classes (excluding local and anonymous inner classes) have a binary name that consists of the binary name of
their immediately enclosing type, followed by $ and the simple name of the nested or inner type. For
example, the binary name of the Entry interface is java.util.Map$Entry. For local inner classes, the
binary name is the binary name of the enclosing class, followed by $, then a number, and then its simple
name. For an anonymous inner class, the binary name is the binary name of the enclosing class, followed by $
and a number.[3] You get the binary name of a type from the Class method getName. This binary name is
what forName expects as a class or interface name.

[3] Since the binary name is not uniquely specified for local and anonymous classes, you
cannot use reflection to instantiate these classes in a portable way. Fortunately, it is
exceedingly rare that you would want to.

For their names, array types have a special notation, known as internal format because it is the format used
inside the virtual machine. But for some reason this notation is not considered a binary name. This notation
consists of a code representing the component type of the array, preceded by the character [. The component
types are encoded as follows:

B byte

C char

D double

F float

I int

J long

Lclassname; class or interface

S short

Z boolean

For example, an array of int is named [I, while an array of Object is named [Ljava.lang.Object;
(note the trailing semicolon). A multidimensional array is just an array whose component type is an array, so,
for example, a type declared as int[][] is named [[Ian array whose component type is named [I. These
internal format names can be passed to forName to obtain the class objects for array types, and it is this
name that getName returns for array types.

340

340

For primitive types and void, the simple name, canonical name, and binary name are all the samethe keyword
that presents that type, such as int, float, or voidand all the name methods return the same name. For
these types, Class objects cannot be obtained from forName. You must use the class literals, such as
int.class, or the TYPE field of the appropriate wrapper class, such as Void.TYPE. If a name
representing one of these types is used with forName, it is assumed to be a user-defined class or interface
and is unlikely to be found.

16.1.5. Obtaining Class Objects by Name

The forName method we have been using is a simpler form of the more general forName method:

public static Class<?> forName(String name, boolean initialize,
ClassLoader loader) tHRows ClassNotFoundException

Returns the Class object associated with the named class or interface, using
the given class loader. Given the binary name for a class or interface (in the
same format returned by getName) or an array name in internal format, this
method attempts to locate, load, and link the class or interface. The specified
class loader is used to load the class or interface. If loader is null, the
class is loaded through the system class loader. The class is initialized only if
initialize is TRue and it has not previously been initialized. For array
types, the component type of the array is loaded, but not initialized.

As this method description indicates, obtaining the Class object for a class can involve loading, linking, and
initializing the classa fairly complex process that is described further in Section 16.13 on page 435. The
simple Class.forName method uses the current class loaderthe one that loaded the current class in which
the forName invocation appearsand initializes the class if needed. If the class cannot be found then the
checked exception ClassNotFoundException is thrown. The exception can contain a nested exception
that describes the problem, which you can get from invoking getCause on the exception object. This will be
either the nested exception or null. Because of the complexities of loading, linking, and initializing a class,
these methods can also throw the unchecked exceptions LinkageError and
ExceptionInInitializerError.

16.1.6. Runtime Type Queries

When writing your programs you can check the type of an object by using instanceof or change the type
of an expression with a cast. In both cases you need to know the name of the type involved so you can write it
in the code. When working with reflection, you have only Class objects to work with, so operators like
instanceof and casts can't be used. The class Class provides several methods that provide functionality
analogous to the language level operators:

public boolean isInstance(Object obj)

Determines if obj is assignment compatible with this class. This is the
dynamic equivalent of the instanceof operator. It returns true if obj
could be assigned to a variable of the type represented by this Class object;
and false otherwise.

public T cast(Object obj)

Casts the object obj to the type represented by this Class object. If the cast
fails then ClassCastException is thrown. This is needed in some rare

341

341

circumstances when the type you want to cast to is represented by a type
parameter and so you can't use an actual language-level cast.

public boolean isAssignableFrom(Class<?> type)

Returns true if this Class object represents a supertype of type or type
itself; otherwise returns false.

16.2. Annotation Queries

You can ask about the annotations applied to a class or interface using methods that are similar to those used
for asking about members, but which differ slightly in the details. These methods are all part of the
AnnotatedElement interface. AnnotedElement is implemented by all the reflection classes that
represent program elements: Class, Field, Method, Constructor, and Package. The discussion here
applies to all these AnnotatedElement instances.

The annotation queries can only provide information on those annotations that are available at runtimethat is,
those annotations with a retention policy of RetentionPolicy.RUNTIME (see "Retention Policies" on
page 395).

You can ask for all the annotations present on an element, whether declared directly or inherited, by using
getAnnotations, which returns an array of Annotation instances. Or you can ask for only the directly
applied annotations using geTDeclaredAnnotations, which also returns an array of Annotation
instances. You can ask for a specific annotation using getAnnotation, which takes the type of the
annotation as an argument and returns the Annotation object or null if it is not present. You can ask
whether a specific annotation type is present on an element using the booleanisAnnotationPresent
method. In contrast to the similarly named methods for querying members, there is no notion of public versus
non-public annotations, and also no security checks.

The annotation instances that are returned are proxy objects that implement the interface defined by a given
annotation type. The methods of the annotation type can be invoked to obtain the annotation values for each
annotation element. For example, assuming our BugsFixed annotation type (see page 392) had a runtime
retention policy, then given

@BugsFixed({ "457605", "532456"})
class Foo { /* ... */ }

the code

Class<Foo> cls = Foo.class;
BugsFixed bugsFixed =
 (BugsFixed) cls.getAnnotation(BugsFixed.class);
String[] bugIds = bugsFixed.value();
for (String id : bugIds)
 System.out.println(id);

would print

457605
532456

342

342

If an annotation method represents an annotation element with a Class type, and that class can not be found
at runtime, then you will get a TypeNotPresentException (which is an unchecked exception that is
analogous to ClassNotFoundException).

Since the annotation type that is available at runtime could be different from the annotation type used to
annotate the class being inspected, it is possible that the two uses of the type are incompatible. If this occurs,
then trying to access an element of the annotation may throw an
AnnotationTypeMismatchException or IncompleteAnnotationException. If an element
type is an enum and the enum constant in the annotation is no longer present in the enum, then an
EnumConstantNotPresentException is thrown.

Exercise 16.4: Write a program that prints all the available annotations applied to a given type. (Only
annotations with a retention policy of RUNTIME will be available.)

Exercise 16.5: Expand ClassContents to include the available annotation information for each member.

16.3. The Modifier Class

The Modifier class defines int constants for all non-annotation modifiers: ABSTRACT, FINAL,
INTERFACE, NATIVE, PRIVATE, PROTECTED, PUBLIC, STATIC, STRICT, SYNCHRONIZED,
TRANSIENT, and VOLATILE. For each constant there is a corresponding query method
isMod(intmodifiers) that returns TRue if modifier mod is present in the specified value. For example,
if a field is declared

public static final int OAK = 0;

the value returned by its Field object's getModifiers method would be

Modifier.PUBLIC | Modifier.STATIC | Modifier.FINAL

The strictfp modifier is reflected by the constant STRICT. If code or a class is to be evaluated in strict
floating point (see "Strict and Non-Strict Floating-Point Arithmetic" on page 203), the modifiers for the
method, class, or interface will include the STRICT flag.

The query methods can be used to ask questions in a more symbolic fashion. For example, the expression

Modifier.isPrivate(field.getModifiers())

is equivalent to the more opaque expression

(field.getModifiers() & Modifier.PRIVATE) != 0

343

343

16.4. The Member classes

The classes Field, Constructor, and Method all implement the interface Member, which has four
methods for properties that all members share:

Class geTDeclaringClass()

Returns the Class object for the class in which this member is declared.

String getName()

Returns the name of this member.

int getModifiers()

Returns the language modifiers for the member encoded as an integer. This
value should be decoded using the Modifier class.

boolean isSynthetic()

Returns true if this member is a synthetic member that was created by the
compiler. For example, synthetic fields are often created in an inner class to
hold a reference to the enclosing instance, and synthetic "bridge" methods are
generated to support generic typessee Section A.3.1 on page 745.

Although a class or interface can be a member of another class, for historical reasons the class Class does
not implement Member, although it supports methods of the same name and contract.

The toString method of all Member classes includes the complete declaration for the member, similar to
how it would appear in your source code, including modifiers, type, and parameter types (where applicable).
For historical reasons, toString does not include generic type information. The toGenericString
method provides a more complete representation of the declaration of a member, including type parameters,
and all use of parameterized types and type variables. For methods and constructors, the tHRows list is also
included in the string.

16.5. Access Checking and AccessibleObject

The classes Field, Constructor, and Method are also all subclasses of the class
AccessibleObject, which lets you enable or disable the checking of the language-level access modifiers,
such as public and private. Normally, attempts to use reflection to access a member are subject to the
same access checks that would be required for regular, explicit codefor example, if you cannot access a field
directly in code, you cannot access it indirectly via reflection. You can disable this check by invoking
setAccessible on the object with a value of TRuethe object is now accessible, regardless of
language-level access control. This would be required, for example, if you were writing a debugger. The
methods are:

public void setAccessible(boolean flag)

Sets the accessible flag for this object to the indicated boolean value. A value
of true means that the object should suppress language-level access control
(and so will always be accessible); false means the object should enforce
language-level access control. If you are not allowed to change the
accessibility of an object a SecurityException is thrown.

344

344

public static void setAccessible(AccessibleObject[] array,
boolean flag)

A convenience method that sets the accessible flag for an array of objects. If
setting the flag of an object throws a SecurityException only objects
earlier in the array will have their flags set to the given value, and all other
objects are unchanged.

public boolean isAccessible()

Returns the current value of the accessible flag for this object.

16.6. The Field Class

The Field class defines methods for asking the type of a field and for setting and getting the value of the
field. Combined with the inherited Member methods, this allows you to find out everything about the field
declaration and to manipulate the field of a specific object or class.

The getGenericType method returns the instance of Type that represents the field's declared type. For a
plain type, such as String or int, this returns the associated Class objectString.class and
int.class, respectively. For a parameterized type like List<String>, it will return a
ParameterizedType instance. For a type variable like T, it will return a TypeVariable instance.

The getType legacy method returns the Class object for the type of the field. For plain types this acts the
same as getGenericType. If the field's declared type is a parameterized type, then getType will return
the class object for the erasure of the parameterized typethat is, the class object for the raw type. For example,
for a field declared as List<String>, getType will return List.class. If the field's declared type is a
type variable, then getType will return the class object for the erasure of the type variable. For example,
given class Foo<T>, for a field declared with type T, getType would return Object.class. If Foo were
declared as Foo<Textends Number>, then getType would return Number.class.

You can ask whether a field is an enum constant using isEnumConstant. You can also get and set the
value of a field using the get and set methods. There is a general-purpose form of these methods that take
Object arguments and return Object values, and more specific forms that deal directly with primitive
types. All of these methods take an argument specifying which object to operate on. For static fields the object
is ignored and can be null. The following method prints the value of a short field of an object:

public static void printShortField(Object o, String name)
 throws NoSuchFieldException, IllegalAccessException
{
 Field field = o.getClass().getField(name);
 short value = (Short) field.get(o);
 System.out.println(value);
}

The return value of get is whatever object the field references or, if the field is a primitive type, a wrapper
object of the appropriate type. For our short field, get returns a Short object that contains the value of
the fieldthat value is automatically unboxed for storing in the local variable value.

The set method can be used in a similar way. A method to set a short field to a provided value might look
like this:

345

345

public static void
 setShortField(Object o, String name, short nv)
 throws NoSuchFieldException, IllegalAccessException
{
 Field field = o.getClass().getField(name);
 field.set(o, nv);
}

Although set takes an Object parameter, we can pass a short directly and let a boxing conversion wrap it
in a Short object.

If the field of the specified object is not accessible and access control is being enforced, an
IllegalAccessException is thrown. If the passed object does not have a type that declares the
underlying field, an IllegalArgumentException is thrown. If the field is non-static and the passed
object reference is null, a NullPointerException is thrown. Accessing a static field can require
initializing a class, so it is also possible for an ExceptionInInitializerError to be thrown.

The Field class also has specific methods for getting and setting primitive types. You can invoke
getPrimitiveType and setPrimitiveType on a Field object, where PrimitiveType is the
primitive type name (with an initial uppercase letter). The get example just shown could have used the
statement

short value = field.getShort(o);

The set example could have used

field.setShort(o, nv);

and avoided the use of the wrapper object.

Field implements AnnotatedElement, and the annotations on a field can be queried as discussed in
Section 16.2 on page 414.

With some work you can use a Field object as a way to manipulate an arbitrary value, but you should avoid
this when possible. The language is designed to catch as many programming errors as possible when the
program is compiled. The less you write using indirections such as the Field object, the more your errors
will be prevented before they are compiled into code. Also, as you can see, it takes more reading to see what
is happening in the preceding code compared with what it would take if the name of the field were simply
used in the normal syntax.

16.6.1. Final Fields

Under normal circumstances attempting to set the value of a field declared as final will result in
IllegalAccessException being thrown. This is what you would expect: Final fields should never have
their value changed. There are special circumstancessuch as during custom deserialization (see page
554)where it makes sense to change the value of a final field. You can do this via reflection only on instance
fields, and only if setAccessible(true) has been invoked on the Field object. Note that it is not
enough that setAccessible(true) would succeed, it must actually be called.

346

346

This capability is provided for highly specialized contexts and is not intended for general usewe mention it
only for completeness. Changing a final field can have unexpected, possibly tragic consequences unless
performed in specific contexts, such as custom deserialization. Outside those contexts, changes to a final field
are not guaranteed to be visible. Even in such contexts, code using this technique must be guaranteed that
security will not thwart its work. Changing a final field that is a constant variable (see page 46) will never
result in the change being seen, except through the use of reflectiondon't do it!

Exercise 16.6: Create an Interpret program that creates an object of a requested type and allows the user
to examine and modify fields of that object.

16.7. The Method Class

The Method class, together with its inherited Member methods allows you to obtain complete information
about the declaration of a method:

public Type getGenericReturnType()

Returns the Type object for the type returned by this method. If the method
is declared void the returned object is void.class.

public Type[] getGenericParameterTypes()

Returns an array of Type objects with the type of each parameter of this
method, in the order in which the parameters are declared. If the method has
no parameters an empty array is returned.

public Type[] getGenericExceptionTypes()

Returns an array of Type objects for each of the exception types listed in the
throws clause for this method, in the order they are declared. If there are no
declared exceptions an empty array is returned.

There are also the legacy methods geTReturnType, getParameterTypes, and
getExceptionTypes that return Class objects instead of Type objects. As with Field.getType,
parameterized types and type variables are represented by the Class objects of their erasures.

Method implements AnnotatedElement, and the annotations on a method can be queried as discussed in
Section 16.2 on page 414. Additionally, Method provides the getParameterAnnotations method to
provide access to the annotations applied to the method's parameters. The getParameterAnnotations
method return an array of Annotation arrays, with each element of the outermost array corresponding to
the parameters of the method, in the order they are declared. If a parameter has no annotations then a
zero-length Annotation array is provided for that parameter. If the Method object represents a method
that is itself an element of an annotation, the geTDefaultValue method returns an Object representing
the default value of that element. If it is not an annotation element or if there is no default value, then null is
returned.

The Method class also implements GenericDeclaration and so defines the method
getTypeParameters which returns an array of TypeVariable objects. If a given Method object does
not present a generic method, then an empty array is returned.

You can ask a Method object if it is a varargs (variable-argument) method using the isVarArgs method.
The method isBridge asks if it is a bridge method (see Section A.3.1 on page 745).

347

347

The most interesting use of a Method object is to reflectively invoke it:

public Object invoke(Object onThis, Object... args) tHRows
IllegalAccessException, IllegalArgumentException,
InvocationTargetException

Invokes the method defined by this Method object on the object onThis,
setting the parameters of the method from the values in args. For non-static
methods the actual type of onThis determines the method implementation
that is invoked. For static methods onThis is ignored and is traditionally
null. The number of args values must equal the number of parameters for
the method, and the types of those values must all be assignable to those of
the method. Otherwise you will get an IllegalArgumentException.
Note that for a varargs method the last parameter is an array that you must fill
with the actual "variable" arguments you want to pass. If you attempt to
invoke a method to which you do not have access, an
IllegalAccessException is thrown. If this method is not a method of
the onThis object, an IllegalArgumentException is thrown. If
onThis is null and the method is not static, a
NullPointerException is thrown. If this Method object represents a
static method and the class has yet to be initialized, you might get an
ExceptionInInitializerError. If the method throws an exception,
an InvocationTargetException is thrown whose cause is that
exception.

When you use invoke, you can either pass primitive types directly, or use wrappers of suitable types. The
type represented by a wrapper must be assignable to the declared parameter type. You can use a Long,
Float, or Double to wrap a double argument, but you cannot use a Double to wrap a long or float
argument because a double is not assignable to a long or a float. The Object returned by invoke is
handled as with Field.get, returning primitive types as their wrapper classes. If the method is declared
void, invoke returns null.

Simply put, you can use invoke only to invoke a method with the same types and values that would be legal
in the language. The invocation

return str.indexOf(".", 8);

can be written using reflection in the following way:

Throwable failure;
try {
 Method indexM = String.class.
 getMethod("indexOf", String.class, int.class);
 return (Integer) indexM.invoke(str, ".", 8);
} catch (NoSuchMethodException e) {
 failure = e;
} catch (InvocationTargetException e) {
 failure = e.getCause();
} catch (IllegalAccessException e) {
 failure = e;
}
throw failure;

348

348

The reflection-based code has semantically equivalent safety checks, although the checks that are made by the
compiler for direct invocation can be made only at run time when you use invoke. The access checking may
be done in a somewhat different wayyou might be denied access to a method in your package by the security
manager, even if you could invoke that method directly.

These are good reasons to avoid using this kind of invocation when you can. It's reasonable to use invokeor
the getset methods of Fieldwhen you are writing a debugger or other generic applications that require
interpreting user input as manipulations of objects. A Method object can be used somewhat like a method
pointer in other languages, but there are better toolsnotably interfaces, abstract classes, and nested classesto
address the problems typically solved by method pointers in those languages.

Exercise 16.7: Modify your Interpret program to invoke methods on the object. You should properly
display any values returned or exceptions thrown.

16.8. Creating New Objects and the Constructor Class

You can use a Class object's newInstance method to create a new instance (object) of the type it
represents. This method invokes the class's no-arg constructor and returns a reference to the newly created
object. For a class object of type Class<T> the returned object is of type T.

Creating a new object in this way is useful when you want to write general code and let the user specify the
class. For example, you could modify the general sorting algorithm tester from "Designing a Class to Be
Extended" on page 108 so that the user could type the name of the class to be tested and use that as a
parameter to the forName lookup method. Assuming that the given class name was valid, newInstance
could then be invoked to create an object of that type. Here is a new main method for a general TestSort
class:

static double[] testData = { 0.3, 1.3e-2, 7.9, 3.17 };

public static void main(String[] args) {
 try {
 for (String name : args) {
 Class<?> classFor = Class.forName(name);
 SortDouble sorter
 = (SortDouble) classFor.newInstance();
 SortMetrics metrics
 = sorter.sort(testData);
 System.out.println(name + ": " + metrics);
 for (double data : testData)
 System.out.println("\t" + data);
 }
 } catch (Exception e) {
 System.err.println(e); // report the error
 }
}

This is almost exactly like TestSort.main (see page 112), but we have removed all type names. This
main method can be used to test any subclass of SortDouble that provides a no-arg constructor. You don't
have to write a main for each type of sorting algorithmthis generic main works for them all. All you need to
do is execute

java TestSort TestClass ...

349

349

for any sorting class (such as SimpleSortDouble) and it will be loaded and run.

Note that whereas newInstance returns a T, Class.forName returns a Class<?>. This means that the
actual kind of object returned by newInstance is unknown, so the cast is needed. You could instead get a
class object of the exact type needed using asSubclass, and invoke newInstance without needing a
cast:

Class<? extends SortDouble> classFor =
 Class.forName(name).asSubclass(SortDouble.class);
SortDouble sorter = classFor.newInstance();

In either case, if the named class is not a subtype of SortDouble, then a ClassCastException will be
thrown.

The newInstance method can throw a number of different exceptions if used inappropriately. If the class
doesn't have a no-arg constructor, is an abstract class, or interface, or if the creation fails for some other
reason, you will get an InstantiationException. If the class or the no-arg constructor is not
accessible an IllegalAccessException is thrown. If the current security policy disallows the creation
of a new object a SecurityException is thrown. Finally, creating a new object may require the class to
be initialized so it is also possible for an ExceptionInInitializerError to be thrown.

The newInstance method of Class invokes only a no-arg constructor. If you want to invoke any other
constructor then you must use the Class object to get the relevant Constructor object and invoke
newInstance on that Constructor, passing the appropriate parameters.

The Constructor class, together with its inherited Member methods allows you to obtain complete
information about the declaration of a constructor and allows you to invoke the constructor to obtain a new
instance of that class.

public Type[] getGenericParameterTypes()

Returns an array of Type objects for each of the parameter types accepted by
this constructor, in the order in which the parameters are declared. If the
constructor has no parameters an empty array is returned.

public Type[] getGenericExceptionTypes()

Returns an array of Type objects for each of the exception types listed in the
throws clause for this constructor, in the order they are declared. If there
are no declared exceptions an empty array is returned.

As with Method objects, the above are mirrored by the legacy versions getParameterTypes and
getExceptionTypes, respectively.

The Constructor class is similar to Method, implementing the same interfaces (AnnotatedElement
and GenericDeclaration) and defining similar methods (getParameterAnnotations and
isVarArgs).

To create a new instance of a class from a Constructor object, you invoke its newInstance method.

public T newInstance(Object... args) throws
InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException

350

350

Uses the constructor represented by this Constructor object to create and
initialize a new instance of the constructor's declaring class, with the
specified initialization arguments. A reference to the newly initialized object
is returned. Constructor.newInstance is very similar to
Method.invoke. The number of args values must equal the number of
parameters for the constructor, and the types of those values must all be
assignable to those of the constructor. Otherwise you will get an
IllegalArgumentException. Again, note that for a varargs
constructor the last parameter is an array that you must fill in with the actual
"variable" arguments you want to pass. If the declaring class is abstract you
will get an InstantiationException. If the constructor is one to
which you do not have access, you will get an
IllegalAccessException. If the constructor itself throws an
exception, you will get an InvocationTargetException whose cause
is that exception.

If your constructor object is referenced through a wildcard reference, then you must cast the object returned
by newInstance to the right type.

Exercise 16.8: Modify your Interpret program further to let users invoke constructors of an arbitrary
class, displaying any exceptions. If a construction is successful, let users invoke methods on the returned
object.

16.8.1. Inner Class Constructors

An inner class (excluding local and anonymous inner classes) never has a no-arg constructor, since the
compiler transforms all inner class constructors to take a first parameter that is a reference to the enclosing
object. This means that you can never use Class.newInstance to create an inner class object, so you
must use Constructor objects. The Constructor objects for an inner class reflect the transformed
code, not the code written by the programmer. For example, consider the BankAccount class and its
associated inner Action class from page 136. The Action class had a single constructor that took a
String parameter, representing the action that had occurred (withdraw, deposit, and so on), and a long
value, representing the amount involved. If you use getdeclaredConstructors to obtain that
Constructor object and print its signature using toString, you will get the following:

BankAccount$Action(BankAccount,java.lang.String,long)

Here you can see both the use of the $ naming convention for inner classes and the implicitly added
constructor argument that refers to the enclosing object. You can retrieve this constructor as follows:

Class<Action> actionClass = Action.class;
Constructor<Action> con =
 actionClass.getDeclaredConstructor(BankAccount.class,
 String.class, long.class);

If you want to construct an Action object you must supply an appropriate enclosing object reference as in

BankAccount acct = new BankAccount();
// ...
Action a = con.newInstance(acct, "Embezzle", 10000L);

351

351

16.9. Generic Type Inspection

As you saw in Figure 16-1 on page 400, there are a number of interfaces to represent the different kinds of
types that can exist in your programs. So far we have focussed on Class objects and Member objects since
they are the more commonly used reflection objects, and we have only mentioned the other kinds of Type
objects in passing. This section looks at those other Type interfaces in more detail.

16.9.1. Type Variables

The GenericDeclaration interface, which is implemented by Class, Method, and Constructor,
has the single method getTypeParameters, which returns an array of TypeVariable objects. The
TypeVariable interface is itself a generic interface, declared as

interface TypeVariable<D extends GenericDeclaration>

So, for example, the TypeVariable objects Method.getTypeParameters returns would be of type
TypeVariable<Method>.

Each type variable has a name returned by getName. It also has one or more upper bounds, obtained as a
Type[] from getBounds. Recall that if there is no explicit upper bound then the upper bound is Object.

The getGenericDeclaration method returns the Type object for the GenericDeclaration in
which the TypeVariable was declared. For example, the expression
TypeVariable.class.getTypeParameters()[0] would yield a TypeVariable object that
represents D in the declaration above. If you invoked getGenericDeclaration on this object, it would
return the Class object for the TypeVariable interface. More generally, for any
GenericDeclaration object g with at least one type parameter,

g.getTypeParameters()[i].getGenericDeclaration() == g

is always true (assuming i is a valid index of course).

Type variable objects are created on demand by the reflection methods that return them, and there is no
requirement that you receive the same TypeVariable object each time you ask for the same type variable.
However, the objects returned for a given type variable must be equivalent according to the equals method.
The bounds for a type variable are not created until getBounds is invoked, so getBounds can throw
TypeNotPresentException if a type used in the bounds cannot be found. It can also throw
MalformedParameterizedTypeException if any of the bounds refers to a ParameterizedType
instance that cannot be created for some reason.

16.9.2. Parameterized Types

Parameterized types, such as List<String>, are represented by objects that implement the
ParameterizedType interface. You can obtain the actual type arguments for the parameterized type from
getActualTypeArguments, which returns an array of Type objects. For example,
getActualTypeArguments invoked on the parameterized type List<String> would yield an array

352

352

of length one, containing String.class as its only element.

The getOwnerType method (which perhaps would have been better called geTDeclaringType) returns
the Type object for the type in which this ParameterizedType object is a member. If this is not a
member of another type then null is returned. This is analogous to the Class.getDeclaringClass
method except that a Type object is returned.

Like TypeVariable objects, ParameterizedType objects are created on demand and are not always
the same object, so you should use equals not == to check for equivalent parameterized type objects. Also,
when a parameterized type is created, all its type arguments are also created, and this applies recursively. Both
of the above methods will sometimes throw either TypeNotFoundException or
MalformedParameterizedTypeException.

Finally, ParameterizedType also has the method getrawType, which returns the Class object for the
raw type of the parameterized type. For example, if getrawType were invoked on the parameterized type
List<String> it would return List.class. Even though a raw type is by definition a non-generic class
or interface, getrawType returns a Type instance rather than a Class<?>, so a cast must be applied, as
you saw in the TypeDesc program.

16.9.3. Wildcards

A wildcard type parameter is represented by an instance that implements the WildcardType interface. For
example, given a parameterized type for List<?extends Number>, getActualTypeArguments will
give an array of length one containing a WildcardType object representing "?extends Number".

WildcardType has two methods: getUpperBounds and getLowerBounds, which return Type
arrays representing the upper and lower bounds of the wildcard, respectively. If no upper bound was specified,
the upper bound is Object. If a wildcard has no lower bound, getLowerBounds returns an empty array.

As with TypeVariable, the type objects for bounds are created on demand, so
TypeNotPresentException or MalformedParameterizedTypeException may be thrown.

16.9.4. Generic Arrays

The last of the type related interfaces is GenericArrayType. This represents array types in which the
component type is a parameterized type or a type variable.[4] GenericArrayType has a single method,
getGenericComponentType, which returns the Type for the component type of the array, which will be
either a ParameterizedType or a TypeVariable. For example, for a List<String>[] field,
getGenericType would return a GenericArrayType object whose getComponentType would
return a ParameterizedType for List<String>.

[4] You may recall that you cannot create such an array, but you are permitted to declare
variables of that type. The actual array creation can use only an unbounded wildcard type,
such as new List<?>[1]. When you first assign the new array to a more specific variable,
such as a List<String>[], you will get an "unchecked" warning because the compiler
cannot guarantee that the current or future contents of the array will actually be
List<String> objects. Such arrays are inherently unsafe and should be used with extreme
cautionyou should generally not create methods that return such arrays or take them as
parameters.

The component type object gets created when getGenericComponentType is invoked, so as you might
expect, you may get a TypeNotPresentException or

353

353

MalformedParameterizedTypeException.

16.9.5. String Representations of Type Objects

None of the interfaces described above define the toString method, or any other general way to obtain a
string representation of a typewith the exception of TypeVariable, which has the getName method.
However, all the type objects will have a toString method defined. With no specification of what
toString should return for Type objects, you cannot rely on toString to give a reasonable
representation of the type. If you want a string representation of a type, you will need to assemble it yourself
from the information available. For example, if a WildcardType object has no lower bound and an upper
bound of X, then the wildcard is "?extends X". For a ParameterizedType you can construct the string
representation using the raw type and the actual type parameter types.

Exercise 16.9: Use reflection to write a program that will print a full declaration of a named class, including
everything except the import statements, comments, and code for initializers, constructors, and methods. The
member declarations should appear just as you would write them. You will need to use all the reflection
classes you have seen. Also note that the toString methods of many of the reflection objects will not
provide the information you want in the correct format, so you will need to piece together the individual
pieces of information.

16.10. Arrays

An array is an object but has no membersthe implicit length "field" of an array is not an actual field. Asking
the Class object of an array for fields, methods, or constructors will all yield empty arrays. To create arrays
and to get and set the values of elements stored in an array, you can use the static methods of the Array
class. You can create arrays with either of two newInstance methods.

public static Object newInstance(Class<?> componentType, int
length)

Returns a reference to a new array of the specified length and with
component type componentType.

public static Object newInstance(Class<?> componentType, int[]
dimensions)

Returns a reference to a multidimensional array, with dimensions as specified
by the elements of the dimensions array and with the component type
componentType. If the dimensions array is empty or has a length
greater than the number of dimensions allowed by the implementation
(typically 255), an IllegalArgumentException is thrown.

For primitive types, use the class literal to obtain the Class object. For example, use byte.class to create
a byte array. The statement

byte[] ba = (byte[]) Array.newInstance(byte.class, 13);

is equivalent to

byte[] ba = new byte[13];

354

354

The second newInstance method takes an array of dimensions. The statement

int[] dims = { 4, 4 };
double[][] matrix =
 (double[][]) Array.newInstance(double.class, dims);

is equivalent to

double[][] matrix = new double[4][4];

Because the component type could itself be an array type, the actual dimensions of the created array can be
greater than that implied by the arguments to newInstance. For example, if intArray is a Class object
for the type int[], then the invocation Array.newInstance(intArray,13) creates a
two-dimensional array of type int[][]. When componentType is an array type, the component type of
the created array is the component type of componentType. So, in the previous example, the resulting
component type is int.

The static getLength method of Array returns the length of a given array.

The Array class also has static methods to get and set the individual elements of a specified array, similar
to the get and set methods of class Field. The general get and set methods work with Objects. For
example, given an int array, xa, the value xa[i] can be more laboriously and less clearly fetched as

Array.get(xa, i)

which returns an Integer object that must be unwrapped to extract the int value. You can set values in a
similar way: xa[i]= 23 is the same as the more awkward

Array.set(xa, i, 23);

If the object passed as the array is not actually an array, you will get an IllegalArgumentException. If
the value to be set is not assignable to the component type of the array (after unwrapping, if necessary), you
will get an IllegalArgumentException.

The Array class also supports a full set of getType and setType methods for all the primitive types, as
in

Array.setInt(xa, i, 23);

These avoid the need for intermediate wrapper objects.

355

355

16.10.1. Genericity and Dynamic Arrays

Recall the toArray method of the SingleLinkQueue class from Chapter 11. We promised back then
that we'd show you how to create the array directly (instead of having it passed in) by having the type token
for the actual type argument of the queue passed in. Here's a first attempt:

public E[] toArray_v1(Class<E> type) {
 int size = size();
 E[] arr = (E[]) Array.newInstance(type, size);
 int i = 0;
 for (Cell<E> c = head;
 c != null && i < size;
 c = c.getNext())
 arr[i++] = c.getElement();
 return arr;
}

This code works, but is less desirable than the generic version that took in the array to fill. The main problem
is that the above causes an "unchecked" warning from the compiler. As you may have already noticed, the
cast to E[] is a cast involving a type parameter and such casts have a different meaning at runtimethe actual
cast will be to Object, which is the erasure of E. Despite this, it is apparent that the code above is type-safe:
We ask for an array that has a component type of E and we try to use the returned object as such an array. The
existence of the "unchecked" warning is a consequence of a limitation in the Array API and can't be
avoided.

The second problem with the above is that it suffers from the same limitation as the original non-generic
version of toArrayit will only allow an array of the exact element type to be created, not an array of any
supertype. We can address this latter problem by turning the current version into a generic method, as we did
previously:

public <T> T[] toArray(Class<T> type) {
 int size = size();
 T[] arr = (T[]) Array.newInstance(type, size);
 int i = 0;
 Object[] tmp = arr;
 for (Cell<E> c = head;
 c != null && i < size;
 c = c.getNext())
 tmp[i++] = c.getElement();
 return arr;
}

This version still has the "unchecked" warningthat can't be avoidedbut it allows any Class object to passed
in and tries to return an array with that component type. As with the generic version that takes the array as an
argument, this version relies on the runtime checking of array stores to ensure that the component type passed
is actually compatible with the element type of the current queue.

So you're left with two approaches for dealing with the toArray requirement: have the caller pass in the
array and avoid warnings, but be forced to deal with an array of the wrong size, or have the caller pass in the
type token for the element type and create an array of the right size, but be subjected to the "unchecked"
warning. Or you could do as the collection classes do and combine both: Take in an array, but if it is the
wrong size dynamically create another one, and get the warning. While we normally advise that you avoid
"unchecked" warnings at all costs, the case of Array.newInstance is an exception.[5]

356

356

[5] For compilers that support "unchecked" as a warning type, this situation is an ideal
candidate for use of the @SuppressWarnings annotation that was mentioned on page 396,

Exercise 16.10: Modify Interpret further to allow users to specify a type and size of array to create; set
and get the elements of that array; and access fields and invoke methods on specific elements of the array.

16.11. Packages

If you invoke the getPackage method on a Class object, you get a Package object that describes the
package in which the class lives (the Package class is defined in java.lang). You can also get a
Package object by invoking the static method getPackage with the name of the package, or you can use
the static getPackages method which returns an array of all known packages in the system. The getName
method returns the full name of the package.

Package objects are used differently than the other reflective typesyou can't create or manipulate packages at
run time. You use Package objects to obtain information about a package, such as its purpose, who created
it, what version it is, and so on. We defer a discussion on this until we look at packages in detail in Chapter
18.

16.12. The Proxy Class

The Proxy class lets you create classes at runtime that implement one or more interfaces. This is an
advanced, rarely needed feature, but when needed it is quite useful.

Suppose, for example, you want to log calls to an object so that when a failure happens you can print the last
several methods invoked on the object. You could write such code by hand for a particular class, with a way
to turn it on for a particular object. But that requires custom code for each type of object you want to monitor,
as well as each object checking on each method invocation to see if calls should be logged.

You could instead write a general utility that used a Proxy-created class to log a call history. Objects created
by that class would implement the relevant interfaces, interposing code that you provide between the caller's
invocation of a method and the object's execution of it.

The Proxy model is that you invoke Proxy.getProxyClass with a class loader and an array of
interfaces to get a Class object for the proxy. Proxy objects have one constructor, to which you pass an
InvocationHandler object. You can get a Constructor object for this constructor from the Class
object and use newInstance (passing in an invocation handler) to create a proxy object. The created object
implements all the interfaces that were passed to getProxyClass, as well as the methods of Object. As a
shortcut to get a proxy object, you can invoke Proxy.newProxyInstance, which takes a class loader, an
array of interfaces, and an invocation handler. When methods are invoked on the proxy object, these method
invocations are turned into calls to the invocation handler's invoke method.

Given all that, here is how a general debug logging class might look:

public class DebugProxy implements InvocationHandler {
 private final Object obj; // underlying object
 private final List<Method> methods; // methods invoked
 private final List<Method> history; // viewable history

 private DebugProxy(Object obj) {
 this.obj = obj;

357

357

 methods = new ArrayList<Method>();
 history = Collections.unmodifiableList(methods);
 }

 public static synchronized Object proxyFor(Object obj) {
 Class<?> objClass = obj.getClass();
 return Proxy.newProxyInstance(
 objClass.getClassLoader(),
 objClass.getInterfaces(),
 new DebugProxy(obj));
 }
 public Object
 invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {
 methods.add(method); // log the call
 try {
 // invoke the real method
 return method.invoke(obj, args);
 } catch (InvocationTargetException e) {
 throw e.getCause();
 }
 }
 public List<Method> getHistory() { return history; }
}

If you want a debug proxy for a given object, you invoke proxyFor, as in

Object proxyObj = DebugProxy.proxyFor(realObj);

The object proxyObj would implement all the interfaces that realObj implements, plus the methods of
Object. The object proxyObj is also associated with the instance of DebugProxy that was createdthis
instance is the invocation handler for the proxy. When a method is invoked on proxyObj, this leads to an
invocation of the invoke method on the associated DebugProxy instance, passing proxyObj as the
proxy object, a Method object representing the method that was invoked, and all the arguments to the
method call. In our example invoke logs the invocation by adding it to its list of invoked methods and then
invokes the method on the underlying realObj object, which was stored in the obj field.

The (read-only) history of method invocations on the proxy object can be retrieved from its DebugProxy
instance. This is obtained by passing the proxy to the static Proxy class method
getInvocationHandler:

DebugProxy h =
 (DebugProxy) Proxy.getInvocationHandler(proxyObj);
List<Method> history = h.getHistory();

If we hadn't used the newProxyInstance shortcut we would have needed to write the following in
ProxyFor:

Class<?> objClass = obj.getClass();
Class<?> proxyClass = Proxy.getProxyClass(
 objClass.getClassLoader(),
 objClass.getInterfaces());
Constructor ctor = proxyClass.getConstructor(
 InvocationHandler.class);

358

358

return ctor.newInstance(new DebugProxy(obj));

The invocation handler's invoke method can throw Throwable. However, if invoke tHRows any
exception that the original method could not throw, the invoker will get an
UndeclaredThrowableException that returns the offending exception from its getCause method.

If you invoke getProxyClass twice with the same parameters (the same class loader and the same
interfaces in the same order) you will get back the same Class object. If the interfaces are in another order or
the class loader is different, you will get back different Class objects. The interface order matters because
two interfaces in the list can potentially have methods with the same name and signature. If this happens, the
Method object passed to invoke will have a declaring class of the first interface listed that declares that
method (defined by a depth-first search of interfaces and superinterfaces).

The declaring class for the public non-final methods of Objectequals, hashCode, and toStringis
always Object.class. The other methods of Object are not "proxied"; their methods are handled
directly by the proxy object itself, not via a call to invoke. Most importantly, this means that a lock on a
proxy object is just thata lock on the proxy. Whatever object or objects the proxy uses to do its work (for
example, in our case the underlying object whose methods are being traced) is not involved in the lock,
including any uses of wait, notifyAll, or notify.

You can ask if a Class object represents a dynamically generated proxy class using the static
Proxy.isProxyClass method.

16.13. Loading Classes

The runtime system loads classes when they are needed. Details of loading classes vary between
implementations, but most of them use a class path mechanism to search for a class referenced by your code
but not yet loaded into the runtime system. The class path is a list of places in which the system looks for class
files. This default mechanism works well in many cases, but much of the power of the Java virtual machine is
its ability to load classes from places that make sense to your application. To write an application that loads
classes in ways different from the default mechanism, you must provide a ClassLoader object that can get
the bytecodes for class implementations and load them into the runtime system.

For example, you might set up a game so that any player could write a class to play the game using whatever
strategy the player chooses. The design would look something like this:

359

359

To make this work, you would provide a Player abstract class that players would extend to implement their
strategy. When players were ready to try their strategy, they would send the compiled class's bytecodes to
your system. The bytecodes would need to be loaded into the game and the strategy evaluated by playing it
against others. The score would then be returned to the player.

At the server, the game program loads each waiting Player class, creates an object of the new type, and runs
its strategy against the game algorithm. When the results are known, they are reported to the player who
submitted the strategy.

The communication mechanism isn't specified here, but it could be as simple as electronic mail, with players
mailing their classes and receiving the results by return mail.

The interesting part is how the game program loads the compiled class files into its runtime system. This is
the province of a class loader, which must extend the abstract ClassLoader class and override its
findClass method:

protected Class<?> findClass(String name) throws
ClassNotFoundException

Locates the bytecodes representing the class name and loads them into the
virtual machine, returning the Class object created to represent that class.

In our example, we would provide a PlayerLoader class to read the bytecodes from the player classes and
install each of them as a usable class. The basic loop would look like this:

public class Game {
 public static void main(String[] args) {
 String name; // the class name
 while ((name = getNextPlayer()) != null) {
 try {
 PlayerLoader loader = new PlayerLoader();
 Class<? extends Player> classOf =
 loader.loadClass(name).
 asSubclass(Player.class);
 Player player = classOf.newInstance();
 Game game = new Game();
 player.play(game);
 game.reportScore(name);
 } catch (Exception e) {
 reportException(name, e);
 }

360

360

 }
 }

 // ... definition of other methods ...
}

Each new game creates a new PlayerLoader object to load the class for that run of the game. The new
loader loads the class, using loadClass, returning the Class object that represents it. That Class object
is used to create a new object of the Player class. Then we create a new game and play it. When the game
is finished, the score is reported. Without a new class loader for each run, attempting to load a class with the
same name as one that had already been loaded would return the original class. This would prevent players
from submitting updated versions of their classes with the same name.

You can obtain the class loader for a given Class object from its getClassLoader method. System
classes need not have a class loader, so the method may return null.

Class loaders define namespaces that separate the classes within an application. If two classes have different
class loaders then they are distinct classes, even if the binary data for the class was read from the same class
file. Each distinct class maintains its own set of static variables and modifications to the static variables of one
class have no effect on the other class.

Each thread has an associated ClassLoader that will be used by default to load classes. This context class
loader can be specified at thread creation; if none is specified the parent thread's context class loader will be
used. The context class loader of the first thread is typically the class loader used to load the applicationthe
system class loader. The Thread methods getContextClassLoader and
setContextClassLoader allow you to get and set the context class loader.

16.13.1. The ClassLoader Class

A class loader can delegate responsibility for loading a class to its parent class loader. The parent class loader
can be specified as a constructor argument to ClassLoader:

protected ClassLoader()

Creates a class loader with an implicit parent class loader of the system class
loader, as returned by getSystemClassLoader.

protected ClassLoader(ClassLoader parent)

Creates a class loader with the specified parent class loader.

A generic class loader, intended for use by others, should provide both forms of constructor to allow an
explicit parent to be set.

The system class loader is typically the class loader used by the virtual machine to load the initial application
class. You can get a reference to it from the static method getSystemClassLoader.

The bootstrap class loader is the class loader used to load those classes belonging to the virtual machine
(classes like Object, String, List, and so forth). These classes are often referred to as system classes, a
term which can lead to some confusion since the system classes are loaded by the bootstrap loader, whereas
application classes are loaded by the system class loader. The bootstrap loader may or may not be represented
by an actual ClassLoader object, so invoking getClassLoader on an instance of one of the system

361

361

classes will typically return null, indicating it was loaded by the bootstrap loader.

You can get the parent class loader from the method getParent. If the class loader's parent is the bootstrap
class loader, getParent may return null.

Class loaders are an integral part of the security architecturesee "Security" on page 677so creating a class
loader and asking for the parent class loader are checked operations that may throw a
SecurityException.

The primary method of ClassLoader is loadClass:

public Class<?> loadClass(String name) tHRows
ClassNotFoundException

Returns the Class object for the class with the specified binary name,
loading the class if necessary. If the class cannot be loaded you will get a
ClassNotFoundException.

The default implementation of loadClass, which is not usually overridden, attempts to load a class as
follows:

It checks to see if the class has already been loaded by invoking findLoadedClass.
ClassLoader maintains a table of Class objects for all the classes loaded by the current class
loader. If a class has been previously loaded findLoadedClass will return the existing Class
object.

1.

If the class has not been loaded it invokes loadClass on the parent class loader. If the current class
loader does not have a parent, the bootstrap class loader is used.

2.

If the class still has not been loaded, findClass is invoked to locate and load the class.3.

Note that the parent class loader is always given the chance to load the class first; only if the bootstrap loader
and the system class loader fail to load a given class will your custom class loader be given the opportunity to
do so. The implication is that your custom class loader must search for classes in places that are different from
those searched by the system or bootstrap class loaders.

The PlayerLoader class extends ClassLoader to override findClass:

class PlayerLoader extends ClassLoader {
 public Class<?> findClass(String name)
 throws ClassNotFoundException
 {
 try {
 byte[] buf = bytesForClass(name);
 return defineClass(name, buf, 0, buf.length);
 } catch (IOException e) {
 throw new ClassNotFoundException(e.toString());
 }
 }

 // ... bytesForClass, and any other methods ...
}

The findClass method generally has to perform two actions. First, it has to locate the bytecodes for the
specified class and load them into a byte arraythe job of bytesForClass in our example. Second, it uses
the utility method defineClass to actually load the class defined by those bytes into the virtual machine
and return a Class object for that class.

362

362

protected final Class<?> defineClass(String name, byte[] data,
int offset, int length) throws ClassFormatError

Returns a Class object for the named class whose binary representation is
held in data. Only the bytes in data from offset to
offset+length-1 are used to define the class. If the bytes in the
subarray do not conform to a valid class file format, a
ClassFormatError is thrown. The defineClass method is
responsible for storing the Class object into the table searched by
findLoadedClass.

An overloaded form of defineClass takes an additional ProtectionDomain argument, while the
above form uses a default protection domain. Protection domains define the security permissions for objects in
that domainagain see "Security" on page 677 for further details. Both forms of defineClass may throw
SecurityException.

Before you can define a class you have to read the bytes for the class, and that is the purpose of
bytesForClass:

protected byte[] bytesForClass(String name)
 throws IOException, ClassNotFoundException
{
 FileInputStream in = null;
 try {
 in = streamFor(name + ".class");
 int length = in.available(); // get byte count
 if (length == 0)
 throw new ClassNotFoundException(name);
 byte[] buf = new byte[length];
 in.read(buf); // read the bytes
 return buf;
 } finally {
 if (in != null)
 in.close();
 }
}

This method uses streamFor (not shown) to get a FileInputStream to the class's bytecodes, assuming
that the bytecodes are in a file named by the class name with a ".class" appendedstreamFor knows
where to search for the class files to be loaded. We then create a buffer for the bytes, read them all, and return
the buffer.

When the class has been successfully loaded, findClass returns the new Class object returned by
defineClass. There is no way to explicitly unload a class when it is no longer needed. You simply stop
using it, allowing it to be garbage-collected when its ClassLoader is unreachable.

Exercise 16.11: Expand on Game and Player to implement a simple game, such as tic-tac-toe. Score some
Player implementations over several runs each.

16.13.2. Preparing a Class for Use

The class loader assists in only the first stage of making a class available. There are three steps in all:

Loading Getting the bytecodes that implement the class and creating a Class object.1.

363

363

Linking Verifying that the class's bytecodes conform to the language rules, preparing the virtual
machine by allocating space for static fields, and (optionally) resolving all references in the class by,
if necessary, loading the classes referred to.

2.

Initialization Initializing the superclass (if necessary, including loading and linking it), then executing
all the static initializers and static initialization blocks of the class.

3.

The Class object returned by defineClass only represents a loaded classit has not yet been linked. You
can explicitly link by invoking the (misnamed) resolveClass method:

protected final void resolveClass(Class<?> c)

Links the specified class if it has not already been linked.

The loadClass method we described does not resolve the class that is loaded. A protected, overloaded
form of loadClass takes an additional boolean flag indicating whether or not to resolve the class before
returning. The virtual machine will ensure that a class is resolved (linked) before it is initialized.

A class must be initialized immediately before the first occurrence of: an instance of the class being created; a
static method of the class being invoked; or a non-final static field of the class being accessed. This includes
the use of reflection methods to perform those actions. Additionally, before an assert statement is executed
inside a nested type, the enclosing top-level class (if there is one) must be initialized. Using reflection to
directly load a class may also trigger initializationsuch as use of Class.forName(name)but note that
simple use of a class literal does not trigger initialization.

16.13.3. Loading Related Resources

Classes are the primary resources a program needs, but some classes need other associated resources, such as
text, images, or sounds. Class loaders have ways to find class resources, and they can use the same
mechanisms to get arbitrary resources stored with the class. In our game example, a particular playing strategy
might have an associated "book" that tells it how to respond to particular situations. The following code, in a
BoldPlayer class, would get an InputStream for such a book:

String book = "BoldPlayer.book";
InputStream in;
ClassLoader loader = this.getClass().getClassLoader();
if (loader != null)
 in = loader.getResourceAsStream(book);
else
 in = ClassLoader.getSystemResourceAsStream(book);

System resources are associated with system classes (the classes that may have no associated class loader
instance). The static ClassLoader method getSystemResourceAsStream returns an
InputStream for a named resource. The preceding code checks to see whether it has a class loader. If it
does not, the class has been loaded by the bootstrap class loader; otherwise, it uses the class loader's
getresourceAsStream method to turn its resource name into a byte input stream. The resource methods
return null if the resource is not found.

The Class class provides a getresourceAsStream method to simplify getting resources from a class's
class loader. The preceding code could be written more simply as

String book = "BoldPlayer.book";
InputStream in = BoldPlayer.class.getResourceAsStream(book);

364

364

Resource names must be made up of one or more valid identifiers separated by / characters, specifying a path
to the resource. Typically, a class loader will search for resources in the same places it will search for class
files.

Two other resource methodsgeTResource and getSystemResourcereturn URL objects that name the
resources. The class java.net.URL is covered briefly on page 725; it provides methods to use uniform
resource locators to access resources. You can invoke the getContents method on the URL objects
returned by the class loader methods to get an object that represents the contents of that URL.

The getresources method returns a java.util.Enumeration object (an older variant of the
Iterator you've seen before) that can step through URL objects for all the resources stored under a given
name. The static method getSystemResources does the same for system resources.

The resource-getting methods first ask the parent class loader for the resource, or they ask the bootstrap class
loader if there is no parent. If the resource cannot be found, then findResource or findResources is
invoked. Just as loadClass is built on top of a findClass that you provide when you subclass
ClassLoader, so the resource methods are built on top of two methods that you can override to find
resources:

public URL findResource(String name)

Returns a URL object for the resource of the given name, or null if none
was found. If there are multiple resources of the same name the
implementation determines which should be returned. The default
implementation in ClassLoader always returns null.

public Enumeration<URL> findResources(String name)

Returns an Enumeration of URL objects for all the resources of the given
name. The default implementation in ClassLoader returns an enumeration
through zero resources.

Here is a findResource for PlayerLoader:

public java.net.URL findResource(String name) {
 File f = fileFor(name);
 if (!f.exists())
 return null;
 try {
 return f.toURL();
 } catch (java.net.MalformedURLException e) {
 return null; // shouldn't happen
 }
}

The fileFor method is analogous to the streamFor method of PlayerLoader. It returns a
java.io.File object that corresponds to the named resource in the file system. If the named file actually
exists, then the URL for the resource is created from the path. (The File class represents a pathname in the
file systemsee "The File Class" on page 543.)

The BoldPlayer class might come with a BoldPlayer.book that can be found in the same place as the
class file. You can replace this version with your own by simply placing yours in a location where it will be

365

365

found first by the system class loader or the bootstrap loader.

Exercise 16.12: Modify your results for Exercise 16.11 to allow player strategies to use attached resources by
implementing findResource and findResources.

16.14. Controlling Assertions at Runtime

In Chapter 12 you learned about assertions and how they can be turned on or off through command-line
options that you pass to the virtual machine (see Section 12.10 on page 300). You can also affect assertion
evaluation from running code, although this is rarely required. You will probably need to do this only if you
are writing a harness for running other code and must provide your users with options to manage assertions.
Such manipulation is done with methods on ClassLoader:

public void setDefaultAssertionStatus(boolean enabled)

Sets the default assertion status for all classes loaded in this loader. Child
loaders are not affected, whether they exist at the time this method is invoked
or after. The initial default assertion status for a class loader is false.

public void setPackageAssertionStatus(String packageName,
boolean enabled)

Sets the default assertion status for all classes in the given package and it's
subpackages that are loaded in this loader. A null package name means the
unnamed package for this class loadersee Chapter 18, page 468.

public void setClassAssertionStatus(String className, boolean
enabled)

Sets the default assertion status for the given class and for all its nested
classes when loaded in this loader. You can only name top-level classes;
nested classes are turned off and on via their enclosing class.

public void clearAssertionStatus()

Clears (turns off) all assertions for this class loader, wiping clear any
previous settings, whether from method invocations or the command line.

In all cases the settings only apply to classes that are loaded and initialized in the futureyou cannot change the
assertion status of a class once it has been loaded. More specifically, the assertion status of a class is
established during initialization: after initialization of the superclass, but before execution of any static
initializers.

As with the command-line options, the class-specific declarations have precedence over the package-specific
declarations, which in turn have precedence over the class loader's default status. In effect the command-line
options simply request the virtual machine to invoke the appropriate method on the class loader. So the
command-line options

-da:com.acme.Evaluator -ea:com.acme...

366

366

are equivalent to the calls

loader.setClassAssertionStatus("com.acme.Evaluator", false);
loader.setPackageAssertionStatus("com.acme", true);

where loader is the class loader that will be used. (Note that the methods do not use the ... syntax that the
command line uses because it is apparent whether a name refers to a package or a class.)

Be and not seem.

Ralph Waldo Emerson

Chapter 17. Garbage Collection and Memory

Civilization is a limitless multiplication of unnecessary necessaries.

Mark Twain

The Java virtual machine uses a technique known as garbage collection to determine when an object is no
longer referenced within a program, and so can be safely reclaim466466ed to free up memory space. This
chapter teaches the basic ideas behind garbage collection, how the programmer can be involved in the garbage
collection process, and how special reference objects can be used to influence when an object may be
considered garbage.

17.1. Garbage Collection

Objects are created with new, but there is no corresponding delete operation to reclaim the memory used
by an object. When you are finished with an object, you simply stop referring to itchange your reference to
refer to another object or to null, or return from a method so its local variables no longer exist and hence
refer to nothing. Objects that are no longer referenced are termed garbage, and the process of finding and
reclaiming these objects is known as garbage collection.

The Java virtual machine uses garbage collection both to ensure any referenced object will remain in memory,
and to free up memory by deallocating objects that are no longer reachable from references in executing code.
This is a strong guaranteean object will not be collected if it can be reached by following a chain of references
starting with a root reference, that is, a reference directly accessible from executing code.

In simple terms, when an object is no longer reachable from any executable code, the space it occupies can be
reclaimed. We use the phrase "can be" because space is reclaimed at the garbage collector's discretion, usually
only if more space is needed or if the collector wants to avoid running out of memory. A program may exit
without running out of space or even coming close and so may never need to perform garbage collection. An
object is "no longer reachable" when no reference to the object exists in any variable of any currently
executing method, nor can a reference to the object be found by starting from such variables and then
following each field or array element, and so on.

Garbage collection means never having to worry about dangling references. In systems in which you directly
control when objects are deleted, you can delete an object to which some other object still has a reference.
That other reference is now dangling, meaning it refers to space that the system considers free. Space that is
thought to be free might be allocated to a new object, and the dangling reference would then reference

367

367

something completely different from what the object thought it referenced. This situation could cause all
manner of havoc when the program uses the values in that space as if they were part of something they are
not. Garbage collection solves the dangling reference problem for you because an object that's still referenced
somewhere will never be garbage-collected and so will never be considered free. Garbage collection also
solves the problem of accidentally deleting an object multiple timessomething that can also cause havoc.

Garbage is collected without your intervention, but collecting garbage still takes work. Creating and collecting
large numbers of objects can interfere with time-critical applications. You should design such systems to be
judicious in the number of objects they create and so reduce the amount of garbage to be collected.

Garbage collection is not a guarantee that memory will always be available for new objects. You could create
objects indefinitely, place them in lists, and continue doing so until there is no more space and no
unreferenced objects to reclaim. You could create a memory leak by, for example, allowing a list of objects to
refer to objects you no longer need. Garbage collection solves many, but not all, memory allocation problems.

17.2. A Simple Model

Garbage collection is easier to understand with an explicit model so this section describes a simple one, but
practical garbage collectors are far more sophisticated. Garbage collection is logically split into two phases:
separating live objects from dead objects and then reclaiming the storage of the dead ones. Live objects are
those that are reachable from running codethe objects that some action of your code can still potentially use.
Dead objects are the garbage that can be reclaimed.

One obvious model of garbage collection is reference counting: When object X references object Y, the
system increments a counter on Y, and when X drops its reference to Y, the system decrements the counter.
When the counter reaches zero, Y is no longer live and can be collected, which will decrement the counts of
any other objects to which Y refers.

Reference counting fails in the face of cycles, in which loops are created in the references. If X and Y
reference each other, neither object's counter will ever become zero, and so neither X nor Y will ever be
collected, nor will anything to which either object refers, directly or indirectly. Most garbage collectors do not
use reference counting for this and other reasons.

The simplest model of garbage collection not subject to this problem is called mark-and-sweep. The name
refers to the way the two phases of garbage collection are implemented. To find which objects are live, the
garbage collector first determines a set of roots that contains the directly reachable objects: References in local
variables on the stack, for example, are reachable because you can use those variables to manipulate the
object. Objects referred to by local variables are therefore clearly live.

Once a set of roots is determined, the collector will mark the objects referenced by those roots as reachable. It
will then examine references in each of those objects. If an object referred to by such a reference is already
marked reachable from the first step, it is ignored. Otherwise. the object is marked reachable and its references
are examined. This process continues until no more reachable objects remain unmarked. After this marking
process is complete, the collector can reclaim the dead objects (those which are not marked) by sweeping
them away.

Any change to the interconnection of objects during a run of mark-and-sweep will clearly interfere with the
collection process. A marking run can miss an object that was unreachable at the beginning of the marking
process, but which is assigned to a reachable reference in the middle. Running a basic mark-and-sweep pass
requires freezing execution of the program, at least during the marking phase.

There are other problems with mark-and-sweep. Garbage collection is a complex area of research with no
easy or universal answers. We present mark-and-sweep as a relatively simple mental model for you to use to

368

368

understand garbage collection. Each virtual machine has its own collection strategy, and some let you choose
among several. Use this mark-and-sweep model as a mental model onlydo not assume that this is how any
particular virtual machine actually works.

17.3. Finalization

You won't normally notice when an orphaned object's space is reclaimed"it just works." But a class can
implement a finalize method that is executed before an object's space is reclaimedsee "Strengths of
Reference and Reachability" on page 455. Such a finalize method gives you a chance to use the state
contained in the object to reclaim other non-memory resources. The finalize method is declared in the
Object class:

protected void finalize() tHRows Throwable

Is invoked by the garbage collector after it determines that this object is no
longer reachable and its space is to be reclaimed. This method might clean up
any non-memory resources used by this object. It is invoked at most once per
object, even if execution of this method causes the object to become
reachable again and later it becomes unreachable again. There is no
guarantee, however, that finalize will be called in any specific time
period; it may never be called at all. This method is declared to throw any
exception but if an exception occurs it is ignored by the garbage collector.
The virtual machine makes no guarantees about which thread will execute the
finalize method of any given object, but it does guarantee that the thread
will not hold any user-visible synchronization locks.

You should only rarely need to write a finalize method, and when you do, you should write it with great
care. If your object has become garbage it is quite possible that other objects to which it refers are also
garbage. As garbage, they may have been finalized before your finalize method is invoked and may
therefore be in an unexpected state.

Garbage collection collects only memory. When you are dealing with non-memory resources that are not
reclaimed by garbage collection, finalizers look like a neat solution. For example, open files are usually a
limited resource, so closing them when you can is good behavior. But this usually cannot wait until the
finalize phase of garbage collection. The code that asks you to perform an operation that opens a file
should tell you when it's donethere is no guarantee that your object holding the open file will be collected
before all the open file resources are used up.

Still, your objects that allocate external resources could provide a finalize method that cleans them up so
that the class doesn't itself create a resource leak. For example, a class that opens a file to do its work should
have some form of close method to close the file, enabling programmers using that class to explicitly
manage the number-of-open-files resource. The finalize method can then invoke close. Just don't rely
on this to prevent users of the class from having problems. They might get lucky and have the finalizer
executed before they run out of open files, but that is riskyfinalization is a safety-net to be used as a last resort,
after the programmer has failed to release the resource manually. If you were to write such a method, it might
look like this:

public class ProcessFile {
 private FileReader file;

 public ProcessFile(String path) throws
 FileNotFoundException
 {
 file = new FileReader(path);

369

369

 }

 // ...

 public synchronized void close() throws IOException {
 if (file != null) {
 file.close();
 file = null;
 }
 }

 protected void finalize() throws Throwable {
 try {
 close();
 } finally {
 super.finalize();
 }
 }
}

Note that close is carefully written to be correct if it is invoked more than once. Otherwise, if someone
invoked close, finalizing the object would cause another close on the file, which might not be allowed.

Note also that, in this example, finalize invokes super.finalize in a finally clause. Train
yourself so that you always write that invocation in any finalize method you write. If you don't invoke
super.finalize, you may correctly finalize your own part of the object, but the superclass's part will not
get finalized. Invoking super.finalize is one of those good habits you should adopt even when your
class doesn't extend any other class. In addition to being good training, invoking super.finalize in such
a case means that you can always add a superclass to a class like ProcessFile without remembering to
examine its finalize method for correctness. Invoking the superclass's finalize method in a finally
clause ensures that the superclass's cleanup will happen even if your cleanup causes an exception.

The garbage collector may reclaim objects in any order or it may never reclaim them. Memory resources are
reclaimed when the garbage collector thinks the time is appropriate. Not being bound to an ordering
guarantee, the garbage collector can operate in whatever manner is most efficient, and that helps minimize the
overhead of garbage collection. You can, if necessary, invoke the garbage collector to try to force earlier
collection using System.gc or Runtime.gc, as you'll see in the next section, but there is no guarantee
that garbage collection will actually occur.

When an application exits, no further garbage collection is performed, so any objects that have not yet been
collected will not have their finalize methods invoked. In many cases this will not be a problem. For
example, on most systems when the virtual machine exits, the underlying system automatically closes all open
files and sockets. However, for non-system resources you will have to invent other solutions. (Temporary files
can be marked as "delete on exit," which solves one of the more common issuessee "The File Class" on page
543.)

Reference queuesdiscussed on page 459provide a better way of performing clean-up actions when an object is
it about to be, or has been, reclaimed.

17.3.1. Resurrecting Objects during finalize

A finalize method can "resurrect" an object by making it referenced againfor example, by adding it to a
static list of objects. Resurrection is discouraged, but there is nothing the system can do to stop you.

370

370

However, the virtual machine invokes finalize at most once on any object, even if that object becomes
unreachable more than once because a previous finalize resurrected it. If resurrecting objects is important
to your design, the object would be resurrected only onceprobably not the behavior you wanted.

If you think you need to resurrect objects, you should review your design carefullyyou may uncover a flaw. If
your design review convinces you that you need something like resurrection, the best solution is to clone the
object or create a new object, not to resurrect it. The finalize method can insert a reference to a new
object that will continue the state of the dying object rather than a reference to the dying object itself. Being
new, the cloned object's finalize method will be invoked in the future (if needed), enabling it to insert yet
another copy of itself in yet another list, ensuring the survival, if not of itself, at least of its progeny.

17.4. Interacting with the Garbage Collector

Although the language has no explicit way to dispose of unwanted objects, you can directly invoke the
garbage collector to look for unused objects. The Runtime class, together with some convenience methods
in the System class, allows you to invoke the garbage collector, request that any pending finalizers be run, or
query the current memory state:

public void gc()

Asks the virtual machine to expend effort toward recycling unused objects so
that their memory can be reused.

public void runFinalization()

Asks the virtual machine to expend effort running the finalizers of objects
that it has found to be unreachable but have not yet had their finalizers run.

public long freeMemory()

Returns an estimate of free bytes in system memory.

public long totalMemory()

Returns the total bytes in system memory.

public long maxMemory()

Returns the maximum amount of memory, in bytes, that the virtual machine
will ever attempt to use. If there is no limit, Long.MAX_VALUE is returned.
There is no method to set the maximum; a virtual machine will typically have
a command-line or other configuration option to set the maximum.

To invoke these methods you need to obtain a reference to the current Runtime object via the static method
Runtime.getRuntime. The System class supports static gc and runFinalization methods that
invoke the corresponding methods on the current Runtime; in other words, System.gc() is equivalent to
Runtime.getRuntime().gc().

The garbage collector may not be able to free any additional memory when Runtime.gc is invoked. There
may be no garbage to collect, and not all garbage collectors can find collectable objects on demand. So
invoking the garbage collector may have no effect whatsoever. However, before creating a large number of
objectsespecially in a time-critical application that might be affected by garbage-collection overheadinvoking
gc may be advisable. Doing so has two potential benefits: You start with as much free memory as possible,

371

371

and you reduce the likelihood of the garbage collector running during the task. Here is a method that
aggressively frees everything it can at the moment:

public static void fullGC() {
 Runtime rt = Runtime.getRuntime();
 long isFree = rt.freeMemory();
 long wasFree;
 do {
 wasFree = isFree;
 rt.runFinalization();
 rt.gc();
 isFree = rt.freeMemory();
 } while (isFree > wasFree);
}

This method loops while the amount of freeMemory is being increased by successive calls to
runFinalization and gc. When the amount of free memory doesn't increase, further calls will likely do
nothing.

You will not usually need to invoke runFinalization, because finalize methods are called
asynchronously by the garbage collector. Under some circumstances, such as running out of a resource that a
finalize method reclaims, it is useful to force as much finalization as possible. But remember, there is no
guarantee that any object actually awaiting finalization is using some of that resource, so
runFinalization may be of no help.

The fullGC method is too aggressive for most purposes. In the unusual circumstance that you need to force
garbage collection, a single invocation of the System.gc method will gather most if not all of the available
garbage. Repeated invocations are progressively less productiveon many systems they will be completely
unproductive.

Exercise 17.1: Write a program to examine the amount of memory available on start up and after allocation of
a number of objects. Try invoking the garbage collector explicitly to see how the amount of free memory
changesmake sure you don't hold references to the newly allocated objects of course.

17.5. Reachability States and Reference Objects

An object can be garbage collected only when there are no references to it, but sometimes you would like an
object to be garbage collected even though you may have a specific reference to it. For example, suppose you
are writing a web browser. There will be images that have been seen by the user but that are not currently
visible. If memory becomes tight, you can theoretically free up some memory by writing those images to disk,
or even by forgetting about them since you can presumably refetch them later if needed. But since the objects
representing the images are referenced from running code (and hence reachable) they will not be released.
You would like to be able to have a reference to an object that doesn't force the object to remain reachable if
that is the only reference to the object. Such special references are provided by reference objects.

A reference object is an object whose sole purpose is to maintain a reference to another object, called the
referent. Instead of maintaining direct references to objects, via fields or local variables, you maintain a direct
reference to a reference object that wraps the actual object you are interested in. The garbage collector can
determine that the only references to an object are through reference objects and so can decide whether to
reclaim that objectif the object is reclaimed then, the reference object is usually cleared so that it no longer
refers to that object. The strength of a reference object determines how the garbage collector will
behavenormal references are the strongest references.

372

372

17.5.1. The Reference Class

The classes for the reference object types are contained in the package java.lang.ref. The primary class
is the generic, abstract class Reference<T>, which is the superclass of all the specific reference classes. It
has four methods:

public T get()

Returns this reference object's referent object.

public void clear()

Clears this reference object so it has no referent object.

public boolean enqueue()

Adds this reference object to the reference queue with which it is registered,
if any. Returns TRue if the reference object was enqueued and false if
there is no registered queue or this reference object was already enqueued.

public boolean isEnqueued()

Returns true if this reference object has been enqueued (either by the
programmer or the garbage collector), and false otherwise.

We defer a discussion of reference queues until Section 17.5.3 on page 459.

Subclasses of Reference provide ways to bind the referent object to the reference objectthe existing
subclasses do this with a constructor argument. Once an object has been wrapped in a reference object you
can retrieve the object via get (and thus have a normal strong reference to it) or you can clear the reference,
perhaps making the referent unreachable. There is no means to change the object referred to by the reference
object and you cannot subclass Reference directly.

17.5.2. Strengths of Reference and Reachability

In decreasing order of strength, the kinds of reference objects available to you are SoftReference<T>,
WeakReference<T>, and PhantomReference<T>. These correspond to the reachability stages an
object can pass through:

An object is strongly reachable if it can be reached through at least one chain of strong references (the
normal kind of references).

•

An object is softly reachable if it is not strongly reachable, but is reachable through at least one chain
containing a soft reference.

•

An object is weakly reachable if it is not softly reachable, but is reachable through at least one chain
containing a weak reference.

•

An object is phantom reachable when it is not weakly reachable, has been finalized (if necessary), but
is reachable through at least one chain containing a phantom reference.

•

Finally, an object is unreachable if it is not reachable through any chain.•

Once an object becomes weakly reachable (or less), it can be finalized. If after finalization the object is
unreachable, it can be reclaimed.

Objects need not actually go through all these stages. For example, an object that is reachable only through

373

373

strong references becomes unreachable when it is no longer strongly reachable.

The reachability stages of an object trigger behavior in the garbage collector appropriate to the corresponding
reference object types:

A softly reachable object may be reclaimed at the discretion of the garbage collector. If memory is
low, the collector may clear a SoftReference object so that its referent can be reclaimed. There
are no specific rules for the order in which this is done (but a good implementation will prefer keeping
recently used or created references, where "used" is defined as "invoked get"). You can be sure that
all SoftReferences to softly reachable objects will be cleared before an OutOfMemoryError
is thrown.

•

A weakly reachable object will be reclaimed by the garbage collector. When the garbage collector
determines that an object is weakly reachable, all WeakReference objects that refer to that object
will be cleared. The object then becomes finalizable and after finalization will be reclaimed (assuming
it is not resurrected) unless it is phantom reachable.

•

A phantom reachable object isn't really reachable in the normal sense because the referent object
cannot be accessed via a PhantomReferenceget always returns null. But the existence of the
phantom reference prevents the object from being reclaimed until the phantom reference is explicitly
cleared. Phantom references allow you to deal with objects whose finalize methods have been
invoked and so can safely be considered "dead." Phantom references are used in conjunction with the
reference queues we discuss in the next section.

•

Both SoftReference and WeakReference declare a constructor that takes a single referent object. All
three classes declare a two-argument constructor that takes a referent object and a ReferenceQueue.

Soft references provide you with a kind of caching behavior, clearing older references while trying not to clear
new or used ones. Consider our web browser scenario. If you maintain your images in soft references, they
will be reclaimed as memory runs low. Images are probably relatively unimportant to keep in memory should
memory run low, and clearing the oldest or least used images would be a reasonable approach. In contrast, if
you used weak references then all images would be reclaimed as soon as memory got lowthis would probably
induce a lot of overhead as you reload images that it may not have been necessary to get rid of in the first
place.

Weak references are a way of holding a reference to an object but saying "reclaim this object if this is the only
type of reference to it."

Consider the following method that returns data read into memory from a file. The method has been optimized
under the assumption that the same file is often named more than once in a row and that reading the data is
expensive:

import java.lang.ref.*;
import java.io.File;

class DataHandler {
 private File lastFile; // last file read
 private WeakReference<byte[]>
 lastData; // last data (maybe)

 byte[] readFile(File file) {
 byte[] data;

 // check to see if we remember the data
 if (file.equals(lastFile)) {
 data = lastData.get();
 if (data != null)
 return data;
 }

374

374

 // don't remember it, read it in
 data = readBytesFromFile(file);
 lastFile = file;
 lastData = new WeakReference<byte[]>(data);

 return data;
 }
}

When readFile is called it first checks to see if the last file read was the same as the one being requested. If
it is, readFile retrieves the reference stored in lastData, which is a weak reference to the last array of
bytes returned. If the reference returned by get is null, the data has been garbage collected since it was last
returned and so it must be re-read. The data is then wrapped in a new WeakReference. If get returns a
non-null reference, the array has not been collected and can be returned.

If lastData were a direct, strong reference to the last data returned, that data would not be collected, even if
the invoking program had long since dropped all references to the array. Such a strong reference would keep
the object alive as long as the DataHandler object itself was reachable. This could be quite unfortunate.
Using a WeakReference allows the space to be reclaimed, at the cost of occasionally re-reading the data
from disk.

Notice that invoking get on lastData makes the byte array strongly reachable once again because its
value is bound to an active local variablea strong reference. If get returns a non-null reference there is no
possibility of the byte array being reclaimed as long as readFile is executing, or the block of code to which
readFile returns the reference is executing. That invoking code can store the reference in a reachable place
or return it to another method, thereby ensuring the data's reachability. An object can only be less than
strongly reachable when none of its references are strong. Storing a non-null reference fetched from a
reference object's get method creates a strong reference that will be treated like any other strong reference.

Weak references typically store information about an object that might be time consuming to compute but that
need not outlive the object itself. For example, if you had some complicated information built up from using
reflection on an object, you might use the java.util.WeakHashMap class, which is a hashtable for
mapping a weakly-held object to your information. If the object becomes unreachable the WeakHashMap
will clean up the associated information, which presumably is no longer useful (since the object will not be
used in any future computation because of its weak reachability). You will learn about WeakHashMap with
the rest of the collection classes in Chapter 21, specifically in Section 21.9 on page 594.

Exercise 17.2: Modify DataHandler so that lastFile is also stored weakly.

17.5.3. Reference Queues

When an object changes reachability state, references to the object may be placed on a reference queue. These
queues are used by the garbage collector to communicate with your code about reachability changes. They are
usually the best way to detect such changes, although you can sometimes poll for changes as well, by seeing if
get returns null.

Reference objects can be associated with a particular queue when they are constructed. Each of the
Reference subclasses provide a constructor of the form

public StrengthReference(T referent, ReferenceQueue<? super T>
q)

375

375

Creates a new reference object with the given referent and registered with the
given queue.

Both weak and soft references are enqueued at some point after the garbage collector determines that their
referent has entered that particular reachability state, and in both cases they are cleared before being
enqueued. Phantom references are also enqueued at some point after the garbage collector determines the
referent is phantom reachable, but they are not cleared. Once a reference object has been queued by the
garbage collector, it is guaranteed that get will return null, and so the object cannot be resurrected.

Registering a reference object with a reference queue does not create a reference between the queue and the
reference object. If your reference object itself becomes unreachable, then it will never be enqueued. So your
application needs to keep a strong reference to all reference objects.

The ReferenceQueue class provides three methods for removing references from the queue:

public Reference<? extends T> poll()

Removes and returns the next reference object from this queue, or null if
the queue is empty.

public Reference<? extends T> remove() tHRows
InterruptedException

Removes and returns the next reference object from this queue. This method
blocks indefinitely until a reference object is available from the queue.

public Reference<? extends T> remove(long timeout) throws
InterruptedException

Removes and returns the next reference object from this queue. This method
blocks until a reference object is available from the queue or the specified
time-out period elapses. If the time-out expires, null is returned. A time-out
of zero means wait indefinitely.

The poll method allows a thread to query the existence of a reference in a queue, taking action only if one is
present, as in the example. The remove methods are intended for more complex (and rare) situations in
which a dedicated thread is responsible for removing references from the queue and taking the appropriate
actionthe blocking behavior of these methods is the same as that defined by Object.wait (as discussed
from page 354). You can ask whether a particular reference is in a queue via its isEnqueued method. You
can force a reference into its queue by calling its enqueue method, but usually this is done by the garbage
collector.

Reference queues are used with phantom references to determine when an object is about to be reclaimed. A
phantom reference never lets you reach the object, even when it is otherwise reachable: Its get method
always returns null. In effect it is the safest way to find out about a collected objecta weak or soft reference
will be enqueued after an object is finalizable; a phantom reference is enqueued after the referent has been
finalized and, therefore only after the last possible time that the object can do something. If you can, you
should generally use a phantom reference because the other references still allow the possibility that a
finalize method will use the object.

Consider a resource manager that controls access to some set of external resources. Objects can request access
to a resource and use it until they are done, after which they should return the resource back to the resource
manager. If the resource is shared, and use of it is passed from object to object, perhaps even across multiple
threads, then it can be difficult to determine which use of the resource is the last use. That makes it difficult to

376

376

determine which piece of code is responsible for returning the resource. To deal with this situation, the
resource manager can automate the recovery of the resource by associating with it a special object called the
key. As long as the key object is reachable, the resource is considered in use. As soon as the key object can be
reclaimed, the resource is automatically released. Here's an abstract representation of such a resource:

interface Resource {
 void use(Object key, Object... args);
 void release();
}

When a resource is obtained, a key must be presented to the resource manager. The Resource instance that
is given back will only allow use of the resource when presented with that key. This ensures that the resource
cannot be used after the key has been reclaimed, even though the Resource object itself may still be
reachable. Note that it is important that the Resource object not store a strong reference to the key object,
since that would prevent the key from ever becoming unreachable, and so the resource could never be
recovered. A Resource implementation class might be nested in the resource manager:

private static class ResourceImpl implements Resource {
 int keyHash;
 boolean needsRelease = false;

 ResourceImpl(Object key) {
 keyHash = System.identityHashCode(key);

 // .. set up the external resource

 needsRelease = true;
 }

 public void use(Object key, Object... args) {
 if (System.identityHashCode(key) != keyHash)
 throw new IllegalArgumentException("wrong key");

 // ... use the resource ...
 }

 public synchronized void release() {
 if (needsRelease) {
 needsRelease = false;

 // .. release the resource ...
 }
 }
}

When the resource is created it stores the identity hash code of the key, and whenever use is called, it checks
that the same key was provided. Actually using the resource may require additional synchronization, but for
simplicity this is elided. The release method is responsible for releasing the resource. It can either be
called directly by the users of the resource when they have finished, or it will be called through the resource
manager when the key object is no longer referenced. Because we will be using a separate thread to watch the
reference queue, release has to be synchronized and it has to be tolerant to being called more than
once.

The actual resource manager looks like this:

public final class ResourceManager {

377

377

 final ReferenceQueue<Object> queue;
 final Map<Reference<?>, Resource> refs;
 final Thread reaper;
 boolean shutdown = false;

 public ResourceManager() {
 queue = new ReferenceQueue<Object>();
 refs = new HashMap<Reference<?>, Resource>();
 reaper = new ReaperThread();
 reaper.start();

 // ... initialize resources ...
 }

 public synchronized void shutdown() {
 if (!shutdown) {
 shutdown = true;
 reaper.interrupt();
 }
 }

 public synchronized Resource getResource(Object key) {
 if (shutdown)
 throw new IllegalStateException();
 Resource res = new ResourceImpl(key);
 Reference<?> ref =
 new PhantomReference<Object>(key, queue);
 refs.put(ref, res);
 return res;
 }
}

The key object can be an arbitrary objectthis gives great flexibility to the users of the resource, compared to
having the resource manager assign a key. When getresource is invoked, a new ResourceImpl object
is created, passing in the supplied key. A phantom reference is then created, with the key as the referent, and
using the resource manager's reference queue. The phantom reference and the resource object are then stored
into a map. This map serves two purposes: First, it keeps all the phantom reference objects reachable; second
it provides an easy way to find the actual resource object associated with each phantom reference. (The
alternative would be to subclass PhantomReference and store the Resource object in a field.)

The resource manager uses a separate "reaper" thread to process resources when the key has become
unreachable. The shutdown method "turns off" the resource manager by allowing the reaper to terminate (in
response to the interruption) and causing geTResource calls to throw IllegalStateException. In
this simple design, any references enqueued after shutdown will not be processed. The actual reaper thread
looks like this:

class ReaperThread extends Thread {
 public void run() {
 // run until interrupted
 while (true) {
 try {
 Reference<?> ref = queue.remove();
 Resource res = null;
 synchronized(ResourceManager.this) {
 res = refs.get(ref);
 refs.remove(ref);
 }
 res.release();
 ref.clear();
 }
 catch (InterruptedException ex) {

378

378

 break; // all done
 }
 }
 }
}

ReaperThread is an inner class, and a given reaper thread runs until its associated resource manager is shut
down. It blocks on remove until a phantom reference associated with a particular key has been enqueued.
The phantom reference is used to get a reference to the Resource object from the map, and then that entry is
removed from the map. The Resource object then has release invoked on it to release the resource.
Finally, the phantom reference is cleared so that the key can actually be reclaimed.

As an alternative to using a separate thread, the getresource method could instead poll the queue
whenever it is called and release any resources whose key has become unreachable. The shutdown method
could then do a final poll, too. The semantics for the resource manager necessarily depend on the actual kind
of resource and its usage patterns.

A design that uses reference queues can be more reliable than direct use of finalizationparticularly with
phantom referencesbut remember that there are no guarantees as to exactly when or in what order a reference
object will be enqueued. There are also no guarantees that by the time an application terminates, all
enqueuable reference objects will have been enqueued. If you need to guarantee that all resources are released
before the application terminates, you must install the necessary shutdown hooks (see "Shutdown" on page
672) or other application-defined protocols to ensure this happens.

Exercise 17.3: Rework the resource implementation class so that it uses a reference object to keep track of the
key instead of using the hash code.

Exercise 17.4: Modify the reaper thread so that it stays alive after shutdown until all the allocated resources
can be released.

Exercise 17.5: Redesign the resource manager to not use a reaper thread. Be clear on what semantics the
resource manager has and on when resources will be released.

17.5.4. Finalization and Reachability

An object becomes finalizable when it becomes weakly reachable (or less). It would seem that to determine
reachability you need simply examine the source code for your applications. Unfortunately, such an
examination would often be wrong. Reachability is not determined by the statements in your source code, but
by the actual state of the virtual machine at runtime. The virtual machine can perform certain optimizations
that make an object unreachable much sooner than a simple examination of the source code would indicate.

For example, suppose a method creates an object that controls an external resource and that the only reference
is through a local variable. The method then uses the external resource and finally nulls the local reference or
simply returns, allowing the object to be finalized and release the external resource. The programmer might
assume that the object is reachable until that reference is set to null or the method returns. But the virtual
machine can detect that the object is not referenced within the method and may deem it unreachable and
finalizable the instant after it was constructed, causing immediate finalization and release of the resource,
which was not something the programmer intended. Even the reference queue designs that we have discussed
depend on the referent remaining reachable as long as the programmer expects it to be reachable.

The optimizations under consideration only apply to references held on the stackthat is, references stored in
local variables or parameters. If a reference is stored in a field, then the object remains reachable at least until

379

379

the field no longer refers to it. This approach also covers the case of inner class objectsan inner class instance
is reachable whenever its enclosing instance is reachable.

There are further subtle interactions between finalization, synchronization, and the memory model, but these
are advanced topics unneeded by most programmers and are beyond the scope of this book.

Don't ever take a fence down until you know the reason why it was put up.

G.K. Chesterton

Chapter 18. Packages

For some reason a glaze passes over people's faces when you say "Canada". Maybe we should
invade South Dakota or something.

Sandra Gotlieb, wife of Canadian ambassador to U.S. (19811989)

Packages define units of software that can be distributed independently and combined with other packages to
form applications. Packages have members that are related classes, interfaces, and subpackages, and may
contain additional resource files (such as images) used by the classes in the package. Packages are useful for
several reasons:

Packages create groupings for related interfaces and classes. For example, a set of library classes for
performing statistical analysis could be grouped together in a stats package. The package can be
placed in an archive file, together with a manifest describing the package, and shipped to customers
for use in their applications.

•

Packages create namespaces that help avoid naming conflicts between types. Interfaces and classes in
a package can use popular public names (such as List and Constants) that make sense in one
context but might conflict with the same name in another package.

•

Packages provide a protection domain for developing application frameworks. Code within a package
can cooperate using access to identifiers that are unavailable to external code.

•

Let us look at a package for the attribute classes you saw in previous chapters. We will name the package
attr. Each source file whose classes and interfaces belong in the attr package states its membership with
its package declaration:

package attr;

This statement declares that all classes and interfaces defined in this source file are part of the attr package.
A package declaration must appear first in your source file, before any class or interface declarations. Only
one package declaration can appear in a source file. The package name is implicitly prefixed to each type
name contained within the package.

If a type is not declared as being part of an explicit package, it is placed in an unnamed package. Each system
must support at least one unnamed package, but they can support moretypically one per class loader. The
existence of the unnamed package makes it simple for you to write small programs without being encumbered
by the organizational requirements imposed on the members of named packages. Any non-trivial program or
set of library classes should always be part of a named package.

380

380

18.1. Package Naming

A package name should prevent collisions with other packages, so choosing a name that's both meaningful
and unique is an important aspect of package design. But with programmers around the globe developing
packages, there is no way to find out who is using what package names. So choosing unique package names is
a problem. If you are certain a package will be used only inside your organization, you can use an internal
arbiter to ensure that no projects pick clashing names.

But in the world at large, this approach is not practical. Package identifiers are simple names. A good way to
ensure unique package names is to use an Internet domain name. If you worked at a company named Magic,
Inc., that owned the domain name magic.com, the attribute package declaration should be

package com.magic.attr;

Notice that the components of the domain name are reversed from the normal domain name convention.

If you use this convention, your package names should not conflict with those of anyone else, except possibly
within your organization. If such conflicts arise (likely in a large organization), you can further qualify using a
more specific domain. Many large companies have internal subdomains with names such as east and
europe. You could further qualify the package name with such a subdomain name:

package com.magic.japan.attr;

Package names can become quite long under this scheme, but it is relatively safe. No one else using this
technique will choose the same package name, and programmers not using the technique are unlikely to pick
your names.

18.2. Type Imports

Type imports are a generalization of the static imports that you learned about in Chapter 2 on page 71. They
allow you to refer to types by their simple names instead of having to write their fully qualified name.

When you write code outside a package that needs types declared within that package you have two options.
One is to use the fully qualified name of the type. This option is reasonable if you use only a few items from a
package, but given the long names that packages tend to acquire (or even the shorter ones in the standard
libraries) it can be quite tedious to use fully qualified names.

The other way to use types from a package is to import part or all of the package. A programmer who wants to
use the attr package could put the following line near the top of a source file (after any package
declaration but before anything else):

import attr.*;

Now the types in that package can be referred to simply by name, such as Attributed. An import that uses
a * is called an import on demand declaration. You can also perform a single type import:

import attr.Attributed;

381

381

The name used with an import statement must be the canonical name of a package (for import on demand) or
type (for single type import). As discussed in "Naming Classes" on page 411, the canonical name and fully
qualified name can differ only for nested types. Note that generic types are imported using their raw type
namethat name can then be used in a parameterized type without further qualification.

Code in a package imports the rest of its own package implicitly, so everything defined in a package is
available to all types in the same package. The package java.lang is implicitly imported in all code.

The import mechanism is passive in that it does not cause information about the named packages and types to
be read in at compile timeunless a type is used. The import statement simply tells the compiler how it can
determine the fully qualified name for a type that is used in your program if it can't find that type defined
locally. For example, as described on page 181, if your class declares a reference of type Attributed the
compiler will search for the type in the following order:

The current type including inherited types.1.
A nested type of the current type.2.
Explicitly named imported types (single type import).3.
Other types declared in the same package.4.
Implicitly named imported types (import on demand).5.

If, after that, the type is still not found it is an error. It is also an error if any package named in an import
statement cannot be locatedeven if there is no actual need to obtain a type from that package.

Resolving which type is being referred to requires some work by the compiler, and use of import on demand
may involve more work than resolving a single type import. However, this is rarely significant in the
compilation process. The choice between a single type import and import on demand is usually a matter of
personal preference or local style rules. Naturally, to resolve conflicts or to ensure that a specific type is
resolved correctly you may need to use a single type import.[1]

[1] For example, if you use import on demand for a given package and there is a type in that
package with the same name as a type in the current package, then the current package type
would be found ahead of the imported package. In this case you could use a single type
import for that one type to make it clear that it is the type from the other package that is
required. Alternatively, of course, you could just use the fully qualified name.

Type imports can also be used with nested class names. For example, in Chapter 5 we defined the
BankAcount class and its nested Permissions class. If these classes were in the package bank and you
imported bank.BankAccount, you would still need to use BankAccount.Permissions to name the
Permissions class. However, you could instead import bank.BankAccount.Permissions and then
use the simple name Permissions. You don't have to import BankAccount to import the class
BankAccount.Permissions. Importing nested type names in this way should generally be avoided
because it loses the important information that the type is actually a nested type.

Static nested types can be imported using either the type import mechanism or the static import mechanism. If
you insist on importing nested types, then you should use the type import mechanism for consistency.

The package and import mechanisms give programmers control over potentially conflicting names. If a
package used for another purpose, such as linguistics, has a class called Attributed for language
attributes, programmers who want to use both types in the same source file have several options:

Refer to all types by their fully qualified names, such as attr.Attributed and
lingua.Attributed.

•

382

382

Import only attr.Attributed or attr.*, use the simple name Attributed for
attr.Attributed, and use the full name of lingua.Attributed.

•

Do the converse: import lingua.Attributed or lingua.*, use the simple name
Attributed for lingua.Attributed, and use the full name of attr.Attributed.

•

Import all of both packagesattr.* and lingua.*and use the fully qualified names
attr.Attributed and lingua.Attributed in your code. (If a type with the same name
exists in two packages imported on demand, you cannot use the simple name of either type.)

•

It is an error to import a specific type that exists as a top-level (that is non-nested) type within the current
source file. For example, you can't declare your own Vector class and import java.util.Vector. Nor
can you import the same type name from two different packages using two single type imports. As noted
above, if two types of the same name are implicitly imported on demand, you cannot use the simple type
name but must use the fully qualified name. Use of the simple name would be ambiguous and so result in a
compile-time error.

18.3. Package Access

You have two options when declaring accessibility of top-level classes and interfaces within a package:
package and public. A public class or interface is accessible to code outside that package. Types that are
not public have package scope: They are available to all other code in the same package, but they are
hidden outside the package and even from code in subpackages. Declare as public only those types needed
by programmers using your package, hiding types that are package implementation details. This technique
gives you flexibility when you want to change the implementationprogrammers cannot rely on
implementation types they cannot access, and that leaves you free to change them.

A class member that is not declared public, protected, or private can be used by any code within the
package but is hidden outside the package. In other words, the default access for an identifier is "package"
except for members of interfaces, which are implicitly public.

Fields or methods not declared private in a package are available to all other code in that package. Thus,
classes within the same package are considered "friendly" or "trusted." This allows you to define application
frameworks that are a combination of predefined code and placeholder code that is designed to be overridden
by subclasses of the framework classes. The predefined code can use package access to invoke code intended
for use by the cooperating package classes while making that code inaccessible to any external users of the
package. However, subpackages are not trusted in enclosing packages or vice versa. For example, package
identifiers in package dit are not available to code in package dit.dat, or vice versa.

Every type has therefore three different contracts that it defines:

The public contract, defining the primary functionality of the type.•
The protected contract, defining the functionality available to subtypes for specialization purposes.•
The package contract, defining the functionality available within the package to effect cooperation
between package types.

•

All of these contracts require careful consideration and design.

18.3.1. Accessibility and Overriding Methods

A method can be overridden in a subclass only if the method is accessible in the superclass. If the method is
not accessible in the superclass then the method in the subclass does not override the method in the superclass
even if it has the same signature. When a method is invoked at runtime the system has to consider the
accessibility of the method when deciding which implementation of the method to run.

383

383

The following contrived example should make this clearer. Suppose we have a class AbstractBase
declared in package P1:

package P1;

public abstract class AbstractBase {
 private void pri() { print("AbstractBase.pri()"); }
 void pac() { print("AbstractBase.pac()"); }
 protected void pro() { print("AbstractBase.pro()"); }
 public void pub() { print("AbstractBase.pub()"); }

 public final void show() {
 pri();
 pac();
 pro();
 pub();
 }
}

We have four methods, each with a different access modifier, each of which simply identifies itself. The
method show invokes each of these methods on the current object. It will show which implementation of
each method is invoked when applied to different subclass objects.

Now we define the class Concrete1, which extends AbstractBase but lives in the package P2:

package P2;

import P1.AbstractBase;

public class Concrete1 extends AbstractBase {
 public void pri() { print("Concrete1.pri()"); }
 public void pac() { print("Concrete1.pac()"); }
 public void pro() { print("Concrete1.pro()"); }
 public void pub() { print("Concrete1.pub()"); }
}

This class redeclares each of the methods from the superclass and changes their implementation to report that
they are in class Concrete1. It also changes their access to public so that they are accessible to all other
code. Executing the code

new Concrete1().show();

produces the following output:

AbstractBase.pri()
AbstractBase.pac()
Concrete1.pro()
Concrete1.pub()

Because the private method pri is inaccessible to subclasses (or to any other class) the implementation from
AbstractBase is always the one invoked from show. The package accessible pac method of
AbstractBase is not accessible in Concrete1, thus the implementation of pac in Concrete1 does not

384

384

override that in AbstractBase, so it is AbstractBase.pac that show invokes. Both the pro and pub
methods are accessible in Concrete1 and get overridden, so the implementation from Concrete1 is used
in show.

Next we define the class Concrete2, which extends Concrete1 but is in the same package P1 as
AbstractBase:[2]

[2] Having an inheritance hierarchy that weaves in and out of a package is generally a very
bad idea. It is used here purely for illustration.

package P1;

import P2.Concrete1;

public class Concrete2 extends Concrete1 {
 public void pri() { print("Concrete2.pri()"); }
 public void pac() { print("Concrete2.pac()"); }
 public void pro() { print("Concrete2.pro()"); }
 public void pub() { print("Concrete2.pub()"); }
}

Each method of Concrete2 overrides the version from Concrete1 because they are all public and
therefore accessible. Also, because Concrete2 is in the same package as AbstractBase, the method
AbstractBase.pac is accessible in Concrete2 and so is overridden by Concrete2.pac. Invoking
show on a Concrete2 object prints

AbstractBase.pri()
Concrete2.pac()
Concrete2.pro()
Concrete2.pub()

Finally, we define the class Concrete3, which extends Concrete2 but is in a different package P3:

package P3;

import P1.Concrete2;

public class Concrete3 extends Concrete2 {
 public void pri() { print("Concrete3.pri()"); }
 public void pac() { print("Concrete3.pac()"); }
 public void pro() { print("Concrete3.pro()"); }
 public void pub() { print("Concrete3.pub()"); }
}

Invoking show on a Concrete3 object prints

AbstractBase.pri()
Concrete3.pac()
Concrete3.pro()
Concrete3.pub()

385

385

Here the method Concrete3.pac appears to have overridden the inaccessible AbstractBase.pac. In
fact, Concrete3.pac overrides Concrete2.pac, and Concrete2.pac overrides
AbstractBase.pactherefore Concrete3.pac transitively overrides AbstractBase.pac. By
redeclaring pac as public, Concrete2 made it accessible and overridable by any subclass.[3]

[3] This illustrates why weaving in and out of a package can be confusing and should be
avoided.

18.4. Package Contents

Packages should be designed carefully so that they contain only functionally related classes and interfaces.
Classes in a package can freely access one another's non-private members. Protecting class members is
intended to prevent misuse by classes that have access to internal details of other classes. Anything not
declared private is available to all types in the package, so unrelated classes could end up working more
intimately than expected with other classes.

Packages should also provide logical groupings for programmers who are looking for useful interfaces and
classes. A package of unrelated classes makes the programmer work harder to figure out what is available.
Logical grouping of classes helps programmers reuse your code because they can more easily find what they
need. Including only related, coherent sets of types in a package also means that you can use obvious names
for types, thereby avoiding name conflicts.

Packages can be nested inside other packages. For example, java.lang is a nested package in which lang
is nested inside the larger java package. The java package contains only other packages. Nesting allows a
hierarchical naming system for related packages.

For example, to create a set of packages for adaptive systems such as neural networks and genetic algorithms,
you could create nested packages by naming the packages with dot-separated names:

package adaptive.neuralNet;

A source file with this declaration lives in the adaptive.neuralNet package, which is itself a
subpackage of the adaptive package. The adaptive package might contain classes related to general
adaptive algorithms, such as generic problem statement classes or benchmarking. Each package deeper in the
hierarchysuch as adaptive.neuralNet or adaptive.geneticwould contain classes specific to the
particular kind of adaptive algorithm.

Package nesting is an organizational tool for related packages, but it provides no special access between
packages. Class code in adaptive.genetic cannot access package-accessible identifiers of the
adaptive or adaptive.neuralNet packages. Package scope applies only to a particular package.
Nesting can group related packages and help programmers find classes in a logical hierarchy, but it confers no
other benefits.

18.5. Package Annotations

A package can have annotations applied to it. The problem is that there is no actual definition of a package to
which you can apply such annotationsunlike a class or a methodbecause a package is an organizational
structure, not a source code entity. So you annotate packages by applying the annotation to the package
statement within a source file for that package. However, only one package declaration per package can have
annotations applied to it.

386

386

So how do you actually annotate a package? There is no required way to deal with this "single annotated
package statement" rule. The suggested approach is to create a file called package-info.java within the
package directory, and to put in that file nothing but a package statement with any annotations for the package
(plus any useful comments, of course). For example, a package-info.java file for the attr package
might look like this:

@PackageSpec(name = "Attr Project", version = "1.0")
@DevelopmentSite("attr.project.org")
@DevelopmentModel("open-source")
package attr;

where PackageSpec, DevelopmentSite, and DevelopmentModel are made up annotation
typeswith a runtime retention policy, of course. The package-info.java file should be compiled along
with the rest of the package source files.

The package-info.java file is recommended as the single place to put all package-related information.
To that end, you can place a documentation comment at the start of the file, and that will be the package
documentation for that package. Package documentation is covered in more detail in "Package and Overview
Documentation" on page 496.

The java.lang.Package class implements AnnotatedElement, so you can ask about any applied
annotations using the methods discussed in "Annotation Queries" on page 414.

18.6. Package Objects and Specifications

Packages typically implement a specification, and they are also typically from one organization. A Package
object, unlike the other reflection types (see Chapter 16), is not used to create or manipulate packages, but acts
only as a repository for information about the specification implemented by a package (its title, vendor, and
version number) and for information about the implementation itself (its title, vendor, and version number).
Although a package typically comes from a single organization, the specification for that package (such as a
statistical analysis library) may have been defined by someone else. Programs using a package may need to be
able to determine the version of the specification implemented by the package so that they use only
functionality defined in that version. Similarly, programs may need to know which version of the
implementation is provided, primarily to deal with bugs that may exist in different versions. The main
methods of Package allow access to this information:

public String getName()

Returns the name of this package.

public String getSpecificationTitle()

Returns the title of the specification this package implements, or null if the
title is unknown.

public String getSpecificationVersion()

Returns a string describing the version of the specification that this package
implements, or null if the version is unknown.

public String getSpecificationVendor()

387

387

Returns the name of the vendor that owns and maintains the specification that
this package implements, or null if the vendor is unknown.

public String getImplementationTitle()

Returns the title of the implementation provided by this package, or null if
the title is unknown.

public String getImplementationVersion()

Returns a string describing the version of the implementation provided by
this package, or null if the version is unknown.

public String getImplementationVendor()

Returns the name of the organization (vendor) that provided this
implementation, or null if the organization is unknown.

For example, extracting this information for the java.lang package on our system yielded the following:[4]

[4] Yes the 1.4 specification version is a bug

Specification Title: Java Platform API Specification
Specification Version: 1.4
Specification Vendor: Sun Microsystems, Inc.
Implementation Title: Java Runtime Environment
Implementation Version: 1.5.0_02
Implementation Vendor: Sun Microsystems, Inc.

Specification version numbers are non-negative numbers separated by periods, as in "2.0" or "11.0.12".
This pattern allows you to invoke the isCompatibleWith method to compare a version following this
pattern with the version of the package. The method returns true if the package's specification version
number is greater than or equal to the one passed in. Comparison is done one dot-separated number at a time.
If any such value in the package's number is less than the one from the passed in version, the versions are not
compatible. If one of the version numbers has more components than the other, the missing components in the
shorter version number are considered to be zero. For example, if the package's specification version is
"1.4" and you compare it to "1.2", "1.3.1", or "1.1.8", you will get TRue, but if you compare it to
"1.4.2" or "1.5", you will get false. This comparison mechanism assumes backward compatibility
between specification versions.

Implementation version numbers do not have a defined format because these will be defined by the different
organizations providing the implementations. The only comparison you can perform between implementation
versions is a test for equalitythere is no assumption of backward compatibility.

Packages can be sealed, which means that no classes can be added to them. An unsealed package can have
classes come from several different places in a class search path. A sealed package's contents must all come
from one placegenerally either a specific archive file or a location specified by a URL. Two methods ask if a
package is sealed:

public boolean isSealed()

Returns TRue if the package is sealed.

public boolean isSealed(URL url)

388

388

Returns true if the package is sealed with respect to the given URL, that is,
classes in the package can be loaded from the URL. Returns false if classes
in the package cannot be loaded from the given URL or if the package is
unsealed.

The specification and implementation information for a package is usually supplied as part of the manifest
stored with the packagesuch as the manifest of a Java Archive (jar) file, as described in "Archive Files
java.util.jar" on page 735. This information is read when a class gets loaded from that package. A
ClassLoader can dynamically define a Package object for the classes it loads:

protected Package definePackage(String name, String specTitle,
String specVersion, String specVendor, String implTitle,
String implVersion, String implVendor, URL sealBase)

Returns a Package object with the given name, and with specification and
implementation values set to the corresponding arguments. If sealBase is
null the package is unsealed, otherwise it is sealed with respect to that URL.
The Package object for a class must be defined before the class is defined
and package names must be unique within a class loader. If the package name
duplicates an existing name, an IllegalArgumentException is
thrown.

You can get the Package object for a given class from the getPackage method of the Class object for
that class. You can also get a Package object by invoking either the static method
Package.getPackage with the name of the package, or the static method Package.getPackages,
which returns an array of all known packages. Both methods work with respect to the class loader of the code
making the call by invoking the getPackage or getPackages method of that class loader. These class
loader methods search the specific class loader and all of its parents. If there is no current class loader then the
system class loader is used. Note that the class loader methods will return null if the package is unknown
because no type from the package has been loaded.

When a shepherd goes to kill a wolf, and takes his dog along to see the sport, he should take
care to avoid mistakes. The dog has certain relationships to the wolf the shepherd may have
forgotten.

Robert Prisig, Zen and the Art of Motorcycle Maintenance

Chapter 19. Documentation Comments

Any member introducing a dog into the Society's premises shall be liable to a fine of £10.
Any animal leading a blind person shall be deemed to be a cat.

Rule 46, Oxford Union Society (circa 1997)

Documentation comments, usually called doc comments, let you associate reference documentation for
programmers directly with your code. The contents of the doc comment can be used to generate reference
documentation, typically presented using HTML.

Doc comments are generally designed as fairly terse reference documentation. The reference documentation
typically covers the contract of the documented interface, class, constructor, method, or field to the level of
detail most programmers need. This approach is distinct from a full specification, which can be too long for
reference documentation. A full specification might devote several pages of text to a single method, whereas
reference documentation might be one or two paragraphs, possibly even short ones. Specifications should be

389

389

produced separately, although they can be cross-referenced by the doc comment, as you will soon see.[1]

[1] This distinction is blurring and, for better or worse, documentation comments are being
used to define full specifications.

The procedure for generating documentation from the doc comments varies among development
environments. One common procedure is to run the javadoc command on the packages or types; hence, the
generated documentation is often called javadoc.

This chapter teaches what can go into documentation comments and how the contents are interpreted. You
will also learn about features that are, strictly speaking, outside the language but are conventions for creating
the generated documentation, such as overall package documentation and the location for images and other
resources. Your development environment may not use these details in precisely the same way as javadoc
but it is likely to, and if not will usually have an analogous replacement. These features are covered in the
section "External Conventions" on page 496.

19.1. The Anatomy of a Doc Comment

Doc comments start with the three characters /** and continue until the next */. Each doc comment
describes the identifier whose declaration immediately follows. Leading * characters are ignored on doc
comment lines, as are whitespace characters preceding a leading *. The first sentence of the comment is the
summary for the identifier; "sentence" means all text up to the first period with following whitespace.
Consider the doc comment:

/**
 * Do what the invoker intends. "Intention" is defined by
 * an analysis of past behavior as described in ISO 4074-6.
 */
public void dwim() throws IntentUnknownException;

The summary for the method dwim will be "Do what the invoker intends." Your first sentence in a doc
comment should be a good summary.

HTML tags are often embedded in doc comments as formatting directives or cross-reference links to other
documentation. You can use almost any standard HTML tag. Be careful when using the header tags <h1>,
<h2>, and so on, because they can disrupt the structure of the overall documentationhowever, they are usually
safe to use within class and package documentation. To insert the character <, >, or & you should use <,
>, or &, respectively. If you must have an @ at the beginning of a line, use @otherwise, an @
is assumed to start a doc comment tag.

Only doc comments that immediately precede a class, interface, method, or field are processed. If anything
besides whitespace, comments, or annotations are between a doc comment and what it describes, the doc
comment will be ignored. For example, if you put a doc comment at the top of a file with a package or
import statement between the doc comment and the class, the doc comment will not be used. Doc
comments apply to all fields declared in a single statement, so declaring multiple fields in a single statement is
usually avoided where doc comments are used.

390

390

19.2. Tags

Doc comments can contain tags that hold particular kinds of information. Tags come in two forms:

Block tags define stand-alone text elements. All these tags start with @, as in @see or
@deprecated. These paragraphs are treated specially in the generated documentation, resulting in
marked paragraphs, links to other documentation, and other special treatment. This section describes
all tags except @serial, @serialData, and @serialField, which relate to object serialization
and are described in "The Object Byte Streams" on page 549.

•

In-line tags can occur anywhere within the text of a documentation comment and are used to apply
special formatting, such as {@code} for use of code font, or to produce special text, such as creating
a hypertext link using {@link}. In-line tags all have the form {@tag-name args} where the
optional args value might provide text to be formatted or the target of the link, for example.

•

Except for tagged paragraphs and in-line tags, text in a doc comment is treated as input text for HTML. You
can create paragraph breaks in the documentation with the standard <p> tag, blocks of example code using
<pre>, and so on.

Not all tags need be processed by the javadoc tool by default; consult your tool documentation for details
on what is needed to process which tags.

19.2.1. @see

The @see tag creates a cross-reference link to other javadoc documentation. You can name any identifier,
although you must qualify it sufficiently. You can, for example, usually name a member of a class with its
simple name. However, if the member is an overloaded method, you must specify which overload of the
method you mean by listing the types of parameters. You can specify an interface or class that is in the current
package by its unqualified name, but you must specify types from other packages with fully qualified names.
You specify members of types by a # before the member name. The following are all potentially valid @see
tags:

@see #getName
@see Attr
@see com.magic.attr.Attr
@see com.magic.attr.Deck#DECK_SIZE
@see com.magic.attr.Attr#getName
@see com.magic.attr.Attr#Attr(String)
@see com.magic.attr.Attr#Attr(String, Object)
@see com.magic.attr
@see Attribute Specification
@see "The Java Developer's Almanac"

The first form refers to the method getName in the same class or interface as the doc comment itself, or in
any enclosing class or interface; the same syntax can be used for constructors and fields. The second form
refers to a class in the current package or an imported package. The third refers to a class by its fully qualified
name.

The next four @see forms refer to members. The first two show forms for a field (DECK_SIZE) or method
(getName). We can simply use the name of a method because exactly one getName method is defined in
the Attr class. The next two forms refer to constructors of the Attr class, one that takes a String
argument and another that takes a String and an Object. When a constructor or method is overloaded you
must specify the arguments of the one you mean.

391

391

The next @see form directs readers to a specific package: com.magic.attr.

The final two forms allow you to reference other documentation. The first defines a link using <a...>. The
second uses quotes to enclose the name of the document. You might use these to direct readers to other
documentation, such as the full specification.

The @see forms that name a language entity (any of the above forms except the last two) can have a label
following the entity. This label name will be the one used in the generated documentation instead of the
entity's name. For example,

@see #getName Attribute Names

will create a link to the documentation of getName but will display the text "AttributeNames" not
"getName". You should usually let the actual member name be used, but occasionally you may find this
feature useful.

19.2.2. {@link} and {@linkplain}

The @see tag is useful for a "See also" section at the end of the documentation. You can embed an {@link}
in-line tag in your text when the cross reference should belong in the text of your comment. The syntax for
@link is

{@link package.class#member [label]}

The identifier specification is the same as for @see, as is the optional label. The following sentence
embeds a link to the getValue method:

Changes the value returned by calls to {@link #getValue}.

The {@linkplain} tag acts just like {@link} except that the generated text uses a plain font rather code
font. This is useful for replacing the link with a label that consists of plain text.

19.2.3. @param

The @param tag documents a single parameter to a method or constructor, or else a type parameter in a class,
interface, or generic method. If you use @param tags you should have one for each parameter of the method.
The first word of the paragraph is taken as the parameter name, and the rest is its description:

@param max The maximum number of words to read.

When documenting type parameters you should use < and > around the type parameter name:

@param <E> The element type of this List

392

392

Usually, though, type parameters don't require explicit documentation since their meaning is obvious.

19.2.4. @return

The @return tag documents the return value of a method:

@return The number of words actually read.

19.2.5. @throws and @exception

The @tHRows tag documents an exception thrown by the method or constructor. If you use @tHRows tags
you should have one for each type of exception the method throws. This list often includes more than just the
checked exceptions that must be declared in the throws clauseit is a good idea to declare all exceptions in
the throws clause whether or not they are required, and the same is true when you're using @tHRows tags.
For example, suppose that your method checks its parameters to ensure that none is null, tHRowing
NullPointerException if it finds a null argument. You should declare NullPointerException
in your tHRows clause and your @tHRows tags.

@throws UnknownName The name is unknown.
@throws java.io.IOException
 Reading the input stream failed; this exception
 is passed through from the input stream.
@throws NullPointerException
 The name is <code>null</code>.

The tag @exception is equivalent to @throws.

19.2.6. @deprecated

The @deprecated tag marks an identifier as being deprecated: unfit for continued use. Code using a
deprecated type, constructor, method, or field may generate a warning when compiled. You should ensure that
the deprecated entity continues working so that you don't break existing code that hasn't yet been updated.
Deprecation helps you encourage users of your code to update to the latest version but preserves the integrity
of existing code. Users can shift to newer mechanisms when they choose to instead of being forced to shift as
soon as you release a new version of your types. You should direct users to a replacement for deprecated
entities:

/**
 * Do what the invoker intends. "Intention" is defined by
 * an analysis of past behavior as described in ISO 4074-6.
 *
 * @deprecated You should use dwishm instead
 * @see #dwishm
 */
@Deprecated
public void dwim() throws IntentUnknownException;

While the compiler may generate a warning if it sees the @deprecated tag, it is guaranteed to generate a

393

393

warning if it sees the @Deprecated annotation. You should always use the two together: Use the
@deprecated tag to document the reason for the deprecation, and use the @Deprecated annotation to
inform the compiler.

19.2.7. @author

The @author tag specifies an author of a class or interface.

@author Aristophanes
@author Ursula K. LeGuin
@author Ibid

You can specify as many @author paragraphs as you desire. You should use only one author per @author
paragraph to get consistent output in all circumstances.

19.2.8. @version

The @version tag lets you specify an arbitrary version specification for the class or interface.

@version 1.1

19.2.9. @since

The @since tag lets you specify an arbitrary version specification that denotes when the tagged entity was
added to your system.

@since 2.1

Tagging the "birth version" can help you track which entities are newer and therefore may need intensified
documentation or testing. By convention an @since tag on a class or interface applies to all members of the
class or interface that don't have their own @since tag. For example, if the above @since tag preceded a
class, then all constructors, fields, and methods of that class would be presumed to have been present in
version 2.1 except any that had, for example, an @since2.2 tag of its own.

19.2.10. {@literal} and {@code}

The {@literal text} in-line tag causes text to be printed exactly as is, without being interpreted as
HTML source. This means that you can use &, <, and > rather than &, <, and >.

The {@code text} in-line tag behaves exactly like {@literal text} except that text is printed in
code font. You'd get the same effect wrapping the {@literal text} tag in <code> and </code>
HTML tags.

These in-line tags are exceedingly convenient for writing about generic types.

394

394

19.2.11. {@value}

The {@value static-field-name} tag is replaced by the actual value of the specified constant static
field. This tag uses the same member syntax as the @see tag. For example, if a doc comment contained the
text:

The valid range is 0 to {@value java.lang.Short#MAX_VALUE}.

Then the generated text would be

The valid range is 0 to 32767.

As a convenience, the value of the constant static field being documented can be referred to by {@value},
with no field name. For example, given

/** The default capacity of a new queue ({@value}). */
static final int DEFAULT_CAPACITY = 10;

the generated text would be

The default capacity of a new queue (10).

When specifying a particular field member, be careful not to leave any whitespace between the member name
and the closing } because it will be treated as part of the name.

All constant fields are documented on the "Constant Field Values" page, generated by the javadoc tool.

19.2.12. {@docRoot}

The files generated by javadoc are put into a tree, with subdirectories that contain parts of the
documentation. The exact placement of files in the tree is up to the javadoc implementation, and may
change depending on your environment, user preferences, and the like. You may want to add things to the tree
after it is built and then refer to those added pieces in your doc comments.

The in-line {@docRoot} tag lets you put into your doc comments a relative reference to other files in the
documentation tree. The {@docRoot} tag will be replaced with a relative path to the top of the generated
documentation tree. For example, the sentence

Check out our license.

would result in a sentence with a link to the file licenstemp0282.html in the root of the documentation
tree. After generating the documentation from the doc comments, you could copy
licenstemp0282.html into the top of the generated documentation tree, and the above link would
always go from the generated output to your licenstemp0282.html file. For some applications you may
find the mechanism described in "The doc-files Directory" on page 497 more useful.

395

395

19.2.13. {@inheritDoc}

The {@inheritDoc} tag copies a documentation comment from the supertype. This is discussed in the
next section.

19.3. Inheriting Method Documentation Comments

If no doc comment is given for an inherited method, the method "inherits" the doc comment from the
supertype. This is often quite enough, especially when a class implements an interfacemethods in the
implementation often do nothing more than what the interface specifies, or at least nothing that belongs in a
doc comment. It would be inconvenient, to say the least, if you had to duplicate all the doc comments from an
interface or superclass to the class that defines the overriding method.

You should put in an explicit comment when you are inheriting doc comments so that someone reading your
code doesn't think that you forgot to document the method, for example:

// inherit doc comment
public void dwim() throws IntentUnknownException {
 // ...
}

While overriding an interface method might not require any changes to the documentation, there is a good
chance that overriding a superclass method involves changes to the method contractsuch as weakening the
precondition on a parameter, strengthening the postcondition on a return value, or reducing the types of
exception that can be thrown. To make it easier to change only those parts of the documentation that need
changing, the block tags define separate entities that can be inherited independently:

The main doc comment for the method is known as the body comment. If you don't provide a body
comment you will inherit the complete body comment from the supertype. If you provide any text as a
body comment, then you won't inherit any part of the supertype's body comment.

•

Each @param comment is inherited independently, based on the name of the parameter. If you don't
provide an @param comment for a parameter, then you'll inherit the @param comment from the
supertype.

•

If no @return comment is specified then the @return comment from the supertype is inherited.•
There are special rules for @tHRows comments, as discussed below.•

If a method inherits doc comments from both a superclass and superinterface the interface comment is used.

Often, the change to a doc comment only involves the addition of extra information. For example, an
overriding method might guarantee that it never returns null, where the parent method could return null.
To avoid manually copying the doc comment from the supertype, you can use the {@inheritDoc} tag to
copy the doc comment from the supertype. The {@inheritDoc} tag can appear either in the body comment
or within any of the block tags, and it copies the entire supertype's doc comment for that entity. For example,
the method that no longer returns null could have a doc comment like this:

/**
 * @return {@inheritDoc}
 * This implementation never returns null.
 */

396

396

The {@inheritDoc} tag allows you to easily add new documentation before or after the inherited
documentation, but its effectiveness depends on how the original documentation was written. For example, if
the previous method's original @return comment was

@return The value last set, or null if it has not been set.

then the additional documentation results in a less than clear description:

Returns: The value last set, or null if it has not been set.
 This implementation never returns null.

For the sake of clarity, it might be better to rewrite the entire doc comment rather than try to augment it.

19.3.1. Inheriting @tHRows Comments

There is a special rule for inheriting @throws comments: An overriding method only inherits the @throws
comments for exceptions listed in its throws clause, and that are documented by the overridden method. For
example, if the original method has an @throws comment for IOException and the overriding method
declares that it throws IOException, then the comment is inherited. However, if the overriding method
declares that it throws FileNotFoundException (a subclass of IOException) then the comment is
not inherited because that exception type is not documented by the overridden method. This restriction on
when inheritance of the @throws comment occurs is necessary because automatically inheriting @throws
comments is often the wrong thing to do. Unfortunately, not inheriting them can also be the wrong thing to
do.

An overriding method can throw fewer checked exceptions than the method it overrides, but not more. So
automatically inheriting @throws comments for a checked exception that is not actually thrown would be
the wrong thing to do. For checked exceptions it makes sense to inherit the documentation comments only for
those exceptions listed in the throws clause. They are, after all, the only checked exceptions that can be
thrown. So you inherit the comment if you still throw the exception and you don't inherit the comment if you
don't.

Runtime exceptions, which are not typically declared in the throws clause, add a twist to the situation. You
usually want to inherit @throws comments for exceptions like IllegalArgumentException because
what is illegal for the method you override is typically illegal for your methodso if you don't automatically
inherit the comment the exception won't be documented and that is wrong. But then consider, for example, an
interface with optionally implemented methods that declare that they throw
UnsupportedOperationException. This runtime exception is documented by an @tHRows
comment. If the comment is automatically inherited then even if a particular class's implementation supports
the operation and so never throws the exception, the exception will be documented as being thrownwhich,
again, is wrong.

By requiring that exceptions be listed in the tHRows clause before inheriting the associated @throws
comment, the problem with inheriting inapplicable @throws comments is avoided. However, this promotes a
style of programming where runtime exceptions are listed in a method's tHRows clause, which goes against
standard practice. We recommend that you continue to list only checked exceptions in the tHRows clause of
a method. Rather than trying to automatically inherit the doc comments for unchecked exceptions, we suggest
that you manually rewrite the @tHRows comment, but use {@inheritDoc} to avoid the need to manually
copy the exception description. For example, you can use the following to document that your method will
still throw IllegalArgumentException when it's parent would:

397

397

@throws IllegalArgumentException {@inheritDoc}

The onus is still on you to remember that unchecked exceptions must be manually documented in this way.

19.4. A Simple Example

The following is a version of the Attr class from page 76 with an example of javadoc comments:

/**
 * An <code>Attr</code> object defines an attribute as a
 * name/value pair, where the name is a <code>String</code>
 * and the value an arbitrary <code>Object</code>.
 *
 * @version 1.1
 * @author Plato
 * @since 1.0
 */
public class Attr {
 /** The attribute name. */
 private final String name;
 /** The attribute value. */
 private Object value = null;

 /**
 * Creates a new attribute with the given name and an
 * initial value of <code>null</code>.
 * @see Attr#Attr(String,Object)
 */
 public Attr(String name) {
 this.name = name;
 }

 /**
 * Creates a new attribute with the given name and
 * initial value.
 * @see Attr#Attr(String)
 */
 public Attr(String name, Object value) {
 this.name = name;
 this.value = value;
 }

 /** Returns this attribute's name. */
 public String getName() {
 return name;
 }

 /** Returns this attribute's value. */
 public Object getValue() {
 return value;
 }

 /**
 * Sets the value of this attribute. Changes the
 * value returned by calls to {@link #getValue}.
 * @param newValue The new value for the attribute.
 * @return The original value.
 * @see #getValue()
 */
 public Object setValue(Object newValue) {
 Object oldVal = value;

398

398

 value = newValue;
 return oldVal;
 }

 /**
 * Returns a string of the form <code>name=value</code>.
 */
 public String toString() {
 return name + "='" + value + "'";
 }
}

For simple methods like getName, whose whole description is what it returns, the @return tag is often
omitted as overkill. Similarly, the constructors do not use @param tags because the description is sufficiently
complete. Different organizations will make different choices of when to use each tag.

You should use doc comments to document all members, including private and package-accessible ones.
Documentation generators such as javadoc let you specify whether you want to generate documentation
from these comments. Having organized, readable documentation of your class's internals is quite useful when
someone else needs to learn about them.

On the following two pages, you can see how the generated HTML javadoc output might look for this class.

[View full size image]

399

399

[View full size image]

400

400

Exercise 19.1: Add doc comments to your LinkedList class from Exercise 2.16. Generate the javadoc and
ask someone else to write a simple program using your class. Repeat, improving your doc comments if
needed, until someone can do so.

Exercise 19.2: Expand on Exercise 19.1 by including the private members. Generate the full (private members
included) javadoc and ask someone else to explain the class to you. Repeat, improving your comments if
needed, until someone can do so.

19.5. External Conventions

Not all documentation needed for a package can be ascribed to a specific source file, nor are source files the
only types of files that need to be referred to in documentation. You can incorporate such external elements in

401

401

your documentation.

19.5.1. Package and Overview Documentation

Doc comments associate documentation with elements in source files, but packages are not defined in source
files. The javadoc tool uses other conventions to allow packages to be documented.

The preferred mechanism, as mentioned in Section 18.5 on page 476, is to use the package-info.java
file. This file should contain a single package statement identifying the package to which the file belongs,
together with all annotations that apply to the package. In addition, if that package statement (with its applied
annotations if any) is preceded by a doc comment, then that doc comment is treated as documentation for the
overall package. This package documentation forms part of the package summary page that is produced by
javadoc.

If there is no package-info.java file for a package, then javadoc will look for a file called
packagtemp0282.html. If this file exists, then its contents between <body> and </body> will be read
as if it were a doc comment for the package (although it should not have the /**, */, or any leading *). Note
that packagtemp0282.html will be ignored if package-info.java exists.

As with other doc comments, the first sentence of the package comment is used as a summary for the package.
In the case of packagtemp0282.html, this is the first sentence after the <body> HTML tag. Any @see
or {@link} tag that names a language element must use the fully qualified form of the entity's name, even
for classes and interfaces within the package itself.

Finally, you can also provide an overview HTML file. An overview HTML file is read in the same way as a
packagtemp0282.html file, and it can contain documentation for a set of packages or classes, giving an
overview of what they do. You specify the HTML file to use as an overview when generating the
documentation.

19.5.2. The doc-files Directory

The javadoc program will copy the contents of a doc-files directory in a given package into the
generated documentation for that package. You can use this feature to include images, HTML, class files, or
any other component you want to reference in your doc comment. For example, you could indirectly include a
set of formal rules in a large number of doc comments:

@see Formal Semantics

Or you could use the directory to store useful images:

Made by Magic, Inc.

19.6. Notes on Usage

Tightly coupling the reference documentation to the source code has many advantages, but it does not turn all
programmers into good documentation writers. Programmers will continue to vary in their ability and interest
in writing good reference documentation. Many organizations have technical writers to produce the reference

402

402

documentation. Doc comments require write access to the source, and technical writers often do not have
permission to modify source code. The use of doc comments will require a change in such organizations.

Another issue is comment skew, in which comments become out of date as the source code changes over time.
You can reduce this problem by putting only contractual information in your doc comments and not
describing the implementation. When the implementation changes, the doc comment will still be correct as
long as the contract remains unmodified. Changing the contract of an existing type, constructor, method, or
field is a questionable practice in many cases, so such changes should be rare. Describing only the contract is
generally a good practice in any case because it frees you to change details of the implementation in the
future. Implementation details of methods need to be documenteduse regular comments for this purpose.

You can further reduce the problem of comment skew by defining a standard marker for programmers to
place in doc comments that need attention. For example, if you add a new method to a class, you could write
the first draft of the doccomment, but flag the comment as one that might need review and rework by the
documentation team:

/**
 * ...initial draft...
 * @docissue Review -- programmer's first draft
 */

A script run over the source could find @docissue markers and show them to the documentation team,
alerting them to work that remains to be done. Some documentation generators allow you to add your own
doc comment paragraph tags, so using an @ tagsuch as @docissue shown aboveallows you to flag these or
other issues directly in the generated documentation as well as in the source itself.

The universe is made of stories, not atoms.

Muriel Rukeyser

Chapter 20. The I/O Package

From a programmer's point of view, the user is a peripheral that types when you issue a read
request.

Peter Williams

The Java platform includes a number of packages that are concerned with the movement of data into and out
of programs. These packages differ in the kinds of abstractions they provide for dealing with I/O
(input/output).

The java.io package defines I/O in terms of streams. Streams are ordered sequences of data that have a
source (input streams) or destination (output streams). The I/O classes isolate programmers from the specific
details of the underlying operating system, while enabling access to system resources through files and other
means. Most stream types (such as those dealing with files) support the methods of some basic interfaces and
abstract classes, with few (if any) additions. The best way to understand the I/O package is to start with the
basic interfaces and abstract classes.

The java.nio package and its subpackages define I/O in terms of buffers and channels. Buffers are data
stores (similar to arrays) that can be read from or written to. Channels represent connections to entities
capable of performing I/O operations, including buffers, files, and sockets. The "n" in nio is commonly
understood as meaning "new" (the nio package predates the original stream-based io package), but it

403

403

originally stood for "non-blocking" because one of the key differences between channel-based I/O and
stream-based I/O is that channels allow for non-blocking I/O operations, as well as interruptible blocking
operations. This is a powerful capability that is critical in the design of high throughput server-style
applications.

The java.net package provides specific support for network I/O, based around the use of sockets, with an
underlying stream or channel-based model.

This chapter is mainly concerned with the stream-based model of the java.io package. A short introduction
to some of the capabilities of the java.nio package is given in "A Taste of New I/O" on page 565, but the
use of non-blocking I/O and the java.net network I/O are advanced topics, beyond the scope of this book.

20.1. Streams Overview

The package java.io has two major parts: character streams and byte streams. Characters are 16-bit
UTF-16 characters, whereas bytes are (as always) 8 bits. I/O is either text-based or data-based (binary).
Text-based I/O works with streams of human-readable characters, such as the source code for a program.
Data-based I/O works with streams of binary data, such as the bit pattern for an image. The character streams
are used for text-based I/O, while byte streams are used for data-based I/O. Streams that work with bytes
cannot properly carry characters, and some character-related issues are not meaningful with byte
streamsthough the byte streams can also be used for older text-based protocols that use 7- or 8-bit characters.
The byte streams are called input streams and output streams, and the character streams are called readers and
writers. For nearly every input stream there is a corresponding output stream, and for most input or output
streams there is a corresponding reader or writer character stream of similar functionality, and vice versa.

Because of these overlaps, this chapter describes the streams in fairly general terms. When we talk simply
about streams, we mean any of the streams. When we talk about input streams or output streams, we mean the
byte variety. The character streams are referred to as readers and writers. For example, when we talk about the
Buffered streams we mean the entire family of BufferedInputStream,
BufferedOutputStream, BufferedReader, and BufferedWriter. When we talk about
Buffered byte streams we mean both BufferedInputStream and BufferedOutputStream.
When we talk about Buffered character streams, we mean BufferedReader and BufferedWriter.

The classes and interfaces in java.io can be broadly split into five groups:

The general classes for building different types of byte and character streamsinput and output streams,
readers and writers, and classes for converting between themare covered in Section 20.2 through to
Section 20.4.

•

A range of classes that define various types of streamsfiltered streams, buffered streams, piped
streams, and some specific instances of those streams, such as a line number reader and a stream
tokenizerare discussed in Section 20.5.

•

The data stream classes and interfaces for reading and writing primitive values and strings are
discussed in Section 20.6.

•

Classes and interfaces for interacting with files in a system independent manner are discussed in
Section 20.7.

•

The classes and interfaces that form the object serialization mechanism, which transforms objects into
byte streams and allows objects to be reconstituted from the data read from a byte stream, are
discussed in Section 20.8.

•

Some of the output streams provide convenience methods for producing formatted output, using instances of
the java.util.Formatter class. You get formatted input by binding an input stream to a
java.util.Scanner object. Details of formatting and scanning are covered in Chapter 22.

404

404

The IOException class is used by many methods in java.io to signal exceptional conditions. Some
extended classes of IOException signal specific problems, but most problems are signaled by an
IOException object with a descriptive string. Details are provided in Section 20.9 on page 563. Any
method that throws an IOException will do so when an error occurs that is directly related to the stream.
In particular, invoking a method on a closed stream may result in an IOException. Unless there are
particular circumstances under which the IOException will be thrown, this exception is not documented
for each individual method of each class.

Similarly, NullPointerException and IndexOutOfBoundsException can be expected to be
thrown whenever a null reference is passed to a method, or a supplied index accesses outside of an array.
Only those situations where this does not occur are explicitly documented.

All code presented in this chapter uses the types in java.io, and every example has imported java.io.*
even when there is no explicit import statement in the code.

20.2. Byte Streams

The java.io package defines abstract classes for basic byte input and output streams. These abstract classes
are then extended to provide several useful stream types. Stream types are almost always paired: For example,
where there is a FileInputStream to read from a file, there is usually a FileOutputStream to write
to a file.

Before you can learn about specific kinds of input and output byte streams, it is important to understand the
basic InputStream and OutputStream abstract classes. The type tree for the byte streams of java.io
in Figure 20-1 shows the type hierarchy of the byte streams.

Figure 20-1. Type Tree for Byte Streams in java.io

405

405

All byte streams have some things in common. For example, all streams support the notion of being open or
closed. You open a stream when you create it, and can read or write while it is open. You close a stream with
its close method, defined in the Closeable[1] interface. Closing a stream releases resources (such as file
descriptors) that the stream may have used and that should be reclaimed as soon as they are no longer needed.
If a stream is not explicitly closed it will hold on to these resources. A stream class could define a finalize
method to release these resources during garbage collection but, as you learned on page 449, that could be too
late. You should usually close streams when you are done with them.

[1] Yes, another misspelling

All byte streams also share common synchronization policies and concurrent behavior. These are discussed in
Section 20.5.1 on page 515.

20.2.1. InputStream

The abstract class InputStream declares methods to read bytes from a particular source. InputStream
is the superclass of most byte input streams in java.io, and has the following methods:

public abstract int read() tHRows IOException

Reads a single byte of data and returns the byte that was read, as an integer in
the range 0 to 255, not 128 to 127; in other words, the byte value is treated as
unsigned. If no byte is available because the end of the stream has been
reached, the value 1 is returned. This method blocks until input is available,
the end of stream is found, or an exception is thrown. The read method

406

406

returns an int instead of an actual byte value because it needs to return all
valid byte values plus a flag value to indicate the end of stream. This requires
more values than can fit in a byte and so the larger int is used.

public int read(byte[] buf, int offset, int count) tHRows
IOException

Reads into a part of a byte array. The maximum number of bytes read is
count. The bytes are stored from buf[offset] up to a maximum of
buf[offset+count-1]all other values in buf are left unchanged. The
number of bytes actually read is returned. If no bytes are read because the
end of the stream was found, the value 1 is returned. If count is zero then
no bytes are read and zero is returned. This method blocks until input is
available, the end of stream is found, or an exception is thrown. If the first
byte cannot be read for any reason other than reaching the end of the streamin
particular, if the stream has already been closedan IOException is thrown.
Once a byte has been read, any failure that occurs while trying to read
subsequent bytes is not reported with an exception but is treated as
encountering the end of the streamthe method completes normally and
returns the number of bytes read before the failure occurred.

public int read(byte[] buf) throws IOException

Equivalent to read(buf,0, buf.length).

public long skip(long count) throws IOException

Skips as many as count bytes of input or until the end of the stream is
found. Returns the actual number of bytes skipped. If count is negative, no
bytes are skipped.

public int available() tHRows IOException

Returns the number of bytes that can be read (or skipped over) without
blocking. The default implementation returns zero.

public void close() tHRows IOException

Closes the input stream. This method should be invoked to release any
resources (such as file descriptors) associated with the stream. Once a stream
has been closed, further operations on the stream will throw an
IOException. Closing a previously closed stream has no effect. The
default implementation of close does nothing.

The implementation of InputStream requires only that a subclass provide the single-byte variant of read
because the other read methods are defined in terms of this one. Most streams, however, can improve
performance by overriding other methods as well. The default implementations of available and close
will usually need to be overridden as appropriate for a particular stream.

The following program demonstrates the use of input streams to count the total number of bytes in a file, or
from System.in if no file is specified:

import java.io.*;

class CountBytes {

407

407

 public static void main(String[] args)
 throws IOException
 {
 InputStream in;
 if (args.length == 0)
 in = System.in;
 else
 in = new FileInputStream(args[0]);

 int total = 0;
 while (in.read() != -1)
 total++;

 System.out.println(total + " bytes");
 }
}

This program takes a filename from the command line. The variable in represents the input stream. If a file
name is not provided, it uses the standard input stream System.in; if one is provided, it creates an object of
type FileInputStream, which is a subclass of InputStream.

The while loop counts the total number of bytes in the file. At the end, the results are printed. Here is the
output of the program when used on itself:

318 bytes

You might be tempted to set total using available, but it won't work on many kinds of streams. The
available method returns the number of bytes that can be read without blocking. For a file, the number of
bytes available is usually its entire contents. If System.in is a stream associated with a keyboard, the
answer can be as low as zero; when there is no pending input, the next read will block.

20.2.2. OutputStream

The abstract class OutputStream is analogous to InputStream; it provides an abstraction for writing
bytes to a destination. Its methods are:

public abstract void write(int b) throws IOException

Writes b as a byte. The byte is passed as an int because it is often the result
of an arithmetic operation on a byte. Expressions involving bytes are type
int, so making the parameter an int means that the result can be passed
without a cast to byte. Note, however, that only the lowest 8 bits of the
integer are written. This method blocks until the byte is written.

public void write(byte[] buf, int offset, int count) tHRows
IOException

Writes part of an array of bytes, starting at buf[offset] and writing
count bytes. This method blocks until the bytes have been written.

public void write(byte[] buf) throws IOException

Equivalent to write(buf,0, buf.length).

408

408

public void flush() throws IOException

Flushes the stream. If the stream has buffered any bytes from the various
write methods, flush writes them immediately to their destination. Then,
if that destination is another stream, it is also flushed. One flush invocation
will flush all the buffers in a chain of streams. If the stream is not buffered,
flush may do nothingthe default implementation. This method is defined in
the Flushable interface.

public void close() tHRows IOException

Closes the output stream. This method should be invoked to release any
resources (such as file descriptors) associated with the stream. Once a stream
has been closed, further operations on the stream will throw an
IOException. Closing a previously closed stream has no effect.The
default implementation of close does nothing.

The implementation of OutputStream requires only that a subclass provide the single-byte variant of
write because the other write methods are defined in terms of this one. Most streams, however, can
improve performance by overriding other methods as well. The default implementations of flush and
close will usually need to be overridden as appropriate for a particular streamin particular, buffered streams
may need to flush when closed.

Here is a program that copies its input to its output, translating one particular byte value to a different one
along the way. The TRanslateByte program takes two parameters: a from byte and a to byte. Bytes that
match the value in the string from are translated into the value in the string to.

import java.io.*;

class TranslateByte {
 public static void main(String[] args)
 throws IOException
 {
 byte from = (byte) args[0].charAt(0);
 byte to = (byte) args[1].charAt(0);
 int b;
 while ((b = System.in.read()) != -1)
 System.out.write(b == from ? to : b);
 }
}

For example, if we invoked the program as

java TranslateByte b B

and entered the text abracadabra!, we would get the output

aBracadaBra!

409

409

Manipulating data from a stream after it has been read, or before it is written, is often achieved by writing
Filter streams, rather than hardcoding the manipulation in a program. You'll learn about filters in Section
20.5.2 on page 516.

Exercise 20.1: Rewrite the TRanslateByte program as a method that translates the contents of an
InputStream onto an OutputStream, in which the mapping and the streams are parameters. For each
type of InputStream and OutputStream you read about in this chapter, write a new main method that
uses the translation method to operate on a stream of that type. If you have paired input and output streams,
you can cover both in one main method.

20.3. Character Streams

The abstract classes for reading and writing streams of characters are Reader and Writer. Each supports
methods similar to those of its byte stream counterpartInputStream and OutputStream, respectively.
For example, InputStream has a read method that returns a byte as the lowest 8 bits of an int, and
Reader has a read method that returns a char as the lowest 16 bits of an int. And where
OutputStream has methods that write byte arrays, Writer has methods that write char arrays. The
character streams were designed after the byte streams to provide full support for working with Unicode
characters, and in the process the contracts of the classes were improved to make them easier to work with.
The type tree for the character streams of java.io appears in Figure 20-2.

Figure 20-2. Type Tree for Character Streams in java.io

As with the byte streams, character streams should be explicitly closed to release resources associated with the
stream. Character stream synchronization policies are discussed in Section 20.5.1 on page 515.

410

410

20.3.1. Reader

The abstract class Reader provides a character stream analogous to the byte stream InputStream and the
methods of Reader essentially mirror those of InputStream:

public int read() throws IOException

Reads a single character and returns it as an integer in the range 0 to 65535.
If no character is available because the end of the stream has been reached,
the value 1 is returned. This method blocks until input is available, the end of
stream is found, or an exception is thrown.

public abstract int read(char[] buf, int offset, int count)
throws IOException

Reads into a part of a char array. The maximum number of characters to
read is count. The read characters are stored from buf[offset] up to a
maximum of buf[offset+count-1]all other values in buf are left
unchanged. The number of characters actually read is returned. If no
characters are read because the end of the stream was found, 1 is returned. If
count is zero then no characters are read and zero is returned. This method
blocks until input is available, the end of stream is found, or an exception is
thrown. If the first character cannot be read for any reason other than finding
the end of the streamin particular, if the stream has already been closedan
IOException is thrown. Once a character has been read, any failure that
occurs while trying to read characters does not cause an exception, but is
treated just like finding the end of the streamthe method completes normally
and returns the number of characters read before the failure occurred.

public int read(char[] buf) tHRows IOException

Equivalent to read(buf,0, buf.length).

public int read(java.nio.CharBuffer buf) throws IOException

Attempts to read as many characters as possible into the specified character
buffer, without overflowing it. The number of characters actually read is
returned. If no characters are read because the end of the stream was found, 1
is returned. This is equivalent to reading into an array that has the same
length as the buffer has available capacity, and then copying the array into
the buffer. This method is defined in the java.lang.Readable interface,
and has no counterpart in InputStream.

public long skip(long count) throws IOException

Skips as many as count characters of input or until the end of the stream is
found. Returns the actual number of characters skipped. The value of count
must not be negative.

public boolean ready() tHRows IOException

Returns TRue if the stream is ready to read; that is, there is at least one
character available to be read. Note that a return value of false does not
guarantee that the next invocation of read will block because data could

411

411

have become available by the time the invocation occurs.

public abstract void close() throws IOException

Closes the stream. This method should be invoked to release any resources
(such as file descriptors) associated with the stream. Once a stream has been
closed, further operations on the stream will throw an IOException.
Closing a previously closed stream has no effect.

The implementation of Reader requires that a subclass provide an implementation of both the read method
that reads into a char array, and the close method. Many subclasses will be able to improve performance if
they also override some of the other methods.

There are a number of differences between Reader and InputStream. With Reader the fundamental
reading method reads into a char array and the other read methods are defined in terms of this method. In
contrast the InputStream class uses the single-byte read method as its fundamental reading method. In
the Reader class subclasses must implement the abstract close method in contrast to inheriting an empty
implementationmany stream classes will at least need to track whether or not they have been closed and so
close will usually need to be overridden. Finally, where InputStream had an available method to
tell you how much data was available to read, Reader simply has a ready method that tells you if there is
any data.

As an example, the following program counts the number of whitespace characters in a character stream:

import java.io.*;

class CountSpace {
 public static void main(String[] args)
 throws IOException
 {
 Reader in;
 if (args.length == 0)
 in = new InputStreamReader(System.in);
 else
 in = new FileReader(args[0]);
 int ch;
 int total;
 int spaces = 0;
 for (total = 0; (ch = in.read()) != -1; total++) {
 if (Character.isWhitespace((char) ch))
 spaces++;
 }
 System.out.println(total + " chars, "
 + spaces + " spaces");
 }
}

This program takes a filename from the command line. The variable in represents the character stream. If a
filename is not provided, the standard input stream, System.in, is used after wrapping it in an
InputStreamReader, which converts an input byte stream into an input character stream; if a filename is
provided, an object of type FileReader is created, which is a subclass of Reader.

The for loop counts the total number of characters in the file and the number of spaces, using the
Character class's isWhitespace method to test whether a character is whitespace. At the end, the
results are printed. Here is the output of the program when used on itself:

453 chars, 111 spaces

412

412

20.3.2. Writer

The abstract class Writer provides a stream analogous to OutputStream but designed for use with
characters instead of bytes. The methods of Writer essentially mirror those of OutputStream, but add
some other useful forms of write:

public void write(int ch) throws IOException

Writes ch as a character. The character is passed as an int but only the
lowest 16 bits of the integer are written. This method blocks until the
character is written.

public abstract void write(char[] buf, int offset, int count)
throws IOException

Writes part of an array of characters, starting at buf[offset] and writing
count characters. This method blocks until the characters have been written.

public void write(char[] buf) throws IOException

Equivalent to write(buf,0, buf.length).

public void write(String str, int offset, int count) throws
IOException

Writes count characters from the string str onto the stream, starting with
str.charAt(offset).

public void write(String str) throws IOException

Equivalent to write(str,0, str.length()).

public abstract void flush() tHRows IOException

Flushes the stream. If the stream has buffered any characters from the various
write methods, flush immediately writes them to their destination. Then,
if that destination is another stream, it is also flushed. One flush invocation
will flush all the buffers in a chain of streams. If a stream is not buffered
flush will do nothing.

public abstract void close() throws IOException

Closes the stream, flushing if necessary. This method should be invoked to
release any resources (such as file descriptors) associated with the stream.
Once a stream has been closed, further operations on the stream will throw an
IOException. Closing a previously closed stream has no effect.

Subclasses of Writer must implement the array writing variant of write, the close method, and the
flush method. All other Writer methods are implemented in terms of these three. This contrasts with
OutputStream which uses the single-byte variant of write method as the fundamental writing method,
and which provides default implementations of flush and close. As with Reader, many subclasses can

413

413

improve performance if they also override other methods.

Writer also implements the java.lang.Appendable interfacesee page 332. The append(charc)
method is equivalent to write(c); the append methods that take a CharSequence are equivalent to
passing the String representations of the CharSequence objects to the write(Stringstr) method.

20.3.3. Character Streams and the Standard Streams

The standard streams System.in, System.out, and System.err existed before the character streams
were invented, so these streams are byte streams even though logically they should be character streams. This
situation creates some anomalies. It is impossible, for example, to replace System.in with a
LineNumberReader to keep track of the standard input stream's current line number. By attaching an
InputStreamReaderan object that converts a byte input stream to a character input streamto
System.in, you can create a LineNumberReader object to keep track of the current line number (see
"LineNumberReader" on page 527). But System.in is an InputStream, so you cannot replace it with a
LineNumberReader, which is a type of Reader, not an InputStream.

System.out and System.err are PrintStream objects. PrintStream has been replaced by its
equivalent character-based version PrintWriter. Generally, you should avoid creating PrintStream
objects directly. You'll learn about the Print stream classes in Section 20.5.8 on page 525.

20.4. InputStreamReader and OutputStreamWriter

The conversion streams InputStreamReader and OutputStreamWriter TRanslate between
character and byte streams using either a specified character set encoding or the default encoding for the local
system. These classes are the "glue" that lets you use existing 8-bit character encodings for local character sets
in a consistent, platform-independent fashion. An InputStreamReader object is given a byte input stream
as its source and produces the corresponding UTF-16 characters. An OutputStreamWriter object is
given a byte output stream as its destination and produces encoded byte forms of the UTF-16 characters
written on it. For example, the following code would read bytes encoded under ISO 8859-6 for Arabic
characters, translating them into the appropriate UTF-16 characters:

public Reader readArabic(String file) throws IOException {
 InputStream fileIn = new FileInputStream(file);
 return new InputStreamReader(fileIn, "iso-8859-6");
}

By default, these conversion streams will work in the platform's default character set encoding, but other
encodings can be specified. Encoding values were discussed in "Character Set Encoding" on page 320; they
can be represented by name or a Charset, or by a CharsetDecoder or CharsetEncoder object from
the java.nio.charset package.

public InputStreamReader(InputStream in)

Creates an InputStreamReader to read from the given InputStream
using the default character set encoding.

public InputStreamReader(InputStream in, Charset c)

414

414

Creates an InputStreamReader to read from the given InputStream
using the given character set encoding.

public InputStreamReader(InputStream in, CharsetDecoder c)

Creates an InputStreamReader to read from the given InputStream
using the given character set decoder.

public InputStreamReader(InputStream in, String enc) throws
UnsupportedEncodingException

Creates an InputStreamReader to read from the given InputStream
using the named character set encoding. If the named encoding is not
supported an UnsupportedEncodingException is thrown.

public OutputStreamWriter(OutputStream out)

Creates an OutputStreamWriter to write to the given OutputStream
using the default character set encoding.

public OutputStreamWriter(OutputStream out, Charset c)

Creates an OutputStreamWriter to write to the given OutputStream
using the given character set encoding.

public OutputStreamWriter(OutputStream out, CharsetEncoder c)

Creates an OutputStreamWriter to write to the given OutputStream
using the given character set encoder.

public OutputStreamWriter(OutputStream out, String enc) tHRows
UnsupportedEncodingException

Creates an OutputStreamWriter to write to the given OutputStream
using the named character set encoding. If the named encoding is not
supported an UnsupportedEncodingException is thrown.

The read methods of InputStreamReader simply read bytes from their associated InputStream and
convert them to characters using the appropriate encoding for that stream. Similarly, the write methods of
OutputStreamWriter take the supplied characters, convert them to bytes with the appropriate encoding,
and write them to the associated OutputStream.

In both classes, closing the conversion stream also closes the associated byte stream. This may not always be
desirablesuch as when you are converting the standard streamsso consider carefully when closing conversion
streams.

Both classes also support the method getEncoding, which returns a string representing either the historical
or canonical name of the stream's character encoding, or null if the stream has been closed.

The FileReader and FileWriter classes are subclasses of these conversion streams. This helps you
read and write local files correctly in a consistent, Unicode-savvy fashion using the local encoding. However,
if the default local encoding isn't what you need, you must use an explicit InputStreamReader or
OutputStreamWriter object. You will learn about the file related streams in more detail in Section 20.7
on page 540.

415

415

You can also use the data output stream you will learn about in Section 20.6.2 on page 539 to write characters
as bytes using a specific Unicode encoding.

There is no ReaderInputStream class to translate characters to bytes, nor a WriterOutputStream
class to translate bytes to characters.

20.5. A Quick Tour of the Stream Classes

The java.io package defines several types of streams. The stream types usually have input/output pairs,
and most have both byte stream and character stream variants. Some of these streams define general
behavioral properties. For example:

Filter streams are abstract classes representing streams with some filtering operation applied as
data is read or written by another stream. For example, a FilterReader object gets input from
another Reader object, processes (filters) the characters in some manner, and returns the filtered
result. You build sequences of filtered streams by chaining various filters into one large filter. Output
can be filtered similarly (Section 20.5.2).

•

Buffered streams add buffering so that read and write need not, for example, access the file
system for every invocation. The character variants of these streams also add the notion of
line-oriented text (Section 20.5.3).

•

Piped streams are pairs such that, say, characters written to a PipedWriter can be read from a
PipedReader (Section 20.5.4).

•

A group of streams, called in-memory streams, allow you to use in-memory data structures as the source or
destination for a stream:

ByteArray streams use a byte array (Section 20.5.5).•
CharArray streams use a char array (Section 20.5.6).•
String streams use string types (Section 20.5.7).•

The I/O package also has input and output streams that have no output or input counterpart:

The Print streams provide print and println methods for formatting printed data in
human-readable text form (Section 20.5.8).

•

LineNumberReader is a buffered reader that tracks the line numbers of the input (characters only)
(Section 20.5.9).

•

SequenceInputStream converts a sequence of InputStream objects into a single
InputStream so that a list of concatenated input streams can be treated as a single input stream
(bytes only) (Section 20.5.10).

•

There are also streams that are useful for building parsers:

Pushback streams add a pushback buffer you can use to put back data when you have read too far
(Section 20.5.11).

•

The StreamTokenizer class breaks a Reader into a stream of tokensrecognizable "words" that
are often needed when parsing user input (characters only) (Section 20.5.12).

•

These classes can be extended to create new kinds of stream classes for specific applications.

Each of these stream types is described in the following sections. Before looking at these streams in detail,
however, you need to learn something about the synchronization behavior of the different streams.

416

416

20.5.1. Synchronization and Concurrency

Both the byte streams and the characters streams define synchronization policies though they do this in
different ways. The concurrent behavior of the stream classes is not fully specified but can be broadly
described as follows.

Each byte stream class synchronizes on the current stream object when performing operations that must be
free from interference. This allows multiple threads to use the same streams yet still get well-defined behavior
when invoking individual stream methods. For example, if two threads each try to read data from a stream in
chunks of n bytes, then the data returned by each read operation will contain up to n bytes that appeared
consecutively in the stream. Similarly, if two threads are writing to the same stream then the bytes written in
each write operation will be sent consecutively to the stream, not intermixed at random points.

The character streams use a different synchronization strategy from the byte streams. The character streams
synchronize on a protected lock field which, by default, is a reference to the stream object itself. However,
both Reader and Writer provide a protected constructor that takes an object for lock to refer to. Some
subclasses set the lock field to refer to a different object. For example, the StringWriter class that
writes its character into a StringBuffer object sets its lock object to be the StringBuffer object. If
you are writing a reader or writer, you should set the lock field to an appropriate object if this is not
appropriate. Conversely, if you are extending an existing reader or writer you should always synchronize on
lock and not this.

In many cases, a particular stream object simply wraps another stream instance and delegates the main stream
methods to that instance, forming a chain of connected streams, as is the case with Filter streams. In this
case, the synchronization behavior of the method will depend on the ultimate stream object being wrapped.
This will only become an issue if the wrapping class needs to perform some additional action that must occur
atomically with respect to the main stream action. In most cases filter streams simply manipulate data before
writing it to, or after reading it from, the wrapped stream, so synchronization is not an issue.

Most input operations will block until data is available, and it is also possible that output stream operations
can block trying to write datathe ultimate source or destination could be a stream tied to a network socket. To
make the threads performing this blocking I/O more responsive to cancellation requests an implementation
may respond to Thread interrupt requests (see page 365) by unblocking the thread and throwing an
InterruptedIOException. This exception can report the number of bytes transferred before the
interruption occurredif the code that throws it sets the value.

For single byte transfers, interrupting an I/O operation is quite straight-forward. In general, however, the state
of a stream after a thread using it is interrupted is problematic. For example, suppose you use a particular
stream to read HTTP requests across the network. If a thread reading the next request is interrupted after
reading two bytes of the header field in the request packet, the next thread reading from that stream will get
invalid data unless the stream takes steps to prevent this. Given the effort involved in writing classes that can
deal effectively with these sorts of situations, most implementations do not allow a thread to be interrupted
until the main I/O operation has completed, so you cannot rely on blocking I/O being interruptible. The
interruptible channels provided in the java.nio package support interruption by closing the stream when
any thread using the stream is interruptedthis ensures that there are no issues about what would next be read.

Even when interruption cannot be responded to during an I/O operation many systems will check for
interruption at the start and/or end of the operation and throw the InterruptedIOException then. Also,
if a thread is blocked on a stream when the stream is closed by another thread, most implementations will
unblock the blocked thread and throw an IOException.

417

417

20.5.2. Filter Streams

Filter streamsFilterInputStream, FilterOutputStream, FilterReader, and
FilterWriterhelp you chain streams to produce composite streams of greater utility. Each filter stream is
bound to another stream to which it delegates the actual input or output actions. Filter streams get their
power from the ability to filterprocesswhat they read or write, transforming the data in some way.

Filter byte streams add new constructors that accept a stream of the appropriate type (input or output) to
which to connect. Filter character streams similarly add a new constructor that accepts a character stream
of the appropriate type (reader or writer). However, many character streams already have constructors that
take another character stream, so those Reader and Writer classes can act as filters even if they do not
extend FilterReader or FilterWriter.

The following shows an input filter that converts characters to uppercase:

public class UppercaseConvertor extends FilterReader {
 public UppercaseConvertor(Reader in) {
 super(in);

 }

 public int read() throws IOException {
 int c = super.read();
 return (c == -1 ? c : Character.toUpperCase((char)c));
 }

 public int read(char[] buf, int offset, int count)
 throws IOException
 {
 int nread = super.read(buf, offset, count);
 int last = offset + nread;
 for (int i = offset; i < last; i++)
 buf[i] = Character.toUpperCase(buf[i]);
 return nread;
 }
}

We override each of the read methods to perform the actual read and then convert the characters to upper
case. The actual reading is done by invoking an appropriate superclass method. Note that we don't invoke
read on the stream in itselfthis would bypass any filtering performed by our superclass. Note also that we
have to watch for the end of the stream. In the case of the no-arg read this means an explicit test, but in the
array version of read, a return value of 1 will prevent the for loop from executing. In the array version of
read we also have to be careful to convert to uppercase only those characters that we stored in the buffer.

We can use our uppercase convertor as follows:

public static void main(String[] args)
 throws IOException
{
 StringReader src = new StringReader(args[0]);
 FilterReader f = new UppercaseConvertor(src);
 int c;
 while ((c = f.read()) != -1)
 System.out.print((char)c);
 System.out.println();
}

418

418

We use a string as our data source by using a StringReader (see Section 20.5.7 on page 523). The
StringReader is then wrapped by our UppercaseConvertor. Reading from the filtered stream
converts all the characters from the string stream into uppercase. For the input "nolowercase" we get the
output:

NO LOWERCASE

You can chain any number of Filter byte or character streams. The original source of input can be a stream
that is not a Filter stream. You can use an InputStreamReader to convert a byte input stream to a
character input stream.

Filter output streams can be chained similarly so that data written to one stream will filter and write data to
the next output stream. All the streams, from the first to the next-to-last, must be Filter output stream
objects, but the last stream can be any kind of output stream. You can use an OutputStreamWriter to
convert a character output stream to a byte output stream.

Not all classes that are Filter streams actually alter the data. Some classes are behavioral filters, such as the
buffered streams you'll learn about next, while others provide a new interface for using the streams, such as
the print streams. These classes are Filter streams because they can form part of a filter chain.

Exercise 20.2: Rewrite the translateByte class as a filter.

Exercise 20.3: Create a pair of Filter stream classes that encrypt bytes using any algorithm you choosesuch
as XORing the bytes with some valuewith your DecryptInputStream able to decrypt the bytes that your
EncryptOutputStream class creates.

Exercise 20.4: Create a subclass of FilterReader that will return one line of input at a time via a method
that blocks until a full line of input is available.

20.5.3. Buffered Streams

The Buffered stream classesBufferedInputStream, BufferedOutputStream,
BufferedReader, and BufferedWriterbuffer their data to avoid every read or write going
directly to the next stream. These classes are often used in conjunction with File streamsaccessing a disk file
is much slower than using a memory buffer, and buffering helps reduce file accesses.

Each of the Buffered streams supports two constructors: One takes a reference to the wrapped stream and
the size of the buffer to use, while the other only takes a reference to the wrapped stream and uses a default
buffer size.

When read is invoked on an empty Buffered input stream, it invokes read on its source stream, fills the
buffer with as much data as is availableonly blocking if it needs the data being waited forand returns the
requested data from that buffer. Future read invocations return data from that buffer until its contents are
exhausted, and that causes another read on the source stream. This process continues until the source stream
is exhausted.

Buffered output streams behave similarly. When a write fills the buffer, the destination stream's write
is invoked to empty the buffer. This buffering can turn many small write requests on the Buffered stream
into a single write request on the underlying destination.

Here is how to create a buffered output stream to write bytes to a file:

419

419

new BufferedOutputStream(new FileOutputStream(path));

You create a FileOutputStream with the path, put a BufferedOutputStream in front of it, and use
the buffered stream object. This scheme enables you to buffer output destined for the file.

You must retain a reference to the FileOutputStream object if you want to invoke methods on it later
because there is no way to obtain the downstream object from a Filter stream. However, you should rarely
need to work with the downstream object. If you do keep a reference to a downstream object, you must ensure
that the first upstream object is flushed before operating on the downstream object because data written to
upper streams may not have yet been written all the way downstream. Closing an upstream object also closes
all downstream objects, so a retained reference may cease to be usable.

The Buffered character streams also understand lines of text. The newLine method of
BufferedWriter writes a line separator to the stream. Each system defines what constitutes a line
separator in the system String property line.separator, which need not be a single character. You
should use newLine to end lines in text files that may be read by humans on the local system (see "System
Properties" on page 663).

The method readLine in BufferedReader returns a line of text as a String. The method readLine
accepts any of the standard set of line separators: line feed (\n), carriage return (\r), or carriage return
followed by line feed (\r\n). This implies that you should never set line.separator to use any other
sequence. Otherwise, lines terminated by newLine would not be recognized by readLine. The string
returned by readLine does not include the line separator. If the end of stream is encountered before a line
separator, then the text read to that point is returned. If only the end of stream is encountered readLine
returns null.

20.5.4. Piped Streams

Piped streamsPipedInputStream, PipedOutputStream, PipedReader, and PipedWriterare
used as input/output pairs; data written on the output stream of a pair is the data read on the input stream. The
pipe maintains an internal buffer with an implementation-defined capacity that allows writing and reading to
proceed at different ratesthere is no way to control the size of the buffer.

Pipes provide an I/O-based mechanism for communicating data between different threads. The only safe way
to use Piped streams is with two threads: one for reading and one for writing. Writing on one end of the pipe
blocks the thread when the pipe fills up. If the writer and reader are the same thread, that thread will block
permanently. Reading from a pipe blocks the thread if no input is available.

To avoid blocking a thread forever when its counterpart at the other end of the pipe terminates, each pipe
keeps track of the identity of the most recent reader and writer threads. The pipe checks to see that the thread
at the other end is alive before blocking the current thread. If the thread at the other end has terminated, the
current thread will get an IOException.

The following example uses a pipe stream to connect a TextGenerator tHRead with a thread that wants to
read the generated text. First, the text generator:

class TextGenerator extends Thread {
 private Writer out;

 public TextGenerator(Writer out) {
 this.out = out;
 }

420

420

 public void run() {
 try {
 try {
 for (char c = 'a'; c <= 'z'; c++)
 out.write(c);
 } finally {
 out.close();
 }
 } catch (IOException e) {
 getUncaughtExceptionHandler().
 uncaughtException(this, e);
 }
 }
}

The TextGenerator simply writes to the output stream passed to its constructor. In the example that
stream will actually be a piped stream to be read by the main thread:

class Pipe {
 public static void main(String[] args)
 throws IOException
 {
 PipedWriter out = new PipedWriter();
 PipedReader in = new PipedReader(out);
 TextGenerator data = new TextGenerator(out);
 data.start();
 int ch;
 while ((ch = in.read()) != -1)
 System.out.print((char) ch);
 System.out.println();
 }
}

We create the Piped streams, making the PipedWriter a parameter to the constructor for the
PipedReader. The order is unimportant: The input pipe could be a parameter to the output pipe. What is
important is that an input/output pair be attached to each other. We create the new TextGenerator object,
with the PipedWriter as the output stream for the generated characters. Then we loop, reading characters
from the text generator and writing them to the system output stream. At the end, we make sure that the last
line of output is terminated.

Piped streams need not be connected when they are constructedthere is a no-arg constructorbut can be
connected at a later stage via the connect method. PipedReader.connect takes a PipedWriter
parameter and vice versa. As with the constructor, it does not matter whether you connect x to y, or y to x,
the result is the same. Trying to use a Piped stream before it is connected or trying to connect it when it is
already connected results in an IOException.

20.5.5. ByteArray Byte Streams

You can use arrays of bytes as the source or destination of byte streams by using ByteArray streams. The
ByteArrayInputStream class uses a byte array as its input source, and reading on it can never block. It
has two constructors:

public ByteArrayInputStream(byte[] buf, int offset, int count)

421

421

Creates a ByteArrayInputStream from the specified array of bytes
using only the part of buf from buf[offset] to
buf[offset+count-1] or the end of the array, whichever is smaller.
The input array is used directly, not copied, so you should take care not to
modify it while it is being used as an input source.

public ByteArrayInputStream(byte[] buf)

Equivalent to ByteArrayInputStream(buf,0, buf.length).

The ByteArrayOutputStream class provides a dynamically growing byte array to hold output. It adds
constructors and methods:

public ByteArrayOutputStream()

Creates a new ByteArrayOutputStream with a default initial array size.

public ByteArrayOutputStream(int size)

Creates a new ByteArrayOutputStream with the given initial array
size.

public int size()

Returns the number of bytes generated thus far by output to the stream.

public byte[] toByteArray()

Returns a copy of the bytes generated thus far by output to the stream. When
you are finished writing into a ByteArrayOutputStream via upstream
filter streams, you should flush the upstream objects before using
toByteArray.

public void reset()

Resets the stream to reuse the current buffer, discarding its contents.

public String toString()

Returns the current contents of the buffer as a String, translating bytes into
characters according to the default character encoding.

public String toString(String enc) tHRows
UnsupportedEncodingException

Returns the current contents of the buffer as a String, translating bytes into
characters according to the specified character encoding. If the encoding is
not supported an UnsupportedEncodingException is thrown.

public void writeTo(OutputStream out) throws IOException

Writes the current contents of the buffer to the stream out.

422

422

20.5.6. CharArray Character Streams

The CharArray character streams are analogous to the ByteArray byte streamsthey let you use char
arrays as a source or destination without ever blocking. You construct CharArrayReader objects with an
array of char:

public CharArrayReader(char[] buf, int offset, int count)

Creates a CharArrayReader from the specified array of characters using
only the subarray of buf from buf[offset] to
buf[offset+count-1] or the end of the array, whichever is smaller.
The input array is used directly, not copied, so you should take care not to
modify it while it is being used as an input source.

public CharArrayReader(char[] buf)

Equivalent to CharArrayReader(buf,0, buf.length).

The CharArrayWriter class provides a dynamically growing char array to hold output. It adds
constructors and methods:

public CharArrayWriter()

Creates a new CharArrayWriter with a default initial array size.

public CharArrayWriter(int size)

Creates a new CharArrayWriter with the given initial array size.

public int size()

Returns the number of characters generated thus far by output to the stream.

public char[] toCharArray()

Returns a copy of the characters generated thus far by output to the stream.
When you are finished writing into a CharArrayWriter via upstream
filter streams, you should flush the upstream objects before using
toCharArray.

public void reset()

Resets the stream to reuse the current buffer, discarding its contents.

public String toString()

Returns the current contents of the buffer as a String.

public void writeTo(Writer out) tHRows IOException

Writes the current contents of the buffer to the stream out.

423

423

20.5.7. String Character Streams

The StringReader reads its characters from a String and will never block. It provides a single
constructor that takes the string from which to read. For example, the following program factors numbers read
either from the command line or System.in:

class Factor {
 public static void main(String[] args) {
 if (args.length == 0) {
 factorNumbers(new InputStreamReader(System.in));
 } else {
 for (String str : args) {
 StringReader in = new StringReader(str);
 factorNumbers(in);
 }

 }
 }
 // ... definition of factorNumbers ...
}

If the command is invoked without parameters, factorNumbers parses numbers from the standard input
stream. When the command line contains some arguments, a StringReader is created for each parameter,
and factorNumbers is invoked on each one. The parameter to factorNumbers is a stream of characters
containing numbers to be parsed; it does not know whether they come from the command line or from
standard input.

StringWriter lets you write results into a buffer that can be retrieved as a String or StringBuffer
object. It adds the following constructors and methods:

public StringWriter()

Creates a new StringWriter with a default initial buffer size.

public StringWriter(int size)

Creates a new StringWriter with the specified initial buffer size.
Providing a good initial size estimate for the buffer will improve performance
in many cases.

public StringBuffer getBuffer()

Returns the actual StringBuffer being used by this stream. Because the
actual StringBuffer is returned, you should take care not to modify it
while it is being used as an output destination.

public String toString()

Returns the current contents of the buffer as a String.

The following code uses a StringWriter to create a string that contains the output of a series of
println calls on the contents of an array:

public static String arrayToStr(Object[] objs) {
 StringWriter strOut = new StringWriter();
 PrintWriter out = new PrintWriter(strOut);

424

424

 for (int i = 0; i < objs.length; i++)
 out.println(i + ": " + objs[i]);
 return strOut.toString();
}

20.5.8. Print Streams

The Print streamsPrintStream and PrintWriterprovide methods that make it easy to write the
values of primitive types and objects to a stream, in a human-readable text formatas you have seen in many
examples. The Print streams provide print and println methods for the following types:

char int float Object boolean

char[] long double String

These methods are much more convenient than the raw stream write methods. For example, given a float
variable f and a PrintStream reference out, the call out.print(f) is equivalent to

out.write(String.valueOf(f).getBytes());

The println method appends a line separator after writing its argument to the streama simple println
with no parameters ends the current line. The line separator string is defined by the system property
line.separator and is not necessarily a single newline character (\n).

Each of the Print streams acts as a Filter stream, so you can filter data on its way downstream.

The PrintStream class acts on byte streams while the PrintWriter class acts on character streams.
Because printing is clearly character-related output, the PrintWriter class is the class you should use.
However, for historical reasons System.out and System.err are PrintStreams that use the default
character set encodingthese are the only PrintStream objects you should use. We describe only the
PrintWriter class, though PrintStream provides essentially the same interface.

PrintWriter has eight constructors.

public PrintWriter(Writer out, boolean autoflush)

Creates a new PrintWriter that will write to the stream out. If
autoflush is true, println invokes flush. Otherwise, println
invocations are treated like any other method, and flush is not invoked.
Autoflush behavior cannot be changed after the stream is constructed.

public PrintWriter(Writer out)

Equivalent to PrintWriter(out,false) .

public PrintWriter(OutputStream out, boolean autoflush)

Equivalent to PrintWriter(new OutputStreamWriter(out),
autoflush).

425

425

public PrintWriter(OutputStream out)

Equivalent to PrintWriter(newOutputStreamWriter(out),
false).

public PrintWriter(File file) throws FileNotFoundException

Equivalent to PrintWriter(newOutputStreamWriter(fos)) ,
where fos is a FileOutputStream created with the given file.

public PrintWriter(File file, String enc) tHRows
FileNotFoundException, UnsupportedEncodingException

Equivalent to PrintWriter(newOutputStreamWriter(fos,
enc)), where fos is a FileOutputStream created with the given file.

public PrintWriter(String filename) throws FileNotFoundException

Equivalent to PrintWriter(newOutputStreamWriter(fos)) ,
where fos is a FileOutputStream created with the given file name.

public PrintWriter(String filename, String enc) tHRows
FileNotFoundException, UnsupportedEncodingException

Equivalent to PrintWriter(newOutputStreamWriter(fos,
enc)), where fos is a FileOutputStream created with the given file
name.

The Print streams implement the Appendable interface which allows them to be targets for a
Formatter. Additionally, the following convenience methods are provided for formatted outputsee
"Formatter" on page 624 for details:

public PrintWriter format(String format, Object... args)

Acts like new Formatter(this).format(format,args) , but a
new Formatter need not be created for each call. The current
PrintWriter is returned.

public PrintWriter format(Locale l, String format, Object...
args)

Acts like new Formatter(this, l).format(format, args),
but a new Formatter need not be created for each call. The current
PrintWriter is returned. Locales are described in Chapter 24.

There are two printf methods that behave exactly the same as the format methodsprintf stands for
"print formatted" and is an old friend from the C programming language.

One important characteristic of the Print streams is that none of the output methods throw IOException.
If an error occurs while writing to the underlying stream the methods simply return normally. You should
check whether an error occurred by invoking the boolean method checkErrorthis flushes the stream and
checks its error state. Once an error has occurred, there is no way to clear it. If any of the underlying stream
operations result in an InterruptedIOException, the error state is not set, but instead the current
thread is re-interrupted using Thread.currentThread().interrupt().

426

426

20.5.9. LineNumberReader

The LineNumberReader stream keeps track of line numbers while reading text. As usual a line is
considered to be terminated by any one of a line feed (\n), a carriage return (\r), or a carriage return
followed immediately by a linefeed (\r\n).

The following program prints the line number where the first instance of a particular character is found in a
file:

import java.io.*;

class FindChar {
 public static void main(String[] args)
 throws IOException
 {
 if (args.length != 2)
 throw new IllegalArgumentException(
 "need char and file");

 int match = args[0].charAt(0);
 FileReader fileIn = new FileReader(args[1]);
 LineNumberReader in = new LineNumberReader(fileIn);
 int ch;
 while ((ch = in.read()) != -1) {
 if (ch == match) {
 System.out.println("'" + (char)ch +
 "' at line " + in.getLineNumber());
 return;
 }
 }
 System.out.println((char)match + " not found");
 }
}

This program creates a FileReader named fileIn to read from the named file and then inserts a
LineNumberReader, named in, before it. LineNumberReader objects get their characters from the
reader they are attached to, keeping track of line numbers as they read. The getLineNumber method
returns the current line number; by default, lines are counted starting from zero. When this program is run on
itself looking for the letter 'I', its output is

'I' at line 4

You can set the current line number with setLineNumber. This could be useful, for example, if you have a
file that contains several sections of information. You could use setLineNumber to reset the line number
to 1 at the start of each section so that problems would be reported to the user based on the line numbers
within the section instead of within the file.

LineNumberReader is a BufferedReader that has two constructors: One takes a reference to the
wrapped stream and the size of the buffer to use, while the other only takes a reference to the wrapped stream
and uses a default buffer size.

Exercise 20.5: Write a program that reads a specified file and searches for a specified word, printing each line
number and line in which the word is found.

427

427

20.5.10. SequenceInputStream

The SequenceInputStream class creates a single input stream from reading one or more byte input
streams, reading the first stream until its end of input and then reading the next one, and so on through the last
one. SequenceInputStream has two constructors: one for the common case of two input streams that are
provided as the two parameters to the constructor, and the other for an arbitrary number of input streams using
the Enumeration abstraction (described in "Enumeration" on page 617). Enumeration is an interface
that provides an ordered iteration through a list of objects. For SequenceInputStream, the enumeration
should contain only InputStream objects. If it contains anything else, a ClassCastException will be
thrown when the SequenceInputStream TRies to get that object from the list.

The following example program concatenates all its input to create a single output. This program is similar to
a simple version of the UNIX utility catif no files are named, the input is simply forwarded to the output.
Otherwise, the program opens all the files and uses a SequenceInputStream to model them as a single
stream. Then the program writes its input to its output:

import java.io.*;
import java.util.*;

class Concat {
 public static void main(String[] args)
 throws IOException
 {
 InputStream in; // stream to read characters from
 if (args.length == 0) {
 in = System.in;
 } else {
 InputStream fileIn, bufIn;
 List<InputStream> inputs =
 new ArrayList<InputStream>(args.length);
 for (String arg : args) {
 fileIn = new FileInputStream(arg);
 bufIn = new BufferedInputStream(fileIn);
 inputs.add(bufIn);
 }
 Enumeration<InputStream> files =
 Collections.enumeration(inputs);
 in = new SequenceInputStream(files);
 }
 int ch;
 while ((ch = in.read()) != -1)
 System.out.write(ch);

 }
 // ...
}

If there are no parameters, we use System.in for input. If there are parameters, we create an ArrayList
large enough to hold as many BufferedInputStream objects as there are command-line arguments (see
"ArrayList" on page 582). Then we create a stream for each named file and add the stream to the inputs list.
When the loop is finished, we use the Collections class's enumeration method to get an
Enumeration object for the list elements. We use this Enumeration in the constructor for
SequenceInputStream to create a single stream that concatenates all the streams for the files into a
single InputStream object. A simple loop then reads all the bytes from that stream and writes them on
System.out.

You could instead write your own implementation of Enumeration whose nextElement method creates
a FileInputStream for each argument on demand, closing the previous stream, if any.

428

428

20.5.11. Pushback Streams

A Pushback stream lets you push back, or "unread," characters or bytes when you have read too far.
Pushback is typically useful for breaking input into tokens. Lexical scanners, for example, often know that a
token (such as an identifier) has ended only when they have read the first character that follows it. Having
seen that character, the scanner must push it back onto the input stream so that it is available as the start of the
next token. The following example uses PushbackInputStream to report the longest consecutive
sequence of any single byte in its input:

import java.io.*;

class SequenceCount {
 public static void main(String[] args)
 throws IOException
 {
 PushbackInputStream
 in = new PushbackInputStream(System.in);
 int max = 0; // longest sequence found
 int maxB = -1; // the byte in that sequence
 int b; // current byte in input

 do {
 int cnt;
 int b1 = in.read(); // 1st byte in sequence
 for (cnt = 1; (b = in.read()) == b1; cnt++)
 continue;
 if (cnt > max) {
 max = cnt; // remember length
 maxB = b1; // remember which byte value
 }
 in.unread(b); // pushback start of next seq
 } while (b != -1); // until we hit end of input

 System.out.println(max + " bytes of " + maxB);
 }
}

We know that we have reached the end of one sequence only when we read the first byte of the next sequence.
We push this byte back using unread so that it is read again when we repeat the do loop for the next
sequence.

Both PushbackInputStream and PushbackReader support two constructors: One takes a reference to
the wrapped stream and the size of the pushback buffer to create, while the other only takes a reference to the
wrapped stream and uses a pushback buffer with space for one piece of data (byte or char as appropriate).
Attempting to push back more than the specified amount of data will cause an IOException.

Each Pushback stream has three variants of unread, matching the variants of read. We illustrate the
character version of PushbackReader, but the byte equivalents for PushbackInputStream have the
same behavior:

public void unread(int c) tHRows IOException

Pushes back the single character c. If there is insufficient room in the
pushback buffer an IOException is thrown.

public void unread(char[] buf, int offset, int count) throws
IOException

429

429

Pushes back the characters in the specified subarray. The first character
pushed back is buf[offset] and the last is buf[offset+count-1].
The subarray is prepended to the front of the pushback buffer, such that the
next character to be read will be that at buf[offset], then
buf[offset+1], and so on. If the pushback buffer is full an
IOException is thrown.

public void unread(char[] buf) tHRows IOException

Equivalent to unread(buf,0, buf.length).

For example, after two consecutive unread calls on a PushbackReader with the characters '1' and
'2', the next two characters read will be '2' and '1' because '2' was pushed back second. Each unread
call sets its own list of characters by prepending to the buffer, so the code

pbr.unread(new char[] {'1', '2'});
pbr.unread(new char[] {'3', '4'});
for (int i = 0; i < 4; i++)
 System.out.println(i + ": " + (char)pbr.read());

produces the following lines of output:

0: 3
1: 4
2: 1
3: 2

Data from the last unread (the one with '3' and '4') is read back first, and within that unread the data
comes from the beginning of the array through to the end. When that data is exhausted, the data from the first
unread is returned in the same order. The unread method copies data into the pushback buffer, so changes
made to an array after it is used with unread do not affect future calls to read.

20.5.12. StreamTokenizer

Tokenizing input text is a common application, and the java.io package provides a StreamTokenizer
class for simple tokenization. A more general facility for scanning and converting input text is provided by the
java.util.Scanner classsee "Scanner" on page 641.

You can tokenize a stream by creating a StreamTokenizer with a Reader object as its source and then
setting parameters for the scan. A scanner loop invokes nextToken, which returns the token type of the next
token in the stream. Some token types have associated values that are found in fields in the
StreamTokenizer object.

This class is designed primarily to parse programming language-style input; it is not a general tokenizer.
However, many configuration files look similar enough to programming languages that they can be parsed by
this tokenizer. When designing a new configuration file or other data, you can save work if you make it look
enough like a language to be parsed with StreamTokenizer.

When nextToken recognizes a token, it returns the token type as its value and also sets the ttype field to
the same value. There are four token types:

430

430

TT_WORD: A word was scanned. The String field sval contains the word that was found.•
TT_NUMBER: A number was scanned. The double field nval contains the value of the number.
Only decimal floating-point numbers (with or without a decimal point) are recognized. The tokenizer
does not understand 3.4e79 as a floating-point number, nor 0xffff as a hexadecimal number.

•

TT_EOL: An end-of-line was found.•
TT_EOF: The end-of-file was reached.•

The input text is assumed to consist of bytes in the range \u0000 to \u00FFUnicode characters outside this
range are not handled correctly. Input is composed of both special and ordinary characters. Special characters
are those that the tokenizer treats speciallynamely whitespace, characters that make up numbers, characters
that make up words, and so on. Any other character is considered ordinary. When an ordinary character is the
next in the input, its token type is itself. For example, if the character '¿' is encountered in the input and is
not special, the token return type (and the ttype field) is the int value of the character '¿'.

As one example, let's look at a method that sums the numeric values in a character stream it is given:

static double sumStream(Reader source) throws IOException {
 StreamTokenizer in = new StreamTokenizer(source);
 double result = 0.0;
 while (in.nextToken() != StreamTokenizer.TT_EOF) {
 if (in.ttype == StreamTokenizer.TT_NUMBER)
 result += in.nval;
 }
 return result;
}

We create a StreamTokenizer object from the reader and then loop, reading tokens from the stream,
adding all the numbers found into the burgeoning result. When we get to the end of the input, we return the
final sum.

Here is another example that reads an input source, looking for attributes of the form name=value, and
stores them as attributes in AttributedImpl objects, described in "Implementing Interfaces" on page 127:

public static Attributed readAttrs(Reader source)
 throws IOException
{
 StreamTokenizer in = new StreamTokenizer(source);
 AttributedImpl attrs = new AttributedImpl();
 Attr attr = null;
 in.commentChar('#'); // '#' is ignore-to-end comment
 in.ordinaryChar('/'); // was original comment char
 while (in.nextToken() != StreamTokenizer.TT_EOF) {
 if (in.ttype == StreamTokenizer.TT_WORD) {
 if (attr != null) {
 attr.setValue(in.sval);
 attr = null; // used this one up
 } else {
 attr = new Attr(in.sval);
 attrs.add(attr);
 }
 } else if (in.ttype == '=') {
 if (attr == null)
 throw new IOException("misplaced '='");
 } else {
 if (attr == null) // expected a word
 throw new IOException("bad Attr name");
 attr.setValue(new Double(in.nval));
 attr = null;

431

431

 }
 }
 return attrs;
}

The attribute file uses '#' to mark comments. Ignoring these comments, the stream is searched for a string
token followed by an optional '=' followed by a word or number. Each such attribute is put into an Attr
object, which is added to a set of attributes in an AttributedImpl object. When the file has been parsed,
the set of attributes is returned.

Setting the comment character to '#' sets its character class. The tokenizer recognizes several character
classes that are set by the following methods:

public void wordChars(int low, int hi)

Characters in this range are word characters: They can be part of a TT_WORD
token. You can invoke this several times with different ranges. A word
consists of one or more characters inside any of the legal ranges.

public void whitespaceChars(int low, int hi)

Characters in this range are whitespace. Whitespace is ignored, except to
separate tokens such as two consecutive words. As with the wordChars
range, you can make several invocations, and the union of the invocations is
the set of whitespace characters.

public void ordinaryChars(int low, int hi)

Characters in this range are ordinary. An ordinary character is returned as
itself, not as a token. This removes any special significance the characters
may have had as comment characters, delimiters, word components,
whitespace, or number characters. In the above example, we used
ordinaryChar to remove the special comment significance of the '/'
character.

public void ordinaryChar(int ch)

Equivalent to ordinaryChars(ch,ch) .

public void commentChar(int ch)

The character ch starts a single-line commentcharacters after ch up to the
next end-of-line are treated as one run of whitespace.

public void quoteChar(int ch)

Matching pairs of the character ch delimit String constants. When a
String constant is recognized, the character ch is returned as the token,
and the field sval contains the body of the string with surrounding ch
characters removed. When string constants are read, some of the standard \
processing is applied (for example, \t can be in the string). The string
processing in StreamTokenizer is a subset of the language's strings. In
particular, you cannot use \uxxxx, \', \", or (unfortunately) \Q, where Q

432

432

is the quote character ch. You can have more than one quote character at a
time on a stream, but strings must start and end with the same quote
character. In other words, a string that starts with one quote character ends
when the next instance of that same quote character is found. If a different
quote character is found in between, it is simply part of the string.

public void parseNumbers()

Specifies that numbers should be parsed as double-precision floating-point
numbers. When a number is found, the stream returns a type of TT_NUMBER,
leaving the value in nval. There is no way to turn off just this featureto turn
it off you must either invoke ordinaryChars for all the number-related
characters (don't forget the decimal point and minus sign) or invoke
resetSyntax.

public void resetSyntax()

Resets the syntax table so that all characters are ordinary. If you do this and
then start reading the stream, nextToken always returns the next character
in the stream, just as when you invoke InputStream.read.

There are no methods to ask the character class of a given character or to add new classes of characters. Here
are the default settings for a newly created StreamTokenizer object:

wordChars('a', 'z'); // lower case ASCII letters
wordChars('A', 'Z'); // upper case ASCII letters
wordChars(128 + 32, 255); // "high" non-ASCII values
whitespaceChars(0, ' '); // ASCII control codes
commentChar('/');
quoteChar('"');
quoteChar('\'');
parseNumbers();

This leaves the ordinary characters consisting of most of the punctuation and arithmetic characters (;, :, [, {,
+, =, and so forth).

The changes made to the character classes are cumulative, so, for example, invoking wordChars with two
different ranges of characters defines both ranges as word characters. To replace a range you must first mark
the old range as ordinary and then add the new range. Resetting the syntax table clears all settings, so if you
want to return to the default settings, for example, you must manually make the invocations listed above.

Other methods control the basic behavior of the tokenizer:

public void eolIsSignificant(boolean flag)

If flag is true, ends of lines are significant and TT_EOL may be returned
by nextToken. If false, ends of lines are treated as whitespace and
TT_EOL is never returned. The default is false.

public void slashStarComments(boolean flag)

If flag is true, the tokenizer recognizes /*...*/ comments. This occurs
independently of settings for any comment characters. The default is false.

433

433

public void slashSlashComments(boolean flag)

If flag is true, the tokenizer recognizes // to end-of-line comments. This
occurs independently of the settings for any comment characters. The default
is false.

public void lowerCaseMode(boolean flag)

If flag is TRue, all characters in TT_WORD tokens are converted to their
lowercase equivalent if they have one (using String.toLowerCase).
The default is false. Because of the case issues described in "Character" on
page 192, you cannot reliably use this for Unicode string equivalencetwo
tokens might be equivalent but have different lowercase representations. Use
String.equalsIgnoreCase for reliable case-insensitive comparison.

There are three miscellaneous methods:

public void pushBack()

Pushes the previously returned token back into the stream. The next
invocation of nextToken returns the same token again instead of
proceeding to the next token. There is only a one-token pushback; multiple
consecutive invocations to pushBack are equivalent to one invocation.

public int lineno()

Returns the current line number. Usually used for reporting errors you detect.

public String toString()

Returns a String representation of the last returned stream token, including
its line number.

Exercise 20.6: Write a program that takes input of the form name op value, where name is one of three
words of your choosing, op is +, -, or =, and value is a number. Apply each operator to the named value.
When input is exhausted, print the three values. For extra credit, use the HashMap class that was used for
AttributedImpl so that you can use an arbitrary number of named values.

20.6. The Data Byte Streams

Reading and writing text characters is useful, but you also frequently need to transmit the binary data of
specific types across a stream. The DataInput and DataOutput interfaces define methods that transmit
primitive types across a stream. The classes DataInputStream and DataOutputStream provide a
default implementation for each interface. We cover the interfaces first, followed by their implementations.

20.6.1. DataInput and DataOutput

The interfaces for data input and output streams are almost mirror images. The parallel read and write
methods for each type are

Read Write Type

434

434

readBoolean writeBoolean boolean

readChar writeChar char

readByte writeByte byte

readShort writeShort short

readInt writeInt int

readLong writeLong long

readFloat writeFloat float

readDouble writeDouble double

readUTF writeUTF String (in UTF format)

String values are read and written using a modified form of the UTF-8 character encoding. This differs from
standard UTF-8 in three ways: the null byte (\u0000) is encoded in a 2-byte format so that the encoded
string does not have embedded null bytes; only 1-byte, 2-byte, or 3-byte formats are used; and supplementary
characters are encoded using surrogate pairs. Encoding Unicode characters into bytes is necessary in many
situations because of the continuing transition from 8-bit to 16-bit character sets.

In addition to these paired methods, DataInput has several methods of its own, some of which are similar
to those of InputStream:

public abstract void readFully(byte[] buf, int offset, int
count) throws IOException

Reads into part of a byte array. The maximum number of bytes read is
count. The bytes are stored from buf[offset] up to a maximum of
buf[offset+count-1]. If count is zero then no bytes are read. This
method blocks until input is available, the end of the file (that is, stream) is
foundin which case an EOFException is thrownor an exception is thrown
because of an I/O error.

public abstract void readFully(byte[] buf) tHRows IOException

Equivalent to readFully(buf,0, buf.length).

public abstract int skipBytes(int count) throws IOException

Attempts to skip over count bytes, discarding any bytes skipped over.
Returns the actual number of bytes skipped. This method never throws an
EOFException.

public abstract int readUnsignedByte() throws IOException

Reads one input byte, zero-extends it to type int, and returns the result,
which is therefore in the range 0 through 255. This method is suitable for
reading a byte written by the writeByte method of DataOutput if the
argument to writeByte was a value in the range 0 through 255.

public abstract int readUnsignedShort() throws IOException

435

435

Reads two input bytes and returns an int value in the range 0 through
65535. The first byte read is made the high byte. This method is suitable for
reading bytes written by the writeShort method of DataOutput if the
argument to writeShort was a value in the range 0 through 65535.

The DataInput interface methods usually handle end-of-file (stream) by throwing EOFException when
it occurs. EOFException extends IOException.

The DataOutput interface supports signatures equivalent to the three forms of write in OutputStream
and with the same specified behavior. Additionally, it provides the following unmirrored methods:

public abstract void writeBytes(String s) throws IOException

Writes a String as a sequence of bytes. The upper byte in each character is
lost, so unless you are willing to lose data, use this method only for strings
that contain characters between \u0000 and \u00ff.

public abstract void writeChars(String s) tHRows IOException

Writes a String as a sequence of char. Each character is written as two
bytes with the high byte written first.

There are no readBytes or readChars methods to read the same number of characters written by a
writeBytes or writeChars invocation, therefore you must use a loop on readByte or readChar to
read strings written with these methods. To do that you need a way to determine the length of the string,
perhaps by writing the length of the string first, or by using an end-of-sequence character to mark its end. You
could use readFully to read a full array of bytes if you wrote the length first, but that won't work for
writeChars because you want char values, not byte values.

20.6.2. The Data Stream Classes

For each Data interface there is a corresponding Data stream. In addition, the RandomAccessFile class
implements both the input and output Data interfaces (see Section 20.7.2 on page 541). Each Data class is
an extension of its corresponding Filter class, so you can use Data streams to filter other streams. Each
Data class has constructors that take another appropriate input or output stream. For example, you can use
the filtering to write data to a file by putting a DataOutputStream in front of a FileOutputStream
object. You can then read the data by putting a DataInputStream in front of a FileInputStream
object:

public static void writeData(double[] data, String file)
 throws IOException
{
 OutputStream fout = new FileOutputStream(file);
 DataOutputStream out = new DataOutputStream(fout);
 out.writeInt(data.length);
 for (double d : data)
 out.writeDouble(d);
 out.close();
}

public static double[] readData(String file)
 throws IOException
{
 InputStream fin = new FileInputStream(file);
 DataInputStream in = new DataInputStream(fin);
 double[] data = new double[in.readInt()];
 for (int i = 0; i < data.length; i++)

436

436

 data[i] = in.readDouble();
 in.close();
 return data;
}

The writeData method first opens the file and writes the array length. It then loops, writing the contents of
the array. The file can be read into an array with readData. These methods can be rewritten more simply
using the Object streams you will learn about in Section 20.8 on page 549.

Exercise 20.7: Add a method to the Attr class of Chapter 3 that writes the contents of an object to a
DataOutputStream and add a constructor that will read the state from a DataInputStream.

20.7. Working with Files

The java.io package provides a number of classes that help you work with files in the underlying system.
The File stream classes allow you to read from and write to files and the FileDescriptor class allows
the system to represent underlying file system resources as objects. RandomAccessFile lets you deal with
files as randomly accessed streams of bytes or characters. Actual interaction with the local file system is
through the File class, which provides an abstraction of file pathnames, including path component
separators, and useful methods to manipulate file names.

20.7.1. File Streams and FileDescriptor

The File streamsFileInputStream, FileOutputStream, FileReader, and FileWriterallow
you to treat a file as a stream for input or output. Each type is instantiated with one of three constructors:

A constructor that takes a String that is the name of the file.•
A constructor that takes a File object that refers to the file (see Section 20.7.3 on page 543).•
A constructor that takes a FileDescriptor object (see below).•

If a file does not exist, the input streams will throw a FileNotFoundException. Accessing a file
requires a security check and a SecurityException is thrown if you do not have permission to access
that filesee "Security" on page 677.

With a byte or character output stream, the first two constructor types create the file if it does not exist, or
truncate it if it does exist. You can control truncation by using the overloaded forms of these two constructors
that take a second argument: a boolean that, if true, causes each individual write to append to the file. If
this boolean is false, the file will be truncated and new data added. If the file does not exist, the file will
be created and the boolean will be ignored.

The byte File streams also provide a getChannel method for integration with the java.nio facilities. It
returns a java.nio.channels.FileChannel object for accessing the file.

A FileDescriptor object represents a system-dependent value that describes an open file. You can get a
file descriptor object by invoking getFD on a File byte streamyou cannot obtain the file descriptor from
File character streams. You can test the validity of a FileDescriptor by invoking its boolean valid
methodfile descriptors created directly with the no-arg constructor of FileDescriptor are not valid.

FileDescriptor objects create a new File stream to the same file as another stream without needing to
know the file's pathname. You must be careful to avoid unexpected interactions between two streams doing
different things with the same file. You cannot predict what happens, for example, when two threads write to

437

437

the same file using two different FileOutputStream objects at the same time.

The flush method of FileOutputStream and FileWriter guarantees that the buffer is flushed to the
underlying file. It does not guarantee that the data is committed to diskthe underlying file system may do its
own buffering. You can guarantee that the data is committed to disk by invoking the sync method on the
file's FileDescriptor object, which will either force the data to disk or throw a
SyncFailedException if the underlying system cannot fulfill this contract.

20.7.2. RandomAccessFile

The RandomAccessFile class provides a more sophisticated file mechanism than the File streams do. A
random access file behaves like a large array of bytes stored in the file system. There is a kind of cursor, or
index into the implied array, called the file pointer; input operations read bytes starting at the file pointer and
advance the file pointer past the bytes read. If the random access file is created in read/write mode, then
output operations are also available; output operations write bytes starting at the file pointer and advance the
file pointer past the bytes written.

RandomAccessFile is not a subclass of InputStream, OutputStream, Reader, or Writer
because it can do both input and output and can work with both characters and bytes. The constructor has a
parameter that declares whether the stream is for input or for both input and output.

RandomAccessFile supports read and write methods of the same names and signatures as the byte
streams. For example, read returns a single byte. RandomAccessFile also implements the DataInput
and DataOutput interfaces (see page 537) and so can be used to read and write data types supported in
those interfaces. Although you don't have to learn a new set of method names and semantics for the same
kinds of tasks you do with the other streams, you cannot use a RandomAccessFile where any of the other
streams are required.

The constructors for RandomAccessFile are

public RandomAccessFile(String name, String mode) throws
FileNotFoundException

Creates a random access file stream to read from, and optionally write to, a
file with the specified name. The basic mode can be either "r" or "rw" for
read or read/write, respectively. Variants of "rw" mode provide additional
semantics: "rws" mode specifies that on each write the file contents and
metadata (file size, last modification time, etc.) are written synchronously
through to the disk; "rwd" mode specifies that only the file contents are
written synchronously to the disk. Specifying any other mode will get you an
IllegalArgumentException. If the mode contains "rw" and the file
does not exist, it will be created or, if that fails, a
FileNotFoundException is thrown.

public RandomAccessFile(File file, String mode) throws
FileNotFoundException

Creates a random access file stream to read from, and optionally write to, the
file specified by the File argument. Modes are the same as for the
String-based constructor.

Since accessing a file requires a security check, these constructors could throw a SecurityException if
you do not have permission to access the file in that modesee "Security" on page 677.

438

438

The "random access" in the name of the class refers to the ability to set the read/write file pointer to any
position in the file and then perform operations. The additional methods in RandomAccessFile to support
this functionality are:

public long getFilePointer() throws IOException

Returns the current location of the file pointer (in bytes) from the beginning
of the file.

public void seek(long pos) throws IOException

Sets the file pointer to the specified number of bytes from the beginning of
the file. The next byte written or read will be the posth byte in the file, where
the initial byte is the 0th. If you position the file pointer beyond the end of the
file and write to the file, the file will grow.

public int skipBytes(int count) tHRows IOException

Attempts to advance the file pointer count bytes. Any bytes skipped over
can be read later after seek is used to reposition the file pointer. Returns the
actual number of bytes skipped. This method is guaranteed never to throw an
EOFException. If count is negative, no bytes are skipped.

public long length() throws IOException

Returns the file length.

public void setLength(long newLength) tHRows IOException

Sets the length of the file to newLength. If the file is currently shorter, the
file is grown to the given length, filled in with any byte values the
implementation chooses. If the file is currently longer, the data beyond this
position is discarded. If the current position (as returned by
getFilePointer) is greater than newLength, the position is set to
newLength.

You can access the FileDescriptor for a RandomAccessFile by invoking its getFD method. You
can obtain a FileChannel for a RandomAccessFile by invoking its getChannel method.

Exercise 20.8: Write a program that reads a file with entries separated by lines starting with %% and creates a
table file with the starting position of each such entry. Then write a program that uses that table to print a
random entry (see the Math.random method described in "Math and StrictMath" on page 657).

20.7.3. The File Class

The File class (not to be confused with the file streams) provides several common manipulations that are
useful with file names. It provides methods to separate pathnames into subcomponents and to ask the file
system about the file a pathname refers to.

A File object actually represents a path, not necessarily an underlying file. For example, to find out whether
a pathname represents an existing file, you create a File object with the pathname and then invoke exists
on that object.

439

439

A path is separated into directory and file parts by a char stored in the static field separatorChar and
available as a String in the static field separator. The last occurrence of this character in the path
separates the pathname into directory and file components. (Directory is the term used on most systems; some
systems call such an entity a "folder" instead.)

File objects are created with one of four constructors:

public File(String path)

Creates a File object to manipulate the specified path.

public File(String dirName, String name)

Creates a File object for the file name in the directory named dirName. If
dirName is null, only name is used. If dirName is an empty string,
name is resolved against a system dependent default directory. Otherwise,
this is equivalent to using File(dirName + File.separator +
name).

public File(File fileDir, String name)

Creates a File object for the file name in the directory named by the File
object fileDir. Equivalent to using File(fileDir.getPath(),
name).

public File(java.net.URI uri)

Creates a File object for the pathname represented by the given file:
URI (Uniform Resource Identifier). If the given URI is not a suitable file
URI then IllegalArgumentException is thrown.

Five "get" methods retrieve information about the components of a File object's pathname. The following
code invokes each of them after creating a File object for the file "FileInfo.java" in the "ok"
subdirectory of the parent of the current directory (specified by ".."):

File src = new File(".." + File.separator + "ok",
 "FileInfo.java");
System.out.println("getName() = " + src.getName());
System.out.println("getPath() = " + src.getPath());
System.out.println("getAbsolutePath() = "
 + src.getAbsolutePath());
System.out.println("getCanonicalPath() = "
 + src.getCanonicalPath());
System.out.println("getParent() = " + src.getParent());

And here is the output:

getName() = FileInfo.java
getPath() = ../ok/FileInfo.java
getAbsolutePath() = /vob/java_prog/src/../ok/FileInfo.java
getCanonicalPath() = /vob/java_prog/ok/FileInfo.java
getParent() = ../ok

440

440

The canonical path is defined by each system. Usually, it is a form of the absolute path with relative
components (such as ".." to refer to the parent directory) renamed and with references to the current
directory removed. Unlike the other "get" methods, getCanonicalPath can throw IOException
because resolving path components can require calls to the underlying file system, which may fail.

The methods getParentFile, getAbsoluteFile, and getCanonicalFile are analogous to
getParent, getAbsolutePath, and getCanonicalPath, but they return File objects instead of
strings.

You can convert a File to a java.net.URL or java.net.URI object by invoking toURL or toURI,
respectively.

The overriding method File.equals deserves mention. Two File objects are considered equal if they
have the same path, not if they refer to the same underlying file system object. You cannot use
File.equals to test whether two File objects denote the same file. For example, two File objects may
refer to the same file but use different relative paths to refer to it, in which case they do not compare equal.
Relatedly, you can compare two files using the compareTo method, which returns a number less than, equal
to, or greater than zero as the current file's pathname is lexicographically less than, equal to, or greater than
the pathname of the argument File. The compareTo method has two overloaded forms: one takes a File
argument and the other takes an Object argument and so implements the Comparable interface.

Several boolean tests return information about the underlying file:

exists returns TRue if the file exists in the file system.•
canRead returns true if a file exists and can be read.•
canWrite returns true if the file exists and can be written.•
isFile returns true if the file is not a directory or other special type of file.•
isDirectory returns TRue if the file is a directory.•
isAbsolute returns true if the path is an absolute pathname.•
isHidden returns TRue if the path is one normally hidden from users on the underlying system.•

All the methods that inspect or modify the actual file system are security checked and can throw
SecurityException if you don't have permission to perform the operation. Methods that ask for the
filename itself are not security checked.

File objects have many other methods for manipulating files and directories. There are methods to inspect
and manipulate the current file:

public long lastModified()

Returns a long value representing the time the file was last modified or zero
if the file does not exist.

public long length()

Returns the file length in bytes, or zero if the file does not exist.

public boolean renameTo(File newName)

Renames the file, returning true if the rename succeeded.

public boolean delete()

Deletes the file or directory named in this File object, returning true if the

441

441

deletion succeeded. Directories must be empty before they are deleted.

There are methods to create an underlying file or directory named by the current File:

public boolean createNewFile()

Creates a new empty file, named by this File. Returns false if the file
already exists or if the file cannot be created. The check for the existence of
the file and its subsequent creation is performed atomically with respect to
other file system operations.

public boolean mkdir()

Creates a directory named by this File, returning TRue on success.

public boolean mkdirs()

Creates all directories in the path named by this File, returning TRue if all
were created. This is a way to ensure that a particular directory is created,
even if it means creating other directories that don't currently exist above it in
the directory hierarchy. Note that some of the directories may have been
created even if false is returned.

However, files are usually created by FileOutputStream or FileWriter objects or
RandomAccessFile objects, not using File objects.

Two methods let you change the state of the underlying file, assuming that one exists:

public boolean setLastModified(long time)

Sets the "last modified" time for the file or returns false if it cannot do so.

public boolean setReadOnly()

Makes the underlying file unmodifiable in the file system or returns false
if it cannot do so. The file remains unmodifiable until it is deleted or
externally marked as modifiable againthere is no method for making it
modifiable again.

There are methods for listing the contents of directories and finding out about root directories:

public String[] list()

Lists the files in this directory. If used on something that isn't a directory, it
returns null. Otherwise, it returns an array of file names. This list includes
all files in the directory except the equivalent of "." and ".." (the current
and parent directory, respectively).

public String[] list(FilenameFilter filter)

Uses filter to selectively list files in this directory (see
FilenameFilter described in the next section).

public static File[] listRoots()

442

442

Returns the available filesystem roots, that is, roots of local hierarchical file
systems. Windows platforms, for example, have a root directory for each
active drive; UNIX platforms have a single / root directory. If none are
available, the array has zero elements.

The methods listFiles()and listFiles(FilenameFilter) are analogous to list()and
list(FilenameFilter), but return arrays of File objects instead of arrays of strings. The method
listFiles(FileFilter) is analogous to the list that uses a FilenameFilter.

Three methods relate primarily to temporary files (sometimes called "scratch files")those files you need to
create during a run of your program for storing data, or to pass between passes of your computation, but
which are not needed after your program is finished.

public static File createTempFile(String prefix, String suffix,
File directory) tHRows IOException

Creates a new empty file in the specified directory, using the given prefix and
suffix strings to generate its name. If this method returns successfully then it
is guaranteed that the file denoted by the returned abstract pathname did not
exist before this method was invoked, and neither this method nor any of its
variants will return the same abstract pathname again in the current
invocation of the virtual machine. The prefix argument must be at least
three characters long, otherwise an IllegalArgumentException is
thrown. It is recommended that the prefix be a short, meaningful string such
as "hjb" or "mail". The suffix argument may be null, in which case
the suffix ".tmp" will be used. Note that since there is no predefined
separator between the file name and the suffix, any separator, such as '.',
must be part of the suffix. If the directory argument is null then the
system-dependent default temporary-file directory will be used. The default
temporary-file directory is specified by the system property
java.io.tmpdir.

public static File createTempFile(String prefix, String suffix)
tHRows IOException

Equivalent to createTempFile(prefix,suffix, null).

public void deleteOnExit()

Requests the system to remove the file when the virtual machine
terminatessee "Shutdown" on page 672. This request only applies to a normal
termination of the virtual machine and cannot be revoked once issued.

When a temporary file is created, the prefix and the suffix may first be adjusted to fit the limitations of the
underlying platform. If the prefix is too long then it will be truncated, but its first three characters will always
be preserved. If the suffix is too long then it too will be truncated, but if it begins with a period (.) then the
period and the first three characters following it will always be preserved. Once these adjustments have been
made the name of the new file will be generated by concatenating the prefix, five or more internally generated
characters, and the suffix. Temporary files are not automatically deleted on exit, although you will often
invoke deleteOnExit on File objects returned by createTempFile.

Finally, the character File.pathSeparatorChar and its companion string File.pathSeparator
represent the character that separates file or directory names in a search path. For example, UNIX separates
components in the program search path with a colon, as in ".:/bin:/usr/bin", so

443

443

pathSeparatorChar is a colon on UNIX systems.

Exercise 20.9: Write a method that, given one or more pathnames, will print all the information available
about the file it represents (if any).

Exercise 20.10: Write a program that uses a StreamTokenizer object to break an input file into words and
counts the number of times each word occurs in the file, printing the result. Use a HashMap to keep track of
the words and counts.

20.7.4. FilenameFilter and FileFilter

The FilenameFilter interface provides objects that filter unwanted files from a list. It supports a single
method:

boolean accept(File dir, String name)

Returns true if the file named name in the directory dir should be part of
the filtered output.

Here is an example that uses a FilenameFilter object to list only directories:

import java.io.*;

class DirFilter implements FilenameFilter {
 public boolean accept(File dir, String name) {
 return new File(dir, name).isDirectory();
 }

 public static void main(String[] args) {
 File dir = new File(args[0]);
 String[] files = dir.list(new DirFilter());
 System.out.println(files.length + " dir(s):");
 for (String file : files)
 System.out.println("\t" + file);

 }
}

First we create a File object to represent a directory specified on the command line. Then we create a
DirFilter object and pass it to list. For each name in the directory, list invokes the accept method
on the filtering object and includes the name in the list if the filtering object returns true. For our accept
method, true means that the named file is a directory.

The FileFilter interface is analogous to FilenameFilter, but works with a single File object:

boolean accept(File pathname)

Returns true if the file represented by pathname should be part of the
filtered output.

Exercise 20.11: Using FilenameFilter or FileFilter, write a program that takes a directory and a
suffix as parameters and prints all files it can find that have that suffix.

444

444

20.8. Object Serialization

The ability to save objects in a byte stream that can be transferred across the network (perhaps for use in
remote method invocations), saved to disk in a file or database, and later reconstituted to form a live object, is
an essential aspect of many real-world applications.

The process of converting an object's representation into a stream of bytes is known as serialization, while
reconstituting an object from a byte stream is deserialization. When talking about the classes, interfaces, and
language features involved in this overall process, we generally just use the term serialization and understand
that it includes deserialization as well.

A number of classes and interfaces are involved with serialization. You have already learned about the basic
mechanisms for reading and writing primitive types and strings using the Data stream classes (see page 537).
This section covers the object byte streamsObjectInputStream and ObjectOutputStreamthat allow
you to serialize and deserialize complete objects. Various other classes and interfaces provide specific support
for the serialization process. In addition, the field modifier TRansient provides a language-level means of
marking data that should not be serialized.

20.8.1. The Object Byte Streams

The Object streamsObjectInputStream and ObjectOutputStreamallow you to read and write
object graphs in addition to the well-known types (primitives, strings, and arrays). By "object graph" we mean
that when you use writeObject to write an object to an ObjectOutputStream, bytes representing the
objectincluding all other objects that it referencesare written to the stream. This process of transforming an
object into a stream of bytes is called serialization. Because the serialized form is expressed in bytes, not
characters, the Object streams have no Reader or Writer forms.

When bytes encoding a serialized graph of objects are read by the method readObject of
ObjectInputStreamthat is, deserializedthe result is a graph of objects equivalent to the input graph.

Suppose, for example, that you have a HashMap object that you wish to store into a file for future use. You
could write the graph of objects that starts with the hash map this way:

FileOutputStream fileOut = new FileOutputStream("tab");
ObjectOutputStream out = new ObjectOutputStream(fileOut);
HashMap<?,?> hash = getHashMap();
out.writeObject(hash);

As you can see, this approach is quite straightforward. The single writeObject on hash writes the entire
contents of the hash map, including all entries, all the objects that the entries refer to, and so on, until the
entire graph of interconnected objects has been visited. A new copy of the hash map could be reconstituted
from the serialized bytes:

FileInputStream fileIn = new FileInputStream("tab");
ObjectInputStream in = new ObjectInputStream(fileIn);
HashMap<?,?> newHash = (HashMap<?,?>) in.readObject();

Serialization preserves the integrity of the graph itself. Suppose, for example, that in a serialized hash map, an
object was stored under two different keys:

445

445

When the serialized hash map is deserialized, the two analogous entries in the new copy of the hash map will
have references to a single copy of the rose.jpg object, not references to two separate copies of
rose.jpg.[2]

[2] The first key field is the word "rose" in Tibetan.

Sometimes, however, sharing objects in this way is not what is desired. In that case you can use
ObjectOutputStream's writeUnshared method to write the object as a new distinct object, rather
than using a reference to an existing serialization of that object. Any object written into the graph by
writeUnshared will only ever have one reference to it in the serialized data. The readUnshared
method of ObjectInputStream reads an object that is expected to be unique. If the object is actually a
reference to an existing deserialized object then an ObjectStreamException is thrown; similarly, if the
deserialization process later tries to create a second reference to an object returned by readUnshared, an
ObjectStreamException is thrown. These uniqueness checks only apply to the actual object passed to
writeUnshared or read by readUnshared, not to any objects they refer to.

20.8.2. Making Your Classes Serializable

When an ObjectOutputStream writes a serialized object, the object must implement the
Serializable marker interface. This marker interface declares that the class is designed to have its objects
serialized.

Being serializable can be quite simple. The default serialization process is to serialize each field of the object
that is neither TRansient nor static. Primitive types and strings are written in the same encoding used
by DataOutputStream; objects are serialized by calling writeObject. With default serialization, all
serialized fields that are object references must refer to serializable object types. Default serialization also
requires either that your superclass have a no-arg constructor (so that deserialization can invoke it) or that it
also be Serializable (in which case declaring your class to implement Serializable is redundant but
harmless). For most classes this default serialization is sufficient, and the entire work necessary to make a
class serializable is to mark it as such by declaring that it implements the Serializable interface:

public class Name implements java.io.Serializable {
 private String name;
 private long id;
 private transient boolean hashSet = false;
 private transient int hash;
 private static long nextID = 0;

 public Name(String name) {
 this.name = name;
 synchronized (Name.class) {
 id = nextID++;
 }
 }

 public int hashCode() {

446

446

 if (!hashSet) {
 hash = name.hashCode();
 hashSet = true;

 }
 return hash;
 }

 // ... override equals, provide other useful methods
}

The class Name can be written to an ObjectOutputStream either directly with writeObject, or
indirectly if it is referenced by an object written to such a stream. The name and id fields will be written to
the stream; the fields nextID, hashSet, and hash will not be written, nextID because it is static and
the others because they are declared transient. Because hash is a cached value that can easily be
recalculated from name, there is no reason to consume the time and space it takes to write it to the stream.

Default deserialization reads the values written during serialization. Static fields in the class are left
untouchedif the class needs to be loaded then the normal initialization of the class takes place, giving the static
fields an initial value. Each transient field in the reconstituted object is set to the default value for its type.
When a Name object is deserialized, the newly created object will have name and id set to the same values
as those of the original object, the static field nextID will remain untouched, and the transient fields
hashSet and hash will have their default values (false and 0). These defaults work because when
hashSet is false the value of hash will be recalculated.

You will occasionally have a class that is generally serializable but has specific instances that are not
serializable. For example, a container might itself be serializable but contain references to objects that are not
serializable. Any attempt to serialize a non-serializable object will throw a
NotSerializableException.

20.8.3. Serialization and Deserialization Order

Each class is responsible for properly serializing its own statethat is, its fields. Objects are serialized and
deserialized down the type treefrom the highest-level class that is Serializable to the most specific class.
This order is rarely important when you're serializing, but it can be important when you're deserializing. Let
us consider the following type tree for an HTTPInput class:

When deserializing an HTTPInput object, ObjectInputStream first allocates memory for the new
object and then finds the first Serializable class in the object's type hierarchyin this case URLInput.
The stream invokes the no-arg constructor of that class's superclass (the object's last non-serializable class),
which in this case is InputSource. If other state from the superclass must be preserved, URLInput is
responsible for serializing that state and restoring it on deserialization. If your non-serializable superclass has

447

447

state, you will almost certainly need to customize the first serializable class (see the next section). If the first
serializable class directly extends Object (as the earlier Name class did), customizing is easy because
Object has no state to preserve or restore.

Once the first serializable class has finished with its part of its superclass's state, it will set its own state from
the stream. Then ObjectInputStream will walk down the type tree, deserializing the state for each class
using readObject. When ObjectInputStream reaches the bottom of the type tree, the object has been
completely deserialized.

As the stream is deserialized, other serialized objects will be found that were referenced from the object
currently being deserialized. These other objects are deserialized as they are encountered. Thus, if URLInput
had a reference to a HashMap, that hash map and its contents would be deserialized before the HTTPInput
part of the object was deserialized.

Before any of this can happen, the relevant classes must first be loaded. This requires finding a class of the
same name as the one written and checking to see that it is the same class. You'll learn about versioning issues
shortly. Assuming it is the same class, the class must be loaded. If the class is not found or cannot be loaded
for any reason, readObject will throw a ClassNotFoundException.

20.8.4. Customized Serialization

The default serialization methods work for many classes but not for all of them. For some classes default
deserialization may be improper or inefficient. The HashMap class is an example of both problems. Default
serialization would write all the data structures for the hash map, including the hash codes of the entries. This
serialization is both wrong and inefficient.

It is wrong because hash codes may be different for deserialized entries. This will be true, for example, of
entries using the default hashCode implementation.

It is inefficient because a hash map typically has a significant number of empty buckets. There is no point in
serializing empty buckets. It would be more efficient to serialize the referenced keys and entries and rebuild a
hash map from them than to serialize the entire data structure of the map.

For these reasons, java.util.HashMap provides private writeObject and readObject methods.[3]

These methods are invoked by ObjectOutputStream and ObjectInputStream, respectively, when it
is time to serialize or deserialize a HashMap object. These methods are invoked only on classes that provide
them, and the methods are responsible only for the class's own state, including any state from non-serializable
superclasses. A class's writeObject and readObject methods, if provided, should not invoke the
superclass's readObject or writeObject method. Object serialization differs in this way from clone
and finalize.

[3] These methods are private because they should never be overridden and they should
never be invoked by anyone using or subclassing your class. The serialization mechanism
gains access to these private methods using reflection to disable the language level access
control (see page 426). Of course this can only happen if the current security policy allows
itsee "Security" on page 677.

Let us suppose, for example, that you wanted to improve the Name class so that it didn't have to check
whether the cached hash code was valid each time. You could do this by setting hash in the constructor,
instead of lazily when it is asked for. But this causes a problem with serializationsince hash is transient it
does not get written as part of serialization (nor should it), so when you are deserializing you need to
explicitly set it. This means that you have to implement readObject to deserialize the main fields and then
set hash, which implies that you have to implement writeObject so that you know how the main fields

448

448

were serialized.

public class BetterName implements Serializable {
 private String name;
 private long id;
 private transient int hash;
 private static long nextID = 0;

 public BetterName(String name) {
 this.name = name;
 synchronized (BetterName.class) {
 id = nextID++;
 }
 hash = name.hashCode();
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeUTF(name);
 out.writeLong(id);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 name = in.readUTF();
 id = in.readLong();
 hash = name.hashCode();
 }

 public int hashCode() {
 return hash;
 }

 // ... override equals, provide other useful methods
}

We use writeObject to write out each of the non-static, non-transient fields. It declares that it can throw
IOException because the write methods it invokes can do so, and, if one does throw an exception, the
serialization must be halted. When readObject gets the values from the stream, it can then set hash
properly. It, too, must declare that it throws IOException because the read methods it invokes can do so,
and this should stop deserialization. The readObject method must declare that it throws
ClassNotFoundException because, in the general case, deserializing fields of the current object could
require other classes to be loadedthough not in the example.

There is one restriction on customized serialization: You cannot directly set a final field within
readObject because final fields can only be set in initializers or constructors. For example, if name was
declared final the class BetterName would not compile. You will need to design your classes with this
restriction in mind when considering custom serialization. The default serialization mechanism can bypass
this restriction because it uses native code. This means that default serialization works fine with classes that
have final fields. For custom serialization it is possible to use reflection to set a final fieldsee "Final Fields"
on page 420but the security restrictions for doing this means that it is seldom applicable. One circumstance in
which it is applicable, for example, is if your classes are required to be installed as a standard extension and so
have the necessary security privilegessee "Security Policies" on page 680.

The readObject and writeObject methods for BetterName show that you can use the methods of
DataInput and DataOutput to transmit arbitrary data on the stream. However, the actual
implementations replicate the default serialization and then add the necessary setup for hash. The read and

449

449

write invocations of these methods could have been replaced with a simple invocation of methods that
perform default serialization and deserialization:

private void writeObject(ObjectOutputStream out)
 throws IOException
{
 out.defaultWriteObject();
}

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
{
 in.defaultReadObject();
 hash = name.hashCode();
}

In fact, as you may have surmised, given that writeObject performs nothing but default serialization, we
need not have implemented it at all.

A writeObject method can throw NotSerializableException if a particular object is not
serializable. For example, in rare cases, objects of a class might be generally serializable, but a particular
object might contain sensitive data.

You will occasionally find that an object cannot be initialized properly until the graph of which it is a part has
been completely deserialized. You can have the ObjectInputStream invoke a method of your own
devising by calling the stream's registerValidation method with a reference to an object that
implements the interface ObjectInputValidation. When deserialization of the top-level object at the
head of the graph is complete, your object's validateObject method will be invoked to make any needed
validation operation or check.

Normally, an object is serialized as itself on the output stream, and a copy of the same type is reconstituted
during deserialization. You will find a few classes for which this is not correct. For example, if you have a
class that has objects that are supposed to be unique in each virtual machine for each unique value (so that ==
will return TRue if and only if equals also would return true), you would need to resolve an object being
deserialized into an equivalent one in the local virtual machine. You can control these by providing
writeReplace and readResolve methods of the following forms and at an appropriate access level:

<access> Object writeReplace() throws ObjectStreamException

Returns an object that will replace the current object during serialization. Any
object may be returned including the current one.

<access> Object readResolve() tHRows ObjectStreamException

Returns an object that will replace the current object during deserialization.
Any object may be returned including the current one.

In our example, readResolve would check to find the local object that was equivalent to the one just
deserializedif it exists it will be returned, otherwise we can register the current object (for use by
readResolve in the future) and return this. These methods can be of any accessibility; they will be used
if they are accessible to the object type being serialized. For example, if a class has a private readResolve
method, it only affects deserialization of objects that are exactly of its type. A package-accessible
readResolve affects only subclasses within the same package, while public and protected readResolve
methods affect objects of all subclasses.

450

450

20.8.5. Object Versioning

Class implementations change over time. If a class's implementation changes between the time an object is
serialized and the time it is deserialized, the ObjectInputStream can detect this change. When the object
is written, the serial version UID (unique identifier), a 64-bit long value, is written with it. By default, this
identifier is a secure hash of the full class name, superinterfaces, and membersthe facts about the class that, if
they change, signal a possible class incompatibility. Such a hash is essentially a fingerprintit is nearly
impossible for two different classes to have the same UID.

When an object is read from an ObjectInputStream, the serial version UID is also read. An attempt is
then made to load the class. If no class with the same name is found or if the loaded class's UID does not
match the UID in the stream, readObject throws an InvalidClassException. If the versions of all
the classes in the object's type are found and all the UIDs match, the object can be deserialized.

This assumption is very conservative: Any change in the class creates an incompatible version. Many class
changes are less drastic than this. Adding a cache to a class can be made compatible with earlier versions of
the serialized form, as can adding optional behavior or values. Rather then relying on the default serial version
UID, any serializable class should explicitly declare its own serial version UID value. Then when you make a
change to a class that can be compatible with the serialized forms of earlier versions of the class, you can
explicitly declare the serial version UID for the earlier class. A serial version UID is declared as follows:

private static final
 long serialVersionUID = -1307795172754062330L;

The serialVersionUID field must be a static, final field of type long. It should also be private since it is
only applied to the declaring class. The value of serialVersionUID is provided by your development
system. In many development systems, it is the output of a command called serialver. Other systems have
different ways to provide you with this value, which is the serial version UID of the class before the first
incompatible modification. (Nothing prevents you from using any number as this UID if you stamp it from the
start, but it is usually a really bad idea. Your numbers will not be as carefully calculated to avoid conflict with
other classes as the secure hash is.)

Now when the ObjectInputStream finds your class and compares the UID with that of the older version
in the file, the UIDs will be the same even though the implementation has changed. If you invoke
defaultReadObject, only those fields that were present in the original version will be set. Other fields
will be left in their default state. If writeObject in the earlier version of the class wrote values on the field
without using defaultWriteObject, you must read those values. If you try to read more values than
were written, you will get an EOFException, which can inform you that you are deserializing an older
form that wrote less information. If possible, you should design classes with a class version number instead of
relying on an exception to signal the version of the original data.

When an object is written to an ObjectOutputStream, the Class object for that object is also written.
Because Class objects are specific to each virtual machine, serializing the actual Class object would not
be helpful. So Class objects on a stream are replaced by ObjectStreamClass objects that contain the
information necessary to find an equivalent class when the object is deserialized. This information includes
the class's full name and its serial version UID. Unless you create one, you will never directly see an
ObjectStreamClass object.

As a class evolves it is possible that a new superclass is introduced for that class. If an older serialized form of
the class is deserialized it will not contain any serialized data for that superclass. Rather than making this an
error, the system will set all fields declared by the superclass to their default initialized values. To override
this default behavior, the new superclass (which must implement Serializable, of course) can declare the
following method:

451

451

private void readObjectNoData() throws ObjectStreamException

If, as an object is deserialized, the serialized data lists the superclass as a known superclass then the
superclass's readObject method will be invoked (if it exists), otherwise the superclass's
readObjectNoData method will be invoked. The readObjectNoData method can then set appropriate
values in the object's superclass fields.

20.8.6. Serialized Fields

The default serialization usually works well, but for more sophisticated classes and class evolution you may
need to access the original fields. For example, suppose you were representing a rectangle in a geometric
system by using two opposite corners. You would have four fields: x1, y1, x2, and y2. If you later want to
use a corner, plus width and height, you would have four different fields: x, y, width, and height.
Assuming default serialization of the four original fields you would also have a compatibility problem: the
rectangles that were already serialized would have the old fields instead of the new ones. To solve this
problem you could maintain the serialized format of the original class and convert between the old and new
fields as you encounter them in readObject or writeObject. You do this using serialized field types to
view the serialized form as an abstraction and to access individual fields:

public class Rectangle implements Serializable {
 private static final
 long serialVersionUID = -1307795172754062330L;
 private static final
 ObjectStreamField[] serialPersistentFields = {
 new ObjectStreamField("x1", Double.TYPE),
 new ObjectStreamField("y1", Double.TYPE),
 new ObjectStreamField("x2", Double.TYPE),
 new ObjectStreamField("y2", Double.TYPE),
 };
 private transient double x, y, width, height;

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 ObjectInputStream.GetField fields;
 fields = in.readFields();
 x = fields.get("x1", 0.0);
 y = fields.get("y1", 0.0);
 double x2 = fields.get("x2", 0.0);
 double y2 = fields.get("y2", 0.0);
 width = (x2 - x);
 height = (y2 - y);
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {

 ObjectOutputStream.PutField fields;
 fields = out.putFields();
 fields.put("x1", x);
 fields.put("y1", y);
 fields.put("x2", x + width);
 fields.put("y2", y + height);
 out.writeFields();
 }
}

452

452

Rectangle keeps the serialVersionUID of the original version to declare that the versions are
compatible. Changing fields that would be used by default serialization is otherwise considered to be an
incompatible change.

To represent each of the old fields that will be found in the serialized data, you create an
ObjectStreamField object. You construct each ObjectStreamField object by passing in the name
of the field it represents, and the Class object for the type of the field it represents. An overloaded
constructor also takes a boolean argument that specifies whether the field refers to an unshared objectthat
is, one written by writeUnshared or read by readUnshared. The serialization mechanism needs to
know where to find these ObjectStreamField objects, so they must be defined in the static, final array
called serialPersistentFields.

The fields x, y, width, and height are marked transient because they are not serializedduring
serialization these new fields must be converted into appropriate values of the original fields so that we
preserve the serialized form. So writeObject uses an ObjectOutputStream.PutField object to
write out the old form, using x and y as the old x1 and y1, and calculating x2 and y2 from the rectangle's
width and height. Each put method takes a field name as one argument and a value for that field as the
otherthe type of the value determines which overloaded form of put is invoked (one for each primitive type
and Object). In this way the default serialization of the original class has been emulated and the serialized
format preserved.

When a Rectangle object is deserialized, the reverse process occurs. Our readObject method gets an
ObjectInputStream.GetField that allows access to fields by name from the serialized object. There
is a get method for returning each primitive type, and one for returning an Object reference. Each get
method takes two parameters: the name of the field and a value to return if it is not defined in the serialized
object. The return value's type chooses which overload of get is used: A short return value will use the
get that returns a short, for example. In our example, all values are double: We get the x1 and y1 fields
to use for one corner of the rectangle, and the old x2 and y2 fields to calculate width and height.

Using the above technique the new Rectangle class can deserialize old rectangle objects and a new
serialized rectangle can be deserialized by the original Rectangle class, provided that both virtual machines
are using compatible versions of the serialization stream protocol. The stream protocol defines the actual
layout of serialized objects in the stream regardless of whether they use default serialization or the serialized
field objects. This means that the serialized form of an object is not dependent on, for example, the order in
which you invoke put, nor do you have to know the order in which to invoke getyou can use get or put to
access fields in any order any number of times.

20.8.7. The Externalizable Interface

The Externalizable interface extends Serializable. A class that implements Externalizable
takes complete control over its serialized state, assuming responsibility for all the data of its superclasses, any
versioning issues, and so on. You may need this, for example, when a repository for serialized objects
mandates restrictions on the form of those objects that are incompatible with the provided serialization
mechanism. The Externalizable interface has two methods:

public interface Externalizable extends Serializable {
 void writeExternal(ObjectOutput out)
 throws IOException;
 void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException;
}

453

453

These methods are invoked when the object is serialized and deserialized, respectively. They are normal
public methods, so the exact type of the object determines which implementation will be used. Subclasses of
an externalizable class will often need to invoke their superclass's implementation before serializing or
deserializing their own statein contrast to classes that use normal serialization.

You should note that the methods of the interface are public and so can be invoked by anyone at anytime. In
particular, a malicious program might invoke readExternal to make an object overwrite its state from
some serialized stream, possibly with invented content. If you are designing classes where such security
counts you have to take this into account either by not using Externalizable or by writing your
readExternal method to be only invoked once, and never at all if the object was created via one of your
constructors.

20.8.8. Documentation Comment Tags

As you can see from the Rectangle code, the serialized form of an object can be an important thing,
separate from its runtime form. This can happen over time due to evolution, or by initial design when the
runtime form is not a good serialized form. When you write serializable classes that others will reimplement,
you should document the persistent form so that other programmer's can properly re-implement the serialized
form as well as the runtime behavior. You do this with the special javadoc tags @serial, @serialField,
and @serialData.

Use @serial to document fields that use default serialization. For example, the original Rectangle class
could have looked like this:

/** X-coordinate of one corner.
 * @serial */
private double x1;
/** Y-coordinate of one corner.
 * @serial */
private double y1;
/** X-coordinate of opposite corner.
 * @serial */
private double x2;
/** Y-coordinate of opposite corner.
 * @serial */
private double y2;

The @serial tag can include a description of the meaning of the field. If none is given (as above), then the
description of the runtime field will be used. The javadoc tool will add all @serial information to a page,
known as the serialized form page.

The @serial tag can also be applied to a class or package with the single argument include or
exclude, to control whether serialization information is documented for that class or package. By default
public and protected types are included, otherwise they are excluded. A class level @serial tag overrides a
package level @serial tag.

The @serialField tag documents fields that are created by GetField and PutField invocations, such
as those in our Rectangle example. The tag takes first the field name, then its type, and then a description.
For example:

/** @serialField x1 double X-coordinate of one corner. */
/** @serialField y1 double Y-coordinate of one corner. */
/** @serialField x2 double X-coordinate of other corner. */
/** @serialField y2 double Y-coordinate of other corner. */
private transient double x, y, width, height;

454

454

You use the @serialData tag in the doc comment for a writeObject method to document any
additional data written by the method. You can also use @serialData to document anything written by an
Externalizable class's writeExternal method.

20.9. The IOException Classes

Every I/O-specific error detected by classes in java.io is signaled by an IOException or a subclass.
Most I/O classes are designed to be general, so most of the exceptions cannot be listed specifically. For
example, InputStream methods that throw IOException cannot detail which particular exceptions
might be thrown, because any particular input stream class might throw a subclass of IOException for
particular error conditions relevant to that stream. And the filter input and output streams pass through
exceptions only from their downstream objects, which can also be of other stream types.

The specific subclasses of IOException used in the java.io package are

CharConversionException extends IOException

Thrown when a character conversion problem occurs in a character stream
operation that must convert local character codes to Unicode or vice versa.

EOFException extends IOException

Thrown when the end of the file (stream) is detected while reading.

FileNotFoundException extends IOException

Thrown when the attempt to access the file specified by a given pathname
failspresumably because the file does not exist.

InterruptedIOException extends IOException

Thrown when a blocking I/O operation detects that the current thread has
been interrupted before or during the operation. In principle, except for the
Print stream methods, interrupting a thread should cause this exception if
the thread is performing a blocking I/O operation. In practice most
implementations only check for interruption before performing an operation
and do not respond to interruption during the operation (see page 515) so you
cannot rely on the ability to interrupt a blocked thread. This exception is also
used to signify that a time-out occurred during network I/O.

InvalidClassException extends ObjectStreamException

Thrown when the serialization mechanism detects a problem with a class:
The serial version of the class does not match that read from the stream, the
class contains unknown data types, or the class does not have an accessible
no-arg constructor when needed.

InvalidObjectException extends ObjectStreamException

455

455

Thrown when the validateObject method cannot make the object valid,
thus aborting the deserialization.

NotActiveException extends ObjectStreamException

Thrown when a serialization method, such as defaultReadObject, is
invoked when serialization is not under way on the stream.

NotSerializableException extends ObjectStreamException

Thrown either by the serialization mechanism or explicitly by a class when a
class cannot be serialized.

ObjectStreamException extends IOException

The superclass for all the Object stream related exceptions.

OptionalDataException extends ObjectStreamException

Thrown when the optional data (that is, not part of default serialization) in the
object input stream is corrupt or was not read by the reading method.

StreamCorruptedException extends ObjectStreamException

Thrown when internal object stream state is missing or invalid.

SyncFailedException extends IOException

Thrown by FileDescriptor.sync when the data cannot be guaranteed
to have been written to the underlying media.

UnsupportedEncodingException extends IOException

Thrown when an unknown character encoding is specified.

UTFDataFormatException extends IOException

Thrown by DataInputStream.readUTF when the string it is reading
has malformed UTF syntax.

WriteAbortedException extends ObjectStreamException

Thrown when an exception occurred during a serialization write operation.

In addition to these specific exceptions, other exceptional conditions in java.io are signaled with an
IOException containing a string that describes the specific error encountered. For example, using a
Piped stream object that has never been connected throws an exception object with a detail string such as
"Pipenot connected", and trying to push more than the allowed number of characters onto a
PushbackReader tHRows an exception with the string "Pushbackbuffer overflow". Such
exceptions are difficult to catch explicitly, so this style of exception reporting is not in favor. Specific
exception subtypes should be created for each category of exceptional circumstance.

456

456

20.10. A Taste of New I/O

The java.nio package ("New I/O") and its subpackages give you access to high performance I/O, albeit
with more complexity. Instead of a simple stream model you have control over buffers, channels, and other
abstractions to let you get maximum speed for your I/O needs. This is recommended only for those who have
a demonstrated need.

The model for rapid I/O is to use buffers to walk through channels of primitive types. Buffers are containers
for data and are associated with channels that connect to external data sources. There are buffer types for all
primitive types: A FloatBuffer works with float values, for example. The ByteBuffer is more
general; it can handle any primitive type with methods such as getFloat and putLong.
MappedByteBuffer helps you map a large file into memory for quick access. You can use character set
decoders and encoders to translate buffers of bytes to and from Unicode.

Channels come from objects that access external data, namely files and sockets. FileInputStream has a
getChannel method that returns a channel for that stream, as do RandomAccessFile,
java.net.Socket, and others.

Here is some code that will let you efficiently access a large text file in a specified encoding:

public static int count(File file, String charSet, char ch)
 throws IOException
{
 Charset charset = Charset.forName(charSet);
 CharsetDecoder decoder = charset.newDecoder();
 FileInputStream fis = new FileInputStream(file);
 FileChannel fc = fis.getChannel();

 // Get the file's size and then map it into memory
 long size = fc.size();
 MappedByteBuffer bb =
 fc.map(FileChannel.MapMode.READ_ONLY, 0, size);
 CharBuffer cb = decoder.decode(bb);
 int count = 0;
 for (int i = 0; i < size && i < Integer.MAX_VALUE; i++)
 if (cb.charAt(i) == ch)
 count++;
 fc.close();
 return count;
}

We use a FileInputStream to get a channel for the file. Then we create a mapped buffer for the entire
file. What a "mapped buffer" does may vary with the platform, but for large files (greater than a few tens of
kilobytes) you can assume that it will be at least as efficient as streaming through the data, and nearly
certainly much more efficient. We then get a decoder for the specified character set, which gives us a
CharBuffer from which to read.[4]

[4] Note that there is an unfortunate discrepancy between the ability to map huge files and the
fact that the returned buffer has a capacity that is limited to Integer.MAX_VALUE.

The CharBuffer not only lets you read (decoded) characters from the file, it also acts as a
CharSequence and, therefore, can be used with the regular expression mechanism.

In addition to high-performance I/O, the new I/O package also provides a different programming model that
allows for non-blocking I/O operations to be performed. This is an advanced topic well beyond the scope of
this book, but suffice it to say that this allows a small number of threads to efficiently manage a large number

457

457

of simultaneous I/O connections.

There is also a reliable file locking mechanism: You can lock a FileChannel and receive a
java.nio.channels.FileLock object that represents either a shared or exclusive lock on a file. You
can release the FileLock when you are done with it.

Nothing has really happened until it has been recorded.

Virginia Woolf

Chapter 21. Collections

ANDREA: Unhappy the land that has no heroes. GALILEO: No, unhappy the land that needs
heroes.

Bertolt Brecht, Life of Galileo

The java.util package contains many useful interfaces, classes, and a range of subpackages. The classes
and interfaces can be roughly divided into two categories: collections and everything else. This chapter
describes the collection types. You will learn about the other general utilities in the next chapter.

21.1. Collections

Collections (sometimes called containers) are holders that let you store and organize objects in useful ways for
efficient access. What will be efficient depends on how you need to use the collection, so collections come in
many flavors. Most programming environments provide some collection types, ranging from impoverished up
through gargantuan.

In the package java.util you will find interfaces and classes that provide a generic collection framework.
This framework gives you a consistent and flexible set of collection interfaces and several useful
implementations of these interfaces. You've already been briefly introduced to some of these, such as the
interfaces List, Set, Map, and Iterator, and implementations ArrayList and HashMap.

The collection framework is designed to be concise. The principle is to have a core set of valuable collection
abstractions and implementations that are broadly useful, rather than an exhaustive set that is complete but
conceptually complex and unwieldy.

One way to keep the size down is to represent broad abstractions in the interfaces rather than fine-grained
differences. Notions such as immutability and resizability are not represented by different interface types. The
core collection interfaces provide methods that allow all common operations, leaving it to specific
implementations to refuse to execute particular improper operations by throwing the unchecked
java.lang.UnsupportedOperationException.

Figure 21-1 shows the collections interfaces and the concrete implementations provided directly in
java.util.[1] The collections interfaces are

[1] The full list of collections includes abstract collections that help you write your own
implementations. These are presented in Section 21.14 on page 611. Other specialized
implementations are also elided for clarity, but are discussed later in the chapter.

458

458

Collection<E> The root interface for collections. Provides such methods as add, remove,
size, and toArray.

•

Set<E> A collection in which no duplicate elements can be present, and whose elements are not
necessarily stored in any particular order (extends Collection<E>).

•

SortedSet<E> A set whose elements are sorted (extends Set<E>).•
List<E> A collection whose elements stay in a particular order unless the list is modified (extends
Collection<E>). This is a general use of the word "list" and does not necessarily mean "linked
list," although that is one possible implementation.

•

Queue<E> A collection with an implied ordering in its elements (extends Collection<E>).
Every queue has a head element that is the target of specific operations like peek and poll.

•

Map<K,V> A mapping from keys to at most one value each. (Map does not extend Collection,
although the concepts meaningful to both maps and collections are represented by methods of the
same names, and maps can be viewed as collections.)

•

SortedMap<K,V> A map whose keys are sorted (extends Map<K,V>).•
Iterator<E> An interface for objects that return elements from a collection one at a time. This is
the type of object returned by the method Iterable.iterator.

•

ListIterator<E> An iterator for List objects that adds useful List-related methods. This is
the type of object returned by List.listIterator.

•

Iterable<E> An object that provides an Iterator and so can be used in an enhanced for
statement. Although defined in the java.lang package, this is considered part of the collection
framework because the vast majority of standard iterable types are collections.

•

Figure 21-1. Type Trees for Concrete Collections in java.util

The interfaces SortedSet and SortedMap guarantee that iteration through the elements is done in sorted
order. You will learn how to define an order for objects later in this chapter.

459

459

The java.util package also provides several useful concrete implementations of these interfaces that will
suffice for most of your needs. For example:

HashSet<E> A Set implemented as a hashtable. A good, general-purpose implementation for
which searching, adding, and removing are mostly insensitive to the size of the contents.

•

TReeSet<E> A SortedSet implemented as a balanced binary tree. Slower to search or modify
than a HashSet, but keeps the elements sorted.

•

ArrayList<E> A List implemented using a resizable array. It is expensive to add or delete an
element near the beginning if the list is large, but relatively cheap to create and fast for random
access.

•

LinkedList<E> A doubly linked List and Queue implementation. Modification is cheap at any
size, but random access is slow.

•

HashMap<K,V> A hashtable implementation of Map. A very generally useful collection with
relatively cheap lookup and insertion times.

•

treeMap<K,V> An implementation of SortedMap as a balanced binary tree to keep its elements
ordered by key. Useful for ordered data sets that require moderately quick lookup by key.

•

WeakHashMap<K,V> An hashtable implementation of Map that references its keys with weak
reference objects (see page 454). This is useful only in limited situations.

•

Nearly all the implementation classes in java.util are both Cloneable and Serializable. The
exceptions are PriorityQueue which is not Cloneable, and WeakHashMap which is neither.

In this chapter you first learn about iteration because it is useful with all the collection classes. We then cover
ordering since it is used by many of the collection types. We then present the details of the
Collection-based types, followed by the Map-based types. After that we look at the various utilities
available, and we show you how to make unmodifiable and type-safe versions of your collections. Next we
show you the synchronized and concurrent collections. You will then learn how to write your own iteration
and collection types in case you have a need that the provided classes do not fill. Finally, we cover the "legacy
collections" in java.util that predate the overall collection system, but which you will find in some
existing code. One of these legacy collection typesPropertiescontinues in common use.

For simplicity, we usually refer to the various interfaces without mentioning their type parametersfor example,
Iterator or Collectionexcept where it is necessary to show that the same type parameter is being
usedfor example, that iterator has a return type Iterator<E> for a Collection<E>.

21.1.1. Exception Conventions

A few conventions related to exceptions are used throughout the collections classes and interfaces, and we do
not wish to document them for every constructor and method where they may occur:

Methods that are optional in an implementation of an interface throw
UnsupportedOperationException when not implemented. We indicate which methods are
optional as we go throughusing "(Optional)" at the end of the method description.

•

Methods or constructors that accept elements (either individually or as part of other collections) to be
added to the current collection can throw ClassCastException if the element is not of an
appropriate type for the collection, or for sorted collections, if the element cannot be compared with
other elements. Methods that check for the existence of elements or try to remove them may also
throw ClassCastException.

•

Methods or constructors that accept elements (either individually or as part of other collections) to be
added to the current collection throw IllegalArgumentException if the element's value is not
appropriate for the collectionfor example, some collections, such as subsets, define restricted ranges
on the values of elements allowed in the collection.

•

Methods that return individual elements of a collection will give you a•

460

460

NoSuchElementException if the collection is empty.
Methods or constructors that take parameters of reference type usually throw
NullPointerException if passed a null reference. The exceptions to this are collections that
accept null elements, with which null can be used when adding, removing, or searching.

•

Any variations to the above, or other exceptions generated, are documented on a case-by-case basis.

21.2. Iteration

You've encountered iteration several times already during the course of this bookparticularly in the discussion
of the enhanced for loop in Chapter 10. This section reviews the basic operation of an iterator and covers its
additional capabilities and the additional iterator types.

Collection<E> extends Iterable<E>, which defines an iterator method that returns an object that
implements the Iterator<E> interface:

public boolean hasNext()

Returns true if the iteration has more elements.

public E next()

Returns the next element in the iteration. If there is no next element a
NoSuchElementException is thrown.

public void remove()

Removes the element returned most recently by the iteration from the
underlying collection. remove can be called only once per call of next. If
next has not yet been called, or if remove has already been called since the
last call to next, an IllegalStateException is thrown. (Optional)

The following code uses all three methods of Iterator to remove all long strings from a collection:

public void removeLongStrings
 (Collection<? extends String> coll, int maxLen) {
 Iterator<? extends String> it = coll.iterator();
 while (it.hasNext()) {
 String str = it.next();
 if (str.length() > maxLen)
 it.remove();
 }
}

First we use iterator to get an Iterator object that steps through the contents of the collection one
element at a time (recall that the enhanced for loop can't be used when you want to remove elements using
the iterator). Then we loop as long as hasNext returns true to indicate that there is at least one more
element left in the iteration. Each time through the loop we get the next element of the list using next. If any
string is longer than the maximum allowed length, we use the iterator's remove method to remove the most
recent element returned by next. When you use an iterator's remove method you modify the underlying
collection safely for that iteratorthe iterator will properly move through the subsequent elements of the
collection. Removing elements from the collection any other way (using operations on the collection or

461

461

through a different iterator on the same collection) is unsafe.

The ListIterator<E> interface extends Iterator<E>, adding methods you can use to manipulate an
ordered List object during iteration. You can iterate forward using hasNext and next, backward using
hasPrevious and previous, or back and forth by intermixing the calls as you please. The following
code loops backward through a list of strings:

ListIterator<String> it = list.listIterator(list.size());
while (it.hasPrevious()) {
 String obj = it.previous();
 System.out.println(obj);
 // ... use obj ...
}

This gets a ListIterator positioned one beyond the end of the list, and then backs up through the list one
element at a time, printing each element. List elements are indexed by position, just like array elements, from
0 to list.size()-1. The methods nextIndex or previousIndex get the index of the element that a
subsequent invocation of next or previous will return. The next index when the iterator is at the end of
the list is returned as list.size(). The previous index when the iterator is at the first element in the list
(index 0) is returned as 1.

The remove method on a ListIterator removes the last value returned by either next or previous.
In addition to remove, you can use two additional methods to modify the list's contents:

public void set(E elem)

Replaces the last element returned by next or previous with elem. If
you have called remove or add on the iterator since the last call to next or
previous, calling set throws IllegalStateException. (Optional)

public void add(E elem)

Inserts elem into the list in front of the next element that would be returned,
or at the end if hasNext returns false. The iterator is moved forward; if
you invoke previous after an add you will get the added element.
(Optional)

The contract of remove is extended such that an IllegalStateException is thrown if remove is
invoked and either set or add has been invoked since the last call to next or previous.

The contracts for Iterator and ListIterator do not include a snapshot guarantee. In other words,
changing the contents of the collection while the iterator is in use can affect the values returned by the
methods. For example, if the implementation of next uses the contents of the original collection for its list, it
is dangerous to remove elements from the list as you step through it except through the iterator's own
methods. A snapshot would return the elements as they were when the Iterator or ListIterator
object was created, immune from future changes. You can rely on having a snapshot of the contents only if
the method that returns an iterator object explicitly makes a snapshot guarantee. If you need a snapshot but
don't have such a guarantee, you can create a snapshot by making a simple copy of the collection, such as with
an ArrayList:

public <T> Iterator<T>
 snapshotIterator(Collection<? extends T> coll) {
 return new ArrayList<T>(coll).iterator();
}

462

462

Any utility method that returns a collection will invariably be a generic method. We introduce the type
variable T to represent the unknown type of the collection being passed in. The snapshotIterator
method can accept any collection of T or a subtype of T, but only guarantees that it returns an
Iterator<T>.[2]

[2] It is possible to return Iterator<? super T>, which is slightly more general than
Iterator<T>, but to do so would mean you wouldn't be able to assign the result to a
variable of type Iterator<T>. That would be a very annoying restriction.

Many of the iterators defined in the java.util package are what is known as fail-fast iterators. Such
iterators detect when a collection has been modified other than through the iterator itself, and fail quickly and
cleanly by throwing an exceptiona ConcurrentModificationExceptionrather than risk performing
an action whose behavior may be unsafe.

21.3. Ordering with Comparable and Comparator

The interface java.lang.Comparable<T> can be implemented by any class whose objects can be
sorted. The interface has a single method:

public int compareTo(T other)

Returns a value that is less than, equal to, or greater than zero as this object is
less than, equal to, or greater than the other object. This method should
return zero only if equals with the same object would return true. If the
objects are not mutually comparable (such as an Integer with a String),
a ClassCastException is thrown.

The ordering defined by compareTo is a class's natural ordering, that is, the ordering that is most natural to
objects of the class. It is also a total ordering, meaning that any two objects of the same type must be mutually
comparablethat is, you must be able to compare them in either order and always get the same result as to
which is the larger. Similarly, the equals method defines a natural equivalence.

Many existing classes are Comparable, including String, java.io.File, java.util.Date, and
all the primitive wrapper class types.

If a given class does not implement Comparable or if its natural ordering is wrong for some purpose, you
can often provide a java.util.Comparator object instead. The Comparator<T> interface has the
method

public int compare(T o1, T o2)

Provides an ordering in the same manner as Comparable.compareTo for
the two provided objects.

You can use Comparable and Comparator objects to sort and search List objects with the
Collections class's static methods sort and binarySearch. The Collections class (see page
594) also provides static methods min and max to return the smallest and largest element in a Collection.

Comparing strings ignoring case is a common requirement, so the String class defines a Comparator
object for this purpose, available from the field String.CASE_INSENSITIVE_ORDER.

463

463

21.4. The Collection Interface

As you have seen, most collection types are subtypes of the Collection interface. The only exceptions are
those that are subtypes of Map. In this section we cover the Collection interface. The following sections
describe the interfaces that extend Collection and the specific collection implementations provided in
java.util. We leave Map and its related types for later. We also defer talking about implementing your
own collection types.

The basis of much of the collection system is the Collection interface. As you saw in Figure 21-1, most of
the actual collection types implement this interface, usually by implementing an extended interface such as
Set or List. So Collection is a good place to start understanding collections. It has the following
primary methods for working with an individual collection:

public int size()

Returns the size of this collection, that is, the number of elements it currently
holds. The value returned is limited to Integer.MAX_VALUE even if the
collection holds more elements.

public boolean isEmpty()

Returns TRue if this collection currently holds no elements.

public boolean contains(Object elem)

Returns true if the collection contains the object elem; that is, if this
collection has an element on which invoking equals with elem returns
true. If elem is null, returns TRue if there is a null element in the
collection.

public Iterator<E> iterator()

Returns an iterator that steps through the elements of this collection.

public Object[] toArray()

Returns a new array that contains all the elements of this collection.

public <T> T[] toArray(T[] dest)

Returns an array that contains all the elements of this collection. If the
elements will fit in dest, then they are placed in dest and it is dest that is
returned. If dest has more elements than this collection, the first element in
dest that follows the contents of the collection is set to null to mark the
end of the collection. If the elements do not fit in dest, a new, larger array is
created of the same type as dest, filled in, and returned. If the type of dest
is not compatible all the elements in the collection, an
ArrayStoreException is thrown.

public boolean add(E elem)

464

464

Makes sure that this collection contains the object elem, returning true if
this required changing the collection. If this collection allows duplicates, add
will always return true. If duplicates are not allowed and an equivalent
element is already in the collection, add will return false. (Optional)

public boolean remove(Object elem)

Removes a single instance of elem from the collection, returning true if
this required changing the collection (that is, if the element existed in this
collection). If elem is null, returns TRue if there was a null element in
the collection. (Optional)

All methods that need the notion of equivalence (such as contains and remove) use the equals method
on the relevant objects.

The toArray method that has no parameters returns an array of Object. You can use toArray(T[]) to
create arrays of other types. For example, if your collection contains String objects, you may want to create
a String array. The following code will do that:

String[] strings = new String[collection.size()];
strings = collection.toArray(strings);

Notice that strings is assigned the return value of toArray. This is to be safe in case the size of the
collection has increased since the array was allocated, in which case the returned array will not be the one
originally allocated. You can also use an empty String array to pass in the desired type and let toArray
allocate an array of exactly the right size:

String[] strings = collection.toArray(new String[0]);

Several methods of Collection operate in bulk from another collection. The methods are provided for
convenience; also, a collection can often operate more efficiently in bulk.

public boolean containsAll(Collection<?> coll)

Returns true if this collection contains each of the elements in coll.

public boolean addAll(Collection<? extends E> coll)

Adds each element of coll to this collection, returning TRue if any addition
required changing the collection. (Optional)

public boolean removeAll(Collection<?> coll)

Removes each element of coll from this collection, returning true if any
removal required changing the collection. (Optional)

public boolean retainAll(Collection<?> coll)

Removes from this collection all elements that are not elements of coll,
returning true if any removal required changing the collection. (Optional)

465

465

public void clear()

Removes all elements from this collection. (Optional)

This Collection interface is purposely very general. Each specific collection type can define restrictions
on its parameters or other related behavior. A collection may or may not accept null elements, may be
restricted to certain types of elements, may retain elements in a sorted order, and so on. Each collection that
makes a restriction should state those restrictions in its documentation so that users can understand the
contract for that collection.

21.5. Set and SortedSet

The Set<E> interface extends Collection<E>, providing a more specific contract for its methods, but
adds no new methods of its own. A collection that is a Set contains no duplicate elements. If you add the
same element twice to a set (in other words, if you add two objects that are equal), the first invocation will
return TRue, while the second will return false. If after this, remove is similarly invoked twice, the first
remove of the element will return TRue since the set was changed by removing the element, while the
second will return false since the element was no longer present. A set may also contain at most one null
element.

The SortedSet<E> interface extends Set<E> to specify an additional contractiterators on such a set will
always return the elements in a specified order. By default this will be the element's natural order. In the
implementations of SortedSet provided in java.util you can also specify a Comparator object that
will be used to order the elements instead of the natural order.

SortedSet adds some methods that make sense in an ordered set:

public Comparator<? super E> comparator()

Returns the Comparator being used by this sorted set, or null if the
elements' natural order is being used. Note the use of the lower bounded
wildcard in the return type; any implementation of this interface should
accept a comparator that is typed the same way.

public E first()

Returns the first (lowest) object in this set.

public E last()

Returns the last (highest) object in this set.

public SortedSet<E> subSet(E min, E max)

Returns a view of the set that contains all the elements of this set whose
values are greater than or equal to min and less than max. The view is
backed by the collection; that is, changes to the collection that fall within the
range will be visible through the returned subset and vice versa. If min is
greater than max, or if this set is itself a view of another set and min or max
fall outside the range of that view, an IllegalArgumentException is
thrown. You will also get an IllegalArgumentException if you
attempt to modify the returned set to contain an element that is outside the
specified range.

466

466

public SortedSet<E> headSet(E max)

Returns a view of the set that contains all the elements of this set whose
values are less than the value of max. This view is backed by the collection
as with subSet. The exceptions thrown by this method or the returned set
are the same as those of subSet.

public SortedSet<E> tailSet(E min)

Similar to headSet, but the returned set contains all the elements of this set
whose values are greater than or equal to the value of min.

The notion of being backed by a collection is important in many methods. The sets returned by the subsetting
methods are not snapshots of the matching contents. Rather, they are views onto the underlying collection that
filter out certain elements, returning an empty collection if all elements are filtered out. Because the subsets
are backed by the original collection, the views remain current no matter which set you usethe subset or the
original set. You can create snapshots by making copies of the view, as in

public <T> SortedSet<T> copyHead(SortedSet<T> set, T max) {
 SortedSet<T> head = set.headSet(max);
 return new TreeSet<T>(head); // contents from head
}

This utilizes the copy constructor provided by most of the concrete collection implementations to create a new
collection whose initial members are the same as the collection passed to the constructor.

The java.util package gives you two general-purpose Set implementationsHashSet and
LinkedHashSetand one SortedSet implementation, TReeSet.

21.5.1. HashSet

HashSet<E> is a Set<E> implemented with a hashtable. Modifying the contents of a HashSet or testing
for containment are 0(1) constant-time operations[3]that is, they do not get larger as the size of the set
increases (assuming that the hashCode methods of the contents are well written to distribute the hash codes
widely across the full range of int values). HashSet has four constructors:

[3] The notation 0(f) is used in computer science to mean that the order of time for the
execution of an algorithm increases in the manner of f. In this notation, n is traditionally the
magnitude of the data under consideration. An algorithm that is 0(logn) takes longer as a
function of the log of nthe number of elementsmultiplied by some constant C. Generally
speaking, the constant is irrelevant when algorithms are compared because as n gets large, the
difference between an algorithm that is 0(logn) compared to one that is, say, 0(n2) is governed
by n, not the constantwhen n is 1000, for example, logn is 6.9, whereas n2 is 1,000,000. The
multiplying constant for the 0(logn) algorithm would have to be extremely large to make it
worse than the 0(n2) algorithm. Of course, when two 0(logn) algorithms are compared, the
constant does matter, so in such a case it would be written. A similar argument means that for
algorithms whose overhead has multiple terms, such as 0(C2+n), the smaller term is not
relevant and so would be typically described as 0(n). An algorithm that is not sensitive to the
size of n is written as 0(1) or sometimes 0(C). You will see "big O" notation in this chapter
because it is an effective way of comparing different collection implementations.

public HashSet(int initialCapacity, float loadFactor)

467

467

Creates a new HashSet with initialCapacity hash buckets and the
given loadFactor, which must be a positive number. When the ratio of
the number of elements in the set to the number of hash buckets is greater
than or equal to the load factor, the number of buckets is increased.

public HashSet(int initialCapacity)

Creates a new HashSet with initialCapacity and a default load
factor.

public HashSet()

Creates a new HashSet with a default initial capacity and load factor.

public HashSet(Collection<? extends E> coll)

Creates a new HashSet whose initial contents are the elements in coll.
The initial capacity is based on the size of coll, and the default load factor
is used.

The initial capacity and load factor are used to construct the HashMap that underlies a HashSet. The
meaning of these values is discussed in "HashMap" on page 590. Iteration of a HashSet requires a time
proportional to the sum of the size and capacity.

21.5.2. LinkedHashSet

LinkedHashSet<E> extends HashSet<E> and refines the contract of HashSet by defining an order to
the elements in the set. Iterating through the contents of a LinkedHashset will return the elements in
insertion orderthe order in which they were added. Aside from this, LinkedHashSet behaves the same as
HashSet and defines constructors with the same form. The performance of a LinkedHashSet is likely to
be a little slower than a HashSet because of the overhead of maintaining the linked list structure; however,
iteration only requires a time propertional to the size, regardless of capacity.

21.5.3. treeSet

If you need a SortedSet, you can use treeSet, which stores its contents in a tree structure that is kept
balanced. This means that the time required to modify or search the tree is . treeSet has four constructors:

public treeSet()

Creates a new treeSet that is sorted according to the natural order of the
element types. All elements added to this set must implement the
Comparable interface and be mutually comparable.

public treeSet(Collection<? extends E> coll)

Equivalent to using TReeSet() and then adding the elements of coll.

public treeSet(Comparator<? super E> comp)

Creates a new treeSet that is sorted according to the order imposed by
comp.

468

468

public treeSet(SortedSet<E> set)

Creates a new treeSet whose initial contents will be the same as those in
set and that is sorted in the same way as set.

21.6. List

The List<E> interface extends Collection<E> to define a collection whose elements have a defined
ordereach element exists in a particular position in the collection, indexed from 0 to list.size()-1. Or,
in other words, a List defines a sequence of elements. This requires a refinement of the contracts of several
methods inherited from Collection: when you add an element, it is placed at the end of the list; When
you remove the nth element from the list, the element that was after it is shifted over, becoming the new nth

element; and the toArray methods fill in the array in the list's order.

List also adds several methods that make sense in an ordered collection:

public E get(int index)

Returns the indexth entry in the list.

public E set(int index, E elem)

Sets the indexth entry in the list to elem, replacing the previous element and
returning it. (Optional)

public void add(int index, E elem)

Adds the entry elem to the list at the indexth position, shifting every
element farther in the list down one position. (Optional)

public E remove(int index)

Removes and returns the indexth entry in the list, shifting every element
farther in the list up one position. (Optional)

public int indexOf(Object elem)

Returns the index of the first object in the list that is equal to elem, or that
is null if elem is null. Returns 1 if no match is found.

public int lastIndexOf(Object elem)

Returns the index of the last object in the list that is equal to elem, or that
is null if elem is null. Returns 1 if no match is found.

public List<E> subList(int min, int max)

Returns a List that is a view on this list over the range, starting with min
up to, but not including, max. For example, subList(1,5) would return a
list containing elements number 1, 2, 3, and 4 from this list. The returned list
is backed by this list, so changes made to the returned list are reflected in this
list. Changes made directly to the backing list are not guaranteed to be visible

469

469

to a sublist and can cause undefined results (so don't do it). Sublists allow
you to do anything to part of a list that you could to do an entire list, so they
can be a powerful tool. For example, you can remove part of a list using
list.subList(min,max).clear() .

public ListIterator<E> listIterator(int index)

Returns a ListIterator object that will iterate through the elements of
the list starting at the indexth entry.

public ListIterator<E> listIterator()

Returns a ListIterator object that will iterate through the elements of
the list starting at the beginning.

All the methods that take an index will throw IndexOutOfBoundsException if index is less than
zero or greater than or equal to the list's size.

The java.util package provides two implementations of ListArrayList and LinkedList.

21.6.1. ArrayList

ArrayList is a good basic list implementation that stores its elements in an underlying array. Adding and
removing elements at the end is very simple0(1). Getting the element at a specific position is also 0(1).
Adding and removing elements from the middle is more expensive0(n-i) where n is the size of the list and i is
the position of the element being removed. Adding or removing the element requires copying the remainder of
the array one position up or down.

An ArrayList has a capacity, which is the number of elements it can hold without allocating new memory
for a larger array. As you add elements they are stored in the array, but when room runs out, a replacement
array must be allocated. Setting your initial capacity correctly can improve performance. If the initial size of
the data is significantly smaller than its final size, setting the initial capacity to a larger value reduces the
number of times the underlying array must be replaced with a larger copy. Setting the size too large can waste
space.

ArrayList has three constructors:

public ArrayList()

Creates a new ArrayList with a default capacity.

public ArrayList(int initialCapacity)

Creates a new ArrayList that initially can store initialCapacity
elements without resizing.

public ArrayList(Collection<? extends E> coll)

Creates a new ArrayList whose initial contents are the contents of coll.
The capacity of the array is initially 110% of the size of coll to allow for
some growth without resizing. The order is that returned by the collections
iterator.

470

470

ArrayList also provides some methods to manage capacity:

public void trimToSize()

Sets the capacity to be exactly the current size of the list. If the capacity is
currently larger than the size, a new, smaller underlying array will be
allocated and the current values copied in. You can thus reduce the amount of
memory necessary to hold the list, although at some cost.

public void ensureCapacity(int minCapacity)

Sets the capacity to minCapacity if the capacity is currently smaller. You
can use this if you are about to add a large number of elements to the list, and
so ensure the array will be reallocated at most once (when
ensureCapacity is invoked) rather than possibly multiple times while
the elements are added.

21.6.2. LinkedList

ALinkedList is a doubly linked list whose performance characteristics are virtually the reverse of
ArrayList: Adding an element at the end is 0(1), but everything else is swapped. Adding or removing an
element in the middle is 0(1) because it requires no copying, while getting the element at a specific position i
is 0(i) since it requires starting at one end and walking through the list to the ith element.

LinkedList provides two constructors and adds methods that are useful and efficient for doubly linked
lists:

public LinkedList()

Creates a new empty LinkedList.

public LinkedList(Collection<? extends E> coll)

Creates a new LinkedList whose initial contents are those of coll. The
order is that returned by the collection's iterator.

public E getFirst()

Returns the first object in this list.

public E getLast()

Returns the last object in this list.

public E removeFirst()

Removes the first object in this list.

public E removeLast()

Removes the last object in this list.

public void addFirst(E elem)

471

471

Adds elem into this list as the first element.

public void addLast(E elem)

Adds elem into this list as the last element.

A LinkedList is a good base for a queueand indeed it implements the Queue interface discussed nextor
any other list in which most of the action is not at the end. For a stack, or for building up a list of elements as
you find them, an ArrayList is more efficient because it requires fewer objects: the one array instead of
one object for each element in the list. You can also efficiently scan an ArrayList without creating an
Iterator object, by simply using an int as an index. This can be a good reason to use an ArrayList for
a list that will be scanned frequently.

Here is a Polygon class that stores a list of Point objects that are the polygon's vertices:

import java.util.List;
import java.util.ArrayList;

public class Polygon {
 private List<Point> vertices =
 new ArrayList<Point>();

 public void add(Point p) {
 vertices.add(p);
 }

 public void remove(Point p) {
 vertices.remove(p);
 }

 public int numVertices() {
 return vertices.size();
 }

 // ... other methods ...
}

Notice that vertices is a List reference that is assigned an ArrayList object. You should declare a
variable to be as abstract a type as possible, preferring the abstract List type to the implementation class
ArrayList. As written, you could change Polygon to use a LinkedList if that would be more efficient
by changing only one line of codethe line that creates the list. All the other code can remain unchanged.

Exercise 21.1: Write a program that opens a file and reads its lines one at a time, storing each line in a List
sorted by String.compareTo. The line-reading class you created for Exercise 20.4 should prove helpful.

21.6.3. RandomAccess Lists

The marker interface RandomAccess marks list implementations that support fast random access. Random
access means that any element of the list can be accessed directly. For example, ArrayList implements
RandomAccess because any element can easily be accessed by its index. In contrast, a LinkedList does
not implement RandomAccess because accessing an element by index requires traversing from one end of
the list. Some algorithms for manipulating random access lists perform poorly when applied to sequential
lists, so the purpose of the RandomAccess interface is to allow an algorithm to adapt depending on the kind
of list it is given. As a rule of thumb, if code such as

for (int i = 0; i < list.size(); i++)

472

472

 process(list.get(i));

will typically be faster than using

Iterator it = list.iterator();
while (it.hasNext())
 process(it.next());

then your list should implement RandomAccess.

21.7. Queue

The Queue<E> interface extends Collection<E> to add some structure to the internal organization of the
collection. A queue defines a head position, which is the next element that would be removed. Queues often
operate on a first-in-first-out ordering, but it is also possible to have last-in-first-out ordering (commonly
known as a stack) or to have a specific ordering defined by a comparator or by comparable elements. Each
implementation must specify its ordering properties. The Queue interface adds several methods that work
specifically with the head:

public E element()

Returns, but does not remove, the head of the queue. If the queue is empty a
NoSuchElementException is thrown.

public E peek()

Returns, but does not remove, the head of the queue. If the queue is empty,
null is returned. This differs from element only in its handling of an
empty queue.

public E remove()

Returns and removes the head of the queue. If the queue is empty a
NoSuchElementException is thrown.

public E poll()

Returns and removes the head of the queue. If the queue is empty, null is
returned. This differs from remove only in its handling of an empty queue.

There is also a method for inserting into a queue:

public boolean offer(E elem)

Attempts to insert the given element into this queue. If the attempt is
successful, true is returned, otherwise false. For queues that have
genuine reason to reject a requestsuch as a queue with finite capacitythis
method is preferable to the Collectionadd method which can only
indicate failure by throwing an exception.

473

473

Queues in general should not accept null elements because null is used as a sentinel value for poll and
peek to indicate an empty queue.

The LinkedList class provides the simplest implementation of Queue. For historical reasons the
LinkedList class accepts null elements, but you should avoid inserting null elements when using a
LinkedList instance as a queue.

21.7.1. PriorityQueue

The other Queue implementation is PriorityQueue, an unbounded queue, based on a priority heap. The
head of the queue is the smallest element in it, where smallest is determined either by the elements' natural
order or by a supplied comparator. A PriorityQueue is not a sorted queue in the general senseyou can't
pass it to a method expecting a sorted collectionbecause the iterator returned by iterator is not guaranteed
to traverse the elements in priority order; rather it guarantees that removing elements from the queue occurs in
a given order. The iterator can traverse the elements in any order. If you need ordered traversal you could
extract the elements to an array and then sort the array (see "The Arrays Utility Class" on page 607).

Whether the smallest element represents the element with the highest or lowest "priority" depends on how the
natural order or the comparator is defined. For example, if queuing Thread objects according to their
execution priority, then the smallest element represents a Thread with the lowest execution priority.

The performance characteristics of a PriorityQueue are unspecified. A good implementation based on a
priority heap would provide 0(1)operations on the head, with 0(logn) for general insertion. Anything that
requires traversing, such as removing a specific element or searching for one, would be 0(n)

There are six constructors:

public PriorityQueue(int initialCapacity)

Creates a new PriorityQueue that can store initialCapacity
elements without resizing and that orders the elements according to their
natural order.

public PriorityQueue()

Creates a new PriorityQueue with the default initial capacity, and that
orders the elements according to their natural order.

public PriorityQueue(int initialCapacity, Comparator<? super E>
comp)

Creates a new PriorityQueue that can initially store
initialCapacity elements without resizing, and that orders the
elements according to the supplied comparator.

public PriorityQueue(Collection<? extends E> coll)

Creates a new PriorityQueue whose initial contents are the contents of
coll. The capacity of the queue is initially 110% of the size of coll to
allow for some growth without resizing. If coll is a SortedSet or
another PriorityQueue, then this queue will be ordered the same way;
otherwise, the elements will be sorted according to their natural order. If any
element in coll can't be compared, a ClassCastException is thrown.

474

474

public PriorityQueue(SortedSet<? extends E> coll)

Creates a new PriorityQueue whose initial contents are the contents of
coll. The capacity of the queue is initially 110% of the size of coll to
allow for some growth without resizing. This queue will be ordered the same
way as coll.

public PriorityQueue(PriorityQueue<? extends E> coll)

Creates a new PriorityQueue whose initial contents are the contents of
coll. The capacity of the queue is initially 110% of the size of coll to
allow for some growth without resizing. This queue will be ordered the same
way as coll.

Since PriorityQueue does not accept null elements, all constructors that take collections throw
NullPointerException if a null element is encountered.

The comparator used to construct the priority queue can be retrieved with the comparator method. This has
the same contract as the comparator method in SortedSet, returning null if the elements' natural
ordering is being used.

21.8. Map and SortedMap

The interface Map<K,V> does not extend Collection because it has a contract that is different in
important ways. The primary difference is that you do not add an element to a Mapyou add a key/value pair.
A Map allows you to look up the value stored under a key. A given key (as defined by the equals method of
the key) maps to one value or no values. A value can be mapped to by as many keys as you like. For example,
you might use a map to store a mapping of a person's name to their address. If you have an address listed
under a name, there will be exactly one in the map. If you have no mapping, there will be no address value for
that name. Multiple people might share a single address, so the map might return the same value for two or
more names.

The basic methods of the Map interface are

public int size()

Returns the size of this map, that is, the number of key/value mappings it
currently holds. The return value is limited to Integer.MAX_VALUE even
if the map contains more elements.

public boolean isEmpty()

Returns TRue if this collection currently holds no mappings.

public boolean containsKey(Object key)

Returns true if the collection contains a mapping for the given key.

public boolean containsValue(Object value)

Returns TRue if the collection contains at least one mapping to the given
value.

475

475

public V get(Object key)

Returns the object to which key is mapped, or null if it is not mapped.
Also returns null if key has been mapped to null in a map that allows
null values. You can use containsKey to distinguish between the cases,
although this adds overhead. It can be more efficient to put marker objects
instead of null into the map to avoid the need for the second test.

public V put(K key, V value)

Associates key with the given value in the map. If a map already exists for
key, its value is changed and the original value is returned. If no mapping
exists, put returns null, which may also mean that key was originally
mapped to null. (Optional)

public V remove(Object key)

Removes any mapping for the key. The return value has the same semantics
as that of put. (Optional)

public void putAll(Map< ? extends K, ? extends V> otherMap)

Puts all the mappings in otherMap into this map. (Optional)

public void clear()

Removes all mappings. (Optional)

Methods that take keys as parameters may throw ClassCastException if the key is not of the
appropriate type for this map, or NullPointerException if the key is null and this map does not
accept null keys.

You can see that, though Map does not extend Collection, methods with the same meaning have the same
names, and analogous methods have analogous names. This helps you remember the methods and what they
do.

Generally, you can expect a Map to be optimized for finding values listed under keys. For example, the
method containsKey will usually be much more efficient than containsValue on larger maps. In a
HashMap, for example, containsKey is 0(1), whereas containsValue is 0(n) the key is found by
hashing, but the value must be found by searching through each element until a match is found.

Map is not a collection, but there are methods that let you view the map using collections:

public Set<K> keySet()

Returns a Set whose elements are the keys of this map.

public Collection<V> values()

Returns a Collection whose elements are the values of this map.

public Set<Map.Entry<K,V>> enTRySet()

Returns a Set whose elements are Map.Entry objects that represent single

476

476

mappings in the map. As you will see soon, Map.Entry is a nested
interface with methods to manipulate the entry.

The collections returned by these methods are backed by the Map, so removing an element from one of these
collections removes the corresponding key/value pair from the map. You cannot add elements to these
collectionsthey do not support the optional methods for adding to a collection. If you iterate through the key
and value sets in parallel you cannot rely on getting key/value pairsthey may return values from their
respective sets in any order. If you need such pairing, you should use entrySet.

The interface Map.Entry<K,V> defines methods for manipulating the entries in the map, as returned from
the Map interface's entrySet method:

public K getKey()

Returns the key for this entry.

public V getValue()

Returns the value for this entry.

public V setValue(V value)

Sets the value for this entry and returns the old value.

Note that there is no setKey methodyou change the key by removing the existing mapping for the original
key and adding another mapping under the new key.

The SortedMap interface extends Map refining the contract to require that the keys be sorted. This ordering
requirement affects the collections returned by keySet, values, and enTRySet. SortedMap also adds
methods that make sense in an ordered map:

public Comparator<? super K> comparator()

Returns the comparator being used for sorting this map. Returns null if
none is being used, which means that the map is sorted using the keys' natural
order.

public K firstKey()

Returns the first (lowest value) key in this map.

public K lastKey()

Returns the last (highest value) key in this map.

public SortedMap<K,V> subMap(K minKey, K maxKey)

Returns a view of the portion of the map whose keys are greater than or equal
to minKey and less than maxKey.

public SortedMap<K,V> headMap(K maxKey)

Returns a view of the portion of the map whose keys are less than maxKey.

477

477

public SortedMap<K,V> tailMap(K minKey)

Returns a view of the portion of the map whose keys are greater than or equal
to minKey.

Any returned map is backed by the original map so changes made to either are visible to the other.

A SortedMap is to Map what SortedSet is to Set and provides almost identical functionality except that
SortedMap works with keys. The exceptions thrown by the SortedMap methods mirror those thrown by
its SortedSet counterparts.

The java.util package gives you four general-purpose Map implementationsHashMap,
LinkedHashMap, IdentityHashMap, and WeakHashMapand one SortedMap implementation,
TReeMap.

21.8.1. HashMap

HashMap implements Map with a hashtable, where each key's hashCode method is used to pick a place in
the table. With a well-written hashCode method, adding, removing, or finding a key/value pair is 0(1). This
makes a HashMap a very efficient way to associate a key with a valueHashMap is one of the most
commonly used collections. You already have seen a HashMap in "Implementing Interfaces" on page 127.
The constructors for HashMap are

public HashMap(int initialCapacity, float loadFactor)

Creates a new HashMap with initialCapacity hash buckets and the
given loadFactor, which must be a positive number.

public HashMap(int initialCapacity)

Creates a new HashMap with the given initialCapacity and a default
load factor.

public HashMap()

Creates a new HashMap with default initial capacity and load factor.

public HashMap(Map<? extends K, ? extends V> map)

Creates a new HashMap whose initial mappings are copied from map. The
initial capacity is based on the size of map; the default load factor is used.

The internal table used by a hash map consists of a number of buckets, initially determined by the initial
capacity of the hash map. The hash code of an object (or a special hashing function used by the hash map
implementation) determines which bucket an object should be stored in. The fewer the number of buckets, the
more likely that different objects will get stored in the same bucket, so looking up the object will take longer
because the bucket has to be examined in detail. The more buckets there are, the less likely it is that this will
occur, and the lookup performance will improvebut the space occupied by the hash map will increase. Further,
the more buckets there are, the longer iteration will take, so if iteration is important you may want to reduce
the number of bucketsthe cost of iteration is proportional to the sum of the hash map's size and capacity. The
load factor determines when the hash map will automatically have its capacity increased. When the number of
entries in the hash map exceeds the product of the load factor and the current capacity, the capacity will be
doubled. Increasing the capacity requires that all the elements be rehashed and stored in the correct new

478

478

bucketa costly operation.

You need to consider the load factor and the initial capacity when creating the hash map, be aware of the
expected number of elements the map will hold, and be aware of the expected usage patterns of the map. If the
initial capacity is too small and the load factor too low, then numerous rehash operations will occur. In
contrast, with a large enough initial capacity and load factor, a rehash might never be needed. You need to
balance the cost of normal operations against the costs of iteration and rehashing. The default load factor of
0.75 provides a good general trade-off.

21.8.2. LinkedHashMap

LinkedHashMap<K,V> extends HashMap<K,V> and refines the contract of HashMap by defining an
order to the entries in the map. Iterating through the contents of a LinkedHashMap (either the entry set or
the key set) will, by default, return the entries in insertion orderthe order in which they were added. Aside
from this, LinkedHashMap behaves like HashMap and defines constructors of the same forms. The
performance of a LinkedHashMap is likely to be a little slower than a HashMap due to the overhead of
maintaining the linked list structure; however, iteration only requires a time proportional to the size,
regardless of capacity.

Additionally, LinkedHashMap provides a constructor that takes the initial capacity, the load factor and a
boolean flag accessOrder. If accessOrder is false, then the map behaves as previously described
with respect to ordering. If accessOrder is true, then the map is sorted from the most recently accessed
entry to the least recently accessed entry, making it suitable for implementing a Least Recently Used (LRU)
cache. The only methods to count as an access of an entry are direct use of put, get, and putAllhowever,
if invoked on a different view of the map (see Section 21.10 on page 597), even these methods do not count as
an access.

21.8.3. IdentityHashMap

The general contract of Map requires that equality for keys be based on equivalence (that is, using the
equals method). But there are times when you really want a map that stores information about specific
objects instead of treating all equivalent objects as a single key to information. Consider the serialization
mechanism discussed in Chapter 20. When determining if an object in the serialization graph has already been
seen, you need to check that it is the actual object, not just one that is equivalent. To support such
requirements the IdentityHashMap class uses object identity (comparison using ==) to determine if a
given key is already present in the map. This is useful, but it does break the general contract of Map.

There are three constructors:

public IdentityHashMap(int expectedSize)

Creates a new IdentityHashMap with the given expected maximum size.

public IdentityHashMap()

Creates a new IdentityHashMap with the default expected maximum
size.

public IdentityHashMap(Map<? extends K, ? extends V> map)

Creates a new IdentityHashMap containing the entries from the given
map.

479

479

The expected maximum size is a hint for the initial capacity of the map, but its exact effects are not specified.

21.8.4. WeakHashMap

The collection implementations all use strong references for elements, values, and keys. As with strong
references elsewhere, this is usually what you want. Just as you occasionally need reference objects to provide
weaker references, you also occasionally need a collection that holds the objects it contains less strongly. You
can use WeakHashMap in such cases.

WeakHashMap behaves like HashMap but with one differenceWeakHashMap refers to keys by using
WeakReference objects instead of strong references. As you learned in Section 17.5 on page 454, weak
references let the objects be collected as garbage, so you can put an object in a WeakHashMap without the
map's reference forcing the object to stay in memory. When a key is only weakly reachable, its mapping may
be removed from the map, which also drops the map's strong reference to the key's value object. If the value
object is otherwise not strongly reachable, this could result in the value also being collected.

A WeakHashMap checks to find unreferenced keys when you invoke a method that can modify the contents
(put, remove, or clear), but not before get. This makes the performance of such methods dependent on
the number of keys that have become unreferenced since the last check. If you want to force removal you can
invoke one of the modifying methods in a way that will have no effect, such as by removing a key for which
there is no mapping (null, for example, if you do not use null as a key). Because entries in the map can
disappear at any time, the behavior of some methods can be surprisingfor example, successive calls to size
can return smaller and smaller values; or an iterator for one of the set views can throw
NoSuchElementException after hasNext returns true.

The WeakHashMap class exports the same constructors as HashMap: a no-arg constructor; a constructor
that takes an initial capacity; a constructor that takes an initial capacity and a load factor; and a constructor
that takes a Map whose contents will be the initial contents of the WeakHashMap.

Exercise 21.2: Rewrite the DataHandler class on page 457 to use a WeakHashMap to store the returned
data instead of a single WeakReference.

Exercise 21.3: A WeakHashMap has weak keys and strong values. A WeakValueMap would have strong
keys and weak values. Design a WeakValueMap. Be cautioned that this is not as simple as it might seem, in
fact it is extremely complicated and requires a number of design choices to be made. For example, should
iteration of values be allowed to yield null after hasNext has returned TRue, or should iteration keep the
values alive while they are being iterated? Hint: Don't try to extend AbstractMap, delegate to a HashMap
instead.

21.8.5. treeMap

The TReeMap class implements SortedMap, keeping its keys sorted in the same way as TReeSet. This
makes adding, removing, or finding a key/value pair 0(logn) . So you generally use a treeMap only if you
need the sorting or if the hashCode method of your keys is poorly written, thereby destroying the 0(1)
behavior of HashMap.

treeMap has the following constructors:

public treeMap()

Creates a new treeMap that is sorted according to the natural order of the
keys. All elements added to this map must implement the Comparable

480

480

interface and be mutually comparable.

public treeMap(Map<? extends K, ? extends V> map)

Equivalent to using TReeMap() and then adding all the key/value pairs of
map to this map.

public TReeMap(Comparator<? super K> comp)

Creates a new TReeMap that is sorted according to the order imposed by
comp.

public treeMap(SortedMap<K, ? extends V> map)

Creates a new TReeMap whose initial contents will be the same as those in
map and that is sorted the same way as map.

21.9. enum Collections

Two collections, EnumSet and EnumMap, are specifically designed for working efficiently with enum
constants.

21.9.1. EnumSet

The abstract class EnumSet<Eextends Enum<E>> represents a set of elements that are all enum constants
from a specific enum type. Suppose you were writing a reflection related API, you could define an enum of
the different field modifiers, and then have your Field class return the set of modifiers applicable to that
field:

enum FieldModifiers { STATIC, FINAL, VOLATILE, TRANSIENT }

public class Field {
 public EnumSet<FieldModifiers> getModifiers() {
 // ...
 }
 // ... rest of Field methods ...
}

In general, whenever an enum represents a set of flags or "status bits," then you will probably want to group
the set of flags applicable to a given element in an enum set.

EnumSet objects are not created directly but are obtained from a number of static factory methods in
EnumSet.

public static <E extends Enum<E>> EnumSet<E> allOf(Class<E>
enumType)

Creates an EnumSet containing all the elements of the given enum type.

public static <E extends Enum<E>> EnumSet<E> noneOf(Class<E>
enumType)

481

481

Creates an empty EnumSet that can contain elements of the given enum
type.

public static <E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E>
set)

Creates an EnumSet of the same enum type as set and containing all the
elements of set.

public static <E extends Enum<E>> EnumSet<E>
complementOf(EnumSet<E> set)

Creates an EnumSet of the same enum type as set and containing all the
enum constants that are not contained in set.

public static <E extends Enum<E>> EnumSet<E>
copyOf(Collection<E> coll)

Creates an EnumSet from the given collection. If the collection is an
EnumSet, a copy is returned. Any other collection must contain one or more
elements, all of which are constants from the same enum; this enum will be
the enum type of the returned EnumSet. If coll is empty and is not an
EnumSet then IllegalArgumentException is thrown because there
is no specified enum type for this set.

The of method creates an enum set containing the given enum constant. It has five overloaded forms that take
one through five elements as arguments. For example, here is the form that takes three elements:

public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E
e3)

Creates an EnumSet containing e1, e2, and e3.

A sixth overload takes an arbitrary number of elements:

public static <E extends Enum<E>> EnumSet<E> of(E first, E...
rest)

Creates an EnumSet containing all the specified enum values.

Finally, the range method takes two enum constants that define the first and last elements that the enum set
will contain. If first and last are in the wrong order then IllegalArgumentException is thrown.

Once you have obtained an enum set you can freely modify it in whatever way you need.

EnumSet uses a bit-vector internally so it is both compact and efficient. The iterator returned by iterator
is not the usual fail-fast iterator of other collections. It is a weakly consistent iterator that returns the enum
values in their natural orderthe order in which the enum constants were declared. A weakly consistent iterator
never throws ConcurrentModificationException, but it also may not reflect any changes that occur
while the iteration is in progress.

482

482

21.9.2. EnumMap

The EnumMap<Kextends Enum<K>,V> is a special map that uses enum values as keys. All values in the
map must come from the same enum type. Just like EnumSet the enum values are ordered by their natural
order, and the iterator is weakly consistent.

Suppose you were writing an application that dynamically builds and displays an on-line form, based on a
description written in a structured format such as XML. Given the set of expected form elements as an enum

enum FormElements { NAME, STREET, CITY, ZIP }

you could create an enum map to represent a filled in form, where the keys are the form elements and the
values are whatever the user entered.

EnumMap has three constructors:

public EnumMap(Class<K> keyType)

Creates an empty EnumMap that can hold keys of the given enum type.

public EnumMap(EnumMap<K, ? extends V> map)

Creates an EnumMap of the same enum type as map and containing all the
elements of map.

public EnumMap(Map<K, ? extends V> map)

Creates an EnumMap from the given map. If the map is an EnumMap, a copy
is returned. Any other map must contain one or more keys, all of which are
constants from the same enum; this enum will be the enum type of the
returned EnumMap. If map is empty and is not an EnumMap then
IllegalArgumentException is thrown because there is no specified
enum type for this map.

EnumMap is implemented using arrays internally, so it is compact and efficient.

21.10. Wrapped Collections and the Collections Class

The Collections class defines a range of static utility methods that operate on collections. The utility
methods can be broadly classified into two groups: those that provide wrapped collections and those that
don't. The wrapped collections allow you to present a different view of an underlying collection. There are
three different views: a read-only view, a type-safe view, and a synchronized view. The first two are discussed
in this section, synchronized wrappers are discussed later with the concurrent collections. First we discuss the
general utility methods.

21.10.1. The Collections Utilities

The Collections class defines many useful utility methods. You can find the minimum and maximum
valued elements in a collection:

483

483

public static <T extends Object & Comparable<? super T>> T
min(Collection<? extends T> coll)

Returns the smallest valued element of the collection based on the elements'
natural order.

public static <T> T min(Collection<? extends T> coll,
Comparator<? super T> comp)

Returns the smallest valued element of the collection according to comp.

public static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll)

Returns the largest valued element of the collection based on the elements'
natural order.

public static <T> T max(Collection<? extends T> coll,
Comparator<? super T> comp)

Returns the largest valued element of the collection according to the
comparator comp.

The declarations of the type variables for two of these methods seem rather complex. Basically, they just
declare that T is a Comparable type. The inclusion of "extendsObject " might seem redundant, but it
changes the erasure of T to be Object rather than Comparable.

You can obtain a Comparator that will reverse the natural ordering of the objects it compares, or that of a
given comparator:

public static <T> Comparator<T> reverseOrder()

Returns a Comparator that reverses the natural ordering of the objects it
compares.

public static <T> Comparator<T> reverseOrder(Comparator<T>
comp)

Returns a Comparator the reverses the order of the given comparator.

Then there are some general convenience methods for collections:

public static <T> boolean addAll(Collection<? super T> coll,
T... elems)

Adds all of the specified elements to the given collection, returning true if
the collection was changed. Naturally, if the collection does not support the
add method then UnsupportedOperationException is thrown.

public static boolean disjoint(Collection<?> coll1,
Collection<?> coll2)

Returns true if the two given collections have no elements in common.

484

484

There are numerous methods for working with lists:

public static <T> boolean replaceAll(List<T> list, T oldVal, T
newVal)

Replaces all occurrences of oldVal in the list with newVal. Returns true
if any replacements were made.

public static void reverse(List<?> list)

Reverses the order of the elements of the list.

public static void rotate(List<?> list, int distance)

Rotates all of the elements in the list by the specified distance. A positive
distance moves elements toward the end of the list, wrapping around to the
beginning. A negative distance moves elements toward the head of the list,
wrapping around to the end. For example, given a list v, w, x, y, z, a rotate
with distance 1 will change the list to be z, v, w, x, y (as will a rotation of 6,
11, … or 4, 9, …).

public static void shuffle(List<?> list)

Randomly shuffles the list.

public static void shuffle(List<?> list, Random randomSource)

Randomly shuffles the list using randomSource as the source of random
numbers (see "Random" on page 639).

public static void swap(List<?> list, int i, int j)

Swaps the ith and jth elements of the given list. This can be done efficiently
inside the collection.

public static <T> void fill(List<? super T> list, T elem)

Replaces each element of list with elem.

public static <T> void copy(List<? super T> dest, List<?
extends T> src)

Copies each element to dst from src. If dst is too small to contain all the
elements, throws IndexOutOfBoundsException. You can use a sublist
for either dst or src to copy only to or from parts of a list.

public static <T> List<T> nCopies(int n, T elem)

Returns an immutable list that contains n elements, each of which is elem.
This only requires storing one reference to elem, so n can be 100 and the
returned list will take the same amount of space it would if n were one.

public static int indexOfSubList(List<?> source, List<?>
target)

485

485

Returns the index of the start of the first sublist of source that is equal to
target.

public static int lastIndexOfSubList(List<?> source, List<?>
target)

Returns the index of the start of the last sublist of source that is equal to
target.

There are also methods for sorting and searching lists:

public static <T extends Comparable<? super T>> void
sort(List<T> list)

Sorts list in ascending order, according to its elements' natural ordering.

public static <T> void sort(List<T> list, Comparator<? super T>
comp)

Sorts list according to comp.

public static <T> int binarySearch(List<? extends Comparable<?
super T>> list,T key)

Uses a binary search algorithm to find a key object in the list, returning
its index. The list must be in its elements' natural order. If the object is not
found, the index returned is a negative value encoding a safe insertion point.

public static <T> int binarySearch(List<? extends T> list, T
key, Comparator<? super T> comp)

Uses a binary search algorithm to find a key object in the list, returning
its index. The list must be in the order defined by comp. If the object is not
found, the index returned is a negative value encoding a safe insertion point.

The phrase "a negative value encoding a safe insertion point" requires some explanation. If you use a
binarySearch method to search for a key that is not found, you will always get a negative value.
Specifically, if i is the index at which the key could be inserted and maintain the order, the value returned will
be (i+1). (The return value algorithm ensures that the value will be negative when the key is not found, since
zero is a valid index in a list.) So using the binarySearch methods you can maintain a list in sorted order:
Search the list to see if the key is already present. If not, insert it according to the return value of
binarySearch:

public static <T extends Comparable<? super T>>
 void ensureKnown(List<T> known, T value)
{
 int indexAt = Collections.binarySearch(known, value);
 if (indexAt < 0) // not in the list -- insert it
 known.add(-(indexAt + 1), value);
}

If the list of known elements does not include the given value, this method will insert the value in its place
in the list based on its natural ordering.

486

486

If you invoke one of the sorting or searching methods that relies on ordering on a list that contains objects that
are not mutually comparable, or are not comparable by the relevant Comparator, you will get a
ClassCastException.

You can ask how many times an element appears in a collection:

public static int frequency(Collection<?> coll, Object elem)

Returns the number of times that the given element appears in the given
collection.

There are also methods to create singleton collectionscollections containing only a single element:

public static <T> Set<T> singleton(T elem)

Returns an immutable set containing only elem.

public static <T> List<T> singletonList(T elem)

Returns an immutable list containing only elem.

public static <K,V> Map<K,V> singletonMap(K key, V value)

Returns an immutable map containing only one entry: a mapping from key
to value.

And finally, there are methods that return empty collections:

public static <T> List<T> emptyList()

Returns an empty, immutable list of the desired type.

public static <T> Set<T> emptySet()

Returns an empty, immutable set of the desired type.

public static <K,V> Map<K,V> emptyMap()

Returns an empty, immutable map of the desired type.

There are also legacy static final fields, EMPTY_LIST, EMPTY_SET, and EMPTY_MAP, of the raw types
List, Set, and Map, initialized to refer to empty immutable collection objects. The use of these fields is not
type-safe and is discouraged, as is all use of raw types.

21.10.2. The Unmodifiable Wrappers

The Collections class has static methods that return unmodifiable wrappers for all of the collection types:
unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList, unmodifiableMap, and unmodifiableSortedMap. The collections returned
by these methods pass non-modifying methods through to the underlying collection. Modifying methods
throw UnsupportedOperationException. The unmodifiable wrapper is backed by the original
collection, so any changes you make to the collection will be visible through the wrapped collection. In other
words, the contents of an unmodifiable wrapper can change, but not through the wrapper itself.

487

487

Unmodifiable wrappers are a reasonable way to expose information that may be changing but that shouldn't
be changed by the observer. For example, consider the Attributed interface and the AttributedImpl
class from Chapter 4. The attributes are exposed by having the attrs method return an Iteratora
reasonable design. An alternative, however, would be to return the attributes as an unmodifiable collection.
Here's how AttributedImpl could implement this:

public Collection<Attr> attrs() {
 return Collections.
 unmodifiableCollection(attrTable.values());
}

Generally, iterators must be used immediately after they are obtained from the iterator method, with no
intervening changes to the collectionotherwise, use of the iterator will encounter a
ConcurrentModificationException. In contrast, you can ask for an unmodifiable collection, and
then use it at some later time when the original collection has undergone arbitrary changes. Exposing
information via a collection also allows the users of your class to utilize all the Collection utility methods.
For example, if you expose your information as an unmodifiable list, it can be searched and sorted without
your having to define search and sort methods.

21.10.3. The Checked Wrappers

A List<String> is guaranteed at compile time to only ever hold String objectsunless you have to pass
it to legacy code as a raw type, in which case all guarantees are off (and you will get an "unchecked"
warning). Dealing with legacy code that is unaware of generic types is a practical necessity. However,
tracking down problems can be difficult. If you pass a List<String> to a legacy method that erroneously
inserts a Number, you won't discover the problem until another part of your code tries to force the Number
to be a String. The type-safe checked wrappers have been provided to help you with this problem. A
checked wrapper will make a runtime check to enforce the type safety lost when the collection is used as a
raw type. This allows errors to be detected as soon as they occurwhen that erroneous Number is inserted.

public static <E> Collection<E> checkedCollection(Collection<E>
coll, Class<E> type)

Returns a dynamically typeset view of the given collection. Any attempt to
insert an element that is not of the specified type will result in a
ClassCastException.

The other type checked wrappers are obtained from checkedList, checkedSet,
checkedSortedSet, checkedMap, and checkedSortedMap.

21.11. Synchronized Wrappers and Concurrent Collections

All the collection implementations provided in java.util are unsynchronized (except the legacy
collections you will soon see). You must ensure any necessary synchronization for concurrent access from
multiple threads. You can do this explicitly with synchronized methods or statements, or algorithmically
by designing your code to use a given collection from only one thread. These techniques are how collections
are often naturally usedas local variables in methods or as private fields of classes with synchronized code.

Thread-safety for collection classes themselves takes two main forms: lock-based synchronization to ensure
that concurrent access is precluded, and the use of sophisticated data structures that allow (to varying degrees)
truly concurrent use of a collection. The former is provided through the synchronized wrappers, while the

488

488

latter are provided in the java.util.concurrent subpackage.

21.11.1. The Synchronized Wrappers

A synchronized wrapper passes through all method calls to the wrapped collection after adding any necessary
synchronization. You can get a synchronized wrapper for a collection from one of the following static
methods of Collections: synchronizedCollection, synchronizedSet,
synchronizedSortedSet, synchronizedList, synchronizedMap, or
synchronizedSortedMap. These factory methods return wrappers whose methods are fully
synchronized and so are safe to use from multiple threads. For example, the following code creates a new
HashMap that can be safely modified concurrently:

Map<String, String> unsyncMap =
 new HashMap<String, String>();
Map<String, String> syncMap =
 Collections.synchronizedMap(unsyncMap);

The map referred to by unsyncMap is a full, but unsynchronized, implementation of the Map interface. The
Map returned by synchronizedMap has all relevant methods synchronized, passing all calls through to the
wrapped map (that is, to unsyncMap). Modifications made through either map are visible to the otherthere is
really only one map with two different views: the unwrapped, unsynchronized view referenced by
unsyncMap, and the wrapping, synchronized view referenced by syncMap:

Because the underlying collection is unsynchronized, you must be very careful what you do with
unsyncMap. The safest alternative is to drop the reference and do all work through syncMap. If you do not,
you must be sure that you carefully control concurrency. The wrapper synchronizes on itself, so you could use
syncMap to synchronize access on the collection and then use unsyncMap safely inside such code:

// add a lot of elements but grab the lock only once
synchronized (syncMap) {
 for (int i = 0; i < keys.length; i++)
 unsyncMap.put(keys[i], values[i]);
}

Iterators returned by synchronized wrappers are not synchronized but must be manually synchronized in a
similar manner when needed:

synchronized (syncMap) {
 System.out.println("--- map contents:");
 for (String key : syncMap.keySet())
 System.out.println(key + ": " + syncMap.get(key));

489

489

}

If you use an unsynchronized collection concurrently the result is undefinedif you are lucky the error will be
detected by the collection and you will get a ConcurrentModificationException. If you are
unlucky the collection will quietly become corrupt.

21.11.2. The Concurrent Collections

The java.util.concurrent subpackage provides collection implementations that are not only safe for
concurrent use but are specially designed to support such use.

When using a collection concurrently, you can't be sure when a collection might be empty, or, for a capacity
constrained collection, when it might be full. In such circumstances it is useful to be able to wait until an
element appears or until space for an element appears. The BlockingQueue<E> interface that extends
Queue<E> defines such a capability:

public void put(E elem) throws InterruptedException

Adds the specified element to this queue, waiting if necessary for space to
become available.

public boolean offer(E elem, long time, TimeUnit unit) tHRows
InterruptedException

Adds the specified element to this queue, waiting if necessary up to the
specified waiting time for space to become available. Returns TRue if the
element was added, and false if the specified waiting time elapsed before
space became available.

public E take() throws InterruptedException

Returns and removes the head of this queue, waiting if necessary for the
queue to be non-empty.

public E poll(long time, TimeUnit unit) throws
InterruptedException

Returns and removes the head of this queue, waiting if necessary up to the
specified waiting time for the queue to be non-empty. Returns the head of the
queue, or null if the specified waiting time elapsed before an element
became available.

As these are all potentially blocking operations. They support cancellation by throwing an
InterruptedException in response to the current thread being interrupted.

You specify the waiting times with a long to indicate the time, and a value of the enum
java.util.concurrent.TimeUnit to indicate the units. The enum TimeUnit has the constants
NANOSECONDS, MICROSECONDS, MILLISECONDS, and SECONDS.

A BlockingQueue may be capacity constrained. The remainingCapacity method returns the number
of elements that can be put in the queue without causing blockingbut note that if multiple threads are using the
queue it doesn't guarantee how many elements an individual thread may be able to add without blocking. If

490

490

there is no inherent limit Integer.MAX_VALUE is returned. If there is a capacity limit then
Collection.add will throw IllegalStateException if the element cannot be added.

The drainTo method takes a collection and attempts to transfer all the elements of this queue into the given
collection. The number of elements transferred is returned. An overloaded form of drainTo takes an
additional int parameter that limits the maximum number of elements to transfer. This operation is provided
as an alternative to repeated polling of the queue because some implementations will be able to implement it
very efficientlyeven atomically. However, the guarantees of this method are somewhat loose: It is possible
that if an error occurs when an element is added to the target collection, the element may end up in one,
neither, or both collections!

All BlockingQueue implementations must be thread-safe, but it is not required (unless explicitly
documented by an implementation) that the bulk collection operations (addAll, containsAll,
retainAll) are executed atomically.

The following blocking queue implementations are provided:

ArrayBlockingQueue A bounded blocking queue backed by an array. You construct one with a
capacity and an optional fairness setting. If the queue is fair then blocked threads are processed in
first-in-first-out order; otherwise, blocked threads can be unblocked in arbitrary order. The queue
itself is ordered first-in-first-out. It provides a weakly consistent iterator.

•

LinkedBlockingQueue An optionally bounded queue based on a linked node implementation.
The queue elements are ordered first-in-first-out. It provides a weakly consistent iterator.

A linked queue implementation will typically provide greater throughput than an array-based
implementation when used concurrently. This is due to the use of algorithms that allow the head and
tail to be locked independently. However, a linked queue implementation may require allocation for
each insertion and produce garbage on each removal, which can add significant overhead. When the
queue is used as a fixed size buffer that is constantly filled by one set of threads and then drained by
another, this overhead is at its worst, and an array-based implementation may perform better than a
bounded linked queue. Moreover, in the usage pattern described, the additional concurrency support
of the linked queue isn't used because each thread within a set operates on the same end of the queue.

•

PriorityBlockingQueue An unbounded queue ordered the same way as a PriorityQueue.
This implementation adds thread safety and the blocking retrieval operations. It provides an iterator
that is thread-safe but fail-fast.

•

SynchronousQueue A specialized blocking queue where each take must wait for a put, and
vice versa. A synchronous queue has no capacity, not even a capacity of one, so you cannot peek into
a synchronous queue, nor can you iterate through it. From the perspective of most of the collection
methods a synchronous queue acts like an empty collection.

•

DelayQueue A specialized unbounded blocking queue of Delayed elements. The Delayed
interface has a single method, getdelay, which takes a TimeUnit constant and returns the delay
in that time unit. A Delayed element cannot be removed from a DelayQueue until its delay has
expired. The head of a delay queue is that element whose delay expired furthest in the past. If no
elements have a delay that has passed then the head is null. It provides an iterator that is thread-safe
but fail-fast.

•

In addition to the thread-safe blocking queues, java.util.concurrent provides a number of other
concurrent collections.

ConcurrentHashMap provides a hash map implementation that allows for fully concurrent retrievals and
up to a set number of concurrent insertions. Although all operations are thread-safe, they do not involve
locking, and there is no way to externally synchronize the map to provide atomic sequences of operations.
Because of this, some extra support is needed to do things like inserting a value in the map only if it is not
present. The ConcurrentMap<K,V> interface, implemented by ConcurrentHashMap, defines a

491

491

number of such methods:

public V putIfAbsent(K key, V value)

Atomically stores the given value in the map only if a mapping for key does
not currently exist. The old value mapped to key is returned, or null if the
key was not presentbut be aware that null may be a legitimate value for
some maps. (Optional if the map does not support put)

public boolean remove(Object key, Object value)

Atomically remove the entry for key if it currently maps to value. Returns
true if the entry was removed. (Optional if the map does not support
remove)

public boolean replace(K key, V oldValue, V newValue)

Atomically replaces the entry for key only if it currently maps to
oldValue. Returns true if the entry was replaced. (Optional if the map
does not support put)

public V replace(K key, V value)

Atomically replaces the mapping for key if and only if a mapping currently
exists. The old value mapped to key is returned, or null if the key was not
presentbut be aware that null may be a legitimate value for some maps.
(Optional if the map does not support put)

The ConcurrentLinkedQueue<E> class provides an unbounded thread-safe queue based on a linked
node representation. Operations on the queue are highly concurrent and do not utilize locks. Because of the
concurrent nature an operation like size requires a complete traversal of the queue and so is quite
expensivehowever, knowing the size that a concurrently changing queue used to be is seldom, if ever, useful.
The iterator provided by ConcurrentLinkedQueue is weakly consistent, it guarantees to traverse the
elements that existed when the iterator was created, but may not reflect subsequent additions.

The CopyOnWriteArrayList<E> is a thread-safe variant of ArrayList. It allows iteration to be done
over a snapshot of the contents without actually making a copy of the original list. Copies are made only when
someone modifies the listhence the name "copy on write." This makes a very efficient structure for lists that
are read much more frequently than they are changed. Because the iterator sees a snapshot of the elements, it
can never fail; but it does not support the remove operation.

The CopyOnWriteArraySet<E> class is an implementation of Set that uses a
CopyOnWriteArrayList.

21.12. The Arrays Utility Class

The class Arrays provides useful static methods for dealing with arrays. Most of these methods have a full
complement of overloads: one for arrays of each primitive type (except boolean for searching and sorting)
and one for Object arrays. There are also two variants of some methods: one acting on the whole array and
one acting on the subarray specified by two supplied indices. The methods are

sort Sorts an array into ascending order. The exact algorithm is not specified other than it must be
stable for objects (that is, equal objects don't get reordered because of the sort). A good

•

492

492

implementation would use a technique that is not worse than O(nlogn)
binarySearch Searches a sorted array for a given key. Returns the key's index, or a negative value
encoding a safe insertion point (as for the method Collections.binarySearch described
previously). There are no subarray versions of these methods.

•

fill Fills in the array with a specified value.•
equals and deepEquals Return true if the two arrays they are passed are the same object, are
both null, or have the same size and equivalent contents. There are no subarray versions. The
equals method for Object[] uses Object.equals on each non-null element of the array;
null elements in the first array must be matched by null elements of the second. This does not
treat nested arrays specially, so it cannot generally be used to compare arrays of arrays. The
deepEquals method checks for equivalance of two Object[] recursively taking into account the
equivalence of nested arrays.

•

hashCode and deepHashCode Return a hash code based on the contents of the given array. There
are no subarray versions. The deepHashCode method computes a hash code for an Object[]
recursively taking into account the contents of nested arrays.

•

toString and deepToString Return a string representation of the contents of the array. There
are no subarray versions. The string consists of a comma seperated list of the array's contents,
enclosed by '[' and ']'. The array contents are converted to strings with String.valueof. The
toString method for Object[] converts any nested arrays to strings using
Object.toString. The deepToString method returns a string representation of an
Object[] recursively converting nested arrays to strings as defined by this method.

•

The methods sort and binarySearch have two overloads for Object arrays. One assumes that its
elements are comparable (implement the Comparable interface). The second uses a provided
Comparator object instead, so you can manipulate arrays of objects that are not comparable or for which
you do not want to use the natural ordering.

You can view an array of objects as a List by using the object returned by the asList method.

public static <T> List<T> asList(T... elems)

This can take an actual array reference, or it can conveniently create an array from the given sequence of
elements. The list is backed by the underlying array, so changes made to the array are visible to the list and
vice versa. The returned list allows you to set elements, but not to add or remove themit is a modifiable
list, but not a resizable list. Using a List for access to an underlying array can give you useful features of
List, such as using synchronized wrappers to synchronize access to the underlying array.

21.13. Writing Iterator Implementations

Iterators are generally useful, and you may want to write your own, even if you are not implementing a
collection type. The following code demonstrates the basics of writing your own Iterator implementation,
in this case for an iterator that will filter out strings longer than a given length:

public class ShortStrings implements Iterator<String> {
 private Iterator<String> strings; // source for strings
 private String nextShort; // null if next not known
 private final int maxLen; // only return strings <=

 public ShortStrings(Iterator<String> strings,
 int maxLen) {
 this.strings = strings;
 this.maxLen = maxLen;
 nextShort = null;
 }

493

493

 public boolean hasNext() {
 if (nextShort != null) // found it already
 return true;
 while (strings.hasNext()) {
 nextShort = strings.next();
 if (nextShort.length() <= maxLen)
 return true;
 }
 nextShort = null; // didn't find one
 return false;
 }

 public String next() {
 if (nextShort == null && !hasNext())
 throw new NoSuchElementException();
 String n = nextShort; // remember nextShort
 nextShort = null; // consume nextShort
 return n; // return nextShort
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
}

The class ShortStrings is a type of iterator that will read String objects from another iterator, returning
only those that are no longer than a specified length. The constructor takes the iterator that will provide the
strings and the maximum length, storing those in the object's fields. The field nextShort will hold the next
short string, or null when there isn't one. If nextShort is null, the hasNext method searches for the
next short string, remembering it in nextShort. If hasNext reaches the end of its source iteration without
finding a short string it returns false.

The method next checks to see if there is a next short string, either returning it if there is one or throwing
NoSuchElementException if there are none to return. Notice that hasNext does all the real work of
finding the short strings, and next just returns the results, setting nextShort to null to indicate that the
next short string, if any, is as yet undiscovered.

Finally, remove is not supported by this iterator implementation, so remove throws
UnsupportedOperationException.

A few things to notice. First, hasNext is carefully written so that it will work if invoked multiple times
before a next. This is requiredthe calling code may invoke hasNext as many times as it wants between
invocations of next. Second, next is carefully written so that it works even if programmer using it has
never invoked hasNext. Although generally a poor practice, you could never invoke hasNext and simply
loop invoking next until an exception is generated.

Third, remove is not allowed because it cannot work correctly. Imagine, for example, if remove invoked
remove on the underlying iterator. The following legal (although odd) code can cause incorrect behavior:

it.next();
it.hasNext();
it.remove();

Imagine that this were to happen when there was one more short string left in the iteration followed by some
long ones. The invocation of next would return the last short string. Then hasNext would iterate through

494

494

the list of strings, and finding no more short ones, return false. When remove was invoked, it would
invoke remove on the underlying iterator, thereby removing the last (long) string that hasNext rejected.
That would be incorrect. Since the above code is valid, you cannot fix the problem by forbidding the sequence
of methods. You are effectively stuck. Because of this, you cannot build a filtering iterator on top of another
Iterator object. You can build one on top of a ListIterator though, since it allows you to back up to
the previously returned short string.

The methods of ListIterator have contracts similar to those of Iterator, as you have learned earlier
in this chapter. You can provide ListIterator objects in some circumstances where you might otherwise
write an Iterator. If you are writing a general utility class for others to use, you should implement
ListIterator instead of Iterator if possible.

Exercise 21.4: Write a version of ShortStrings that implements ListIterator to filter a
ListIterator object. Should your class extend ShortStrings?

21.14. Writing Collection Implementations

You will usually find that at least one of the collection implementations will satisfy your needs. If not, you
can implement relevant collection interfaces yourself to provide collections that satisfy your particular needs.
You will find skeletal implementations in the abstract classes AbstractCollection, AbstractSet,
AbstractList, AbstractSequentialList, AbstractQueue, and AbstractMap. You can
extend these classes to create your own collections, often with less work than starting from the interfaces
directly. The concrete collections shown in Figure 21-1 on page 568 each extend the appropriate abstract
collection type, as shown in the concrete type tree in Figure 21-1.

These abstract collection classes are designed to be helpful superclasses for your own collection
implementations. They are not requiredin some cases you will find it easier or more efficient to directly
implement the interfaces.

Each abstract collection class declares a few abstract methods and uses them in default implementations of
other methods of the collection type. For example, AbstractList has two abstract methods: size and
get. All other querying methods of AbstractList, including its iterators, are implemented by using these
methods. You need only write your own implementation of the other methods if you want to, typically to
either increase efficiency or to allow something disallowed by default. For example, if your list is modifiable,
your subclass of AbstractList will have to provide an overriding implementation of the set method,
which by default throws UnsupportedOperationException.

The root of the abstract collection types is AbstractCollection. If you need a collection that isn't a set,
list, or map you can subclass this directly. Otherwise, you will probably find it more useful to subclass one of
the more specific abstract collections classes.

If the Collection class you are creating is unmodifiable (if the modification methods of your collection
should throw UnsupportedOperationException), your subclass of AbstractCollection need
only provide an implementation of the size and iterator methods. This means you must at least write an
implementation of Iterator for your collection. If your collection is modifiable, you must also override the
default implementation of the add method (which throws UnsupportedOperationException) and
your iterator must support remove.

AbstractSet extends AbstractCollection, and the methods you must implement and can override
are the same, with the additional constraint that a subclass of AbstractSet must conform to the contract of
the Set interface. It also overrides the implemention of equals and hashCode from Object.

495

495

AbstractQueue has the same requirements as AbstractCollection, with the additional requirements
that you must implement offer, poll, and peek.

AbstractList requires you to implement only size and get(int) to define an unmodifiable list class.
If you also override set(int,Object) you will get a modifiable list, but one whose size cannot change.
Your list can change size if you also override the methods add(int,Object) and remove(int).

For example, suppose you need to view a bunch of arrays as a single list. You could use one of the existing
List implementations, but at the cost of copying the information each time from the arrays into a new
collection. You could instead subclass AbstractList to create an ArrayBunchList type that lets you
do this without copying:

public class ArrayBunchList<E> extends AbstractList<E> {
 private final E[][] arrays;
 private final int size;

 public ArrayBunchList(E[][] arrays) {
 this.arrays = arrays.clone();
 int s = 0;
 for (E[] array : arrays)
 s += array.length;
 size = s;
 }

 public int size() {
 return size;
 }

 public E get(int index) {
 int off = 0; // offset from start of collection
 for (int i = 0; i < arrays.length; i++) {
 if (index < off + arrays[i].length)
 return arrays[i][index - off];
 off += arrays[i].length;
 }
 throw new ArrayIndexOutOfBoundsException(index);
 }

 public E set(int index, E value) {
 int off = 0; // offset from start of collection
 for (int i = 0; i < arrays.length; i++) {
 if (index < off + arrays[i].length) {
 E ret = arrays[i][index - off];
 arrays[i][index - off] = value;
 return ret;
 }
 off += arrays[i].length;
 }
 throw new ArrayIndexOutOfBoundsException(index);
 }
}

When an ArrayBunchList is created, all the constituent arrays are remembered internally in the arrays
field, and the total size of the collection in size. ArrayBunchList implements size, get, and set, but
not add or remove. This means that the class provides a modifiable list, but one whose size cannot be
changed. Any call that needs values from the underlying arrays will go through get. Any action that modifies
the value of the ArrayBunchList will go through set, which modifies the appropriate underlying array.

AbstractList provides Iterator and ListIterator implementations on top of the other methods
of the class. Because the iteration implementations use the methods of your underlying subclass of

496

496

AbstractList, the modifying methods of the iteration will properly reflect the modifiability of your class.

The Iterator implementations of AbstractList use get to read values. As you will note,
ArrayBunchList has a get that can do some significant work if the value is stored in one of the later
arrays. We can make get smarter than shown here to help with this work, but we can be even more efficient
for iteration because it accesses the data sequentially. Here is an optimized Iterator:

private class ABLIterator implements Iterator<E> {
 private int off; // offset from start of list
 private int array; // array we are currently in
 private int pos; // position in current array

 ABLIterator() {
 off = 0;
 array = 0;
 pos = 0;
 // skip any initial empty arrays (or to end)
 for (array = 0; array < arrays.length; array++)
 if (arrays[array].length > 0)
 break;
 }

 public boolean hasNext() {
 return off + pos < size();
 }

 public E next() {
 if (!hasNext())
 throw new NoSuchElementException();
 E ret = arrays[array][pos++];

 // advance to the next element (or to end)
 while (pos >= arrays[array].length) {
 off += arrays[array++].length;
 pos = 0;
 if (array >= arrays.length)
 break;
 }
 return ret;
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

This implementation uses our knowledge of the underlying data structures to know exactly where the next
element is coming from. This is more efficient than invoking get to implement the iterator's next. (It is also
written to handle empty arrays and an empty ArrayBunchList.)

You can often substantially increase the performance of a resizable list by overriding the protected
removeRange method, which takes two int parameters, min and max, and removes the elements starting
at min, up to but not including max. The clear method uses remove Range to remove elements from
lists and sublists. The default implementation is to invoke remove on each element one at a time. Many data
structures can do bulk removes much more efficiently.

AbstractSequentialList extends AbstractList to make it easier to implement lists that are
backed by a sequential access data store where moving from one element of the data to another requires
examining each element of the data. In such a store, random access requires work since you must traverse

497

497

each element to get to the next. A linked list is a sequential access data store. By contrast, an array can be
randomly accessed directly. This is why ArrayList extends AbstractList, while LinkedList
extends AbstractSequentialList.

Where AbstractList implements its iterators via the random access method get,
AbstractSequentialList implements the random access methods via an iterator you provide by
implementing the listIterator method. You must also implement size. Your class will be modifiable
in whatever ways your list iterator's methods allow. For example, if your iterator allows set but not add or
remove, you will have a modifiable but non-resizable list.

To use the AbstractMap class you must implement the entrySet method to return an unmodifiable set
of entries that contains the mappings of the map. This will implement an unmodifiable map. To make a
modifiable map, you must override put, and the iterator your entrySet object returns must allow
remove.

The abstract implementations provided in these classes are designed to be easy to extend, but efficiency is not
always a consequence. You can often make your subclass of an abstract collection type much faster by
judicious overriding of other methods, as shown for the ArrayBunchList iterator. As another example, the
implementation of get in AbstractMap, having only a set of entries, must search through that set one at a
time until it finds an appropriate entry. This is an O(n)implementation. To get its O(1) performance,
HashMap overrides get and all other key-based methods to use its own hash buckets. However, HashMap
does not override the implementation of equals because that requires iteration anyway and the
implementation in AbstractMap is reasonably efficient.

Exercise 21.5: Implement a more efficient ListIterator for ArrayBunchList. Be careful of the
specific contracts of ListIterator methods, such as set not being valid until either next or previous
is invoked.

21.15. The Legacy Collection Types

The collection frameworkthe interfaces and classes described in this chapter, and shown in Figure 21-1 on
page 568has not always been a part of the package java.util, but that package has always contained some
other collections. Most are superseded by the new collection types. Even so, they are not deprecated because
they are in widespread use in existing code and will continue to be used until programs shift over to the new
types. You are therefore likely to encounter these legacy collections so you should learn about them, including
their relationship to the newer collection types. The legacy collections consist of the following types:

Enumeration Analogous to Iterator.•
Vector Analogous to ArrayList, maintains an ordered list of elements that are stored in an
underlying array.

•

Stack A subclass of Vector that adds methods to push and pop elements so that you can treat the
vector by using the terms normal to a stack.

•

Dictionary Analogous to the Map interface, although Dictionary is an abstract class, not an
interface.[4]

[4] Dictionary is not an interface because it predates the addition of interfaces to
the language, which gives you some idea of how old these legacy collections are.

•

Hashtable Analogous to HashMap.•
Properties A subclass of Hashtable. Maintains a map of key/value pairs where the keys and
values are strings. If a key is not found in a properties object a "default" properties object can be
searched.

•

498

498

Of these types, only Properties is in active useit is used to contain system properties, as described in
"System Properties" on page 663 and by some applications to store configuration data. We describe the other
legacy collections by contrasting them with their analogous types. We then describe Properties in more detail
since you are more likely to actually need to write code that uses it.

21.15.1. Enumeration

Enumeration<E> is analogous to Iterator, but has just two methods: hasMoreElements which
behaves like hasNext, and nextElement which behaves like next. You can get an Enumeration that
iterates through a non-legacy collection from the static method Collections.enumeration.

You can convert an Enumeration to a List via the static Collections.list method, which returns
an ArrayList containing all the elements accessible by the enumeration, in the order the enumeration
returned them.

Exercise 21.6: Rewrite the example program Concat on page 528 so that it uses an implementation of
Enumeration that has only one FileInputStream object open at a time.

21.15.2. Vector

The Vector<E> class is analogous to ArrayList<E>. Although Vector is a legacy class, it has been
made to implement List, so it works as a Collection. All methods that access the contents of a Vector
are synchronized. As a legacy collection, Vector contains many methods and constructors that are
analogous to those of ArrayList, in addition to those it inherits from List. The legacy constructors and
methods of Vector and their analogues in ArrayList are

public Vector(int initialCapacity, int capacityIncrement)

No analogue. Creates a new Vector with the given initialCapacity
that will grow by capacityIncrement elements at a time.

public Vector(int initialCapacity)

Analogous to ArrayList(initialCapacity).

public Vector()

Analogous to ArrayList().

public Vector(Collection<? extends E> coll)

Analogous to ArrayList(coll).

public final void addElement(E elem)

Analogous to add(elem).

public final void insertElementAt(E elem, int index)

Analogous to add(index,elem) .

public final void setElementAt(E elem, int index)

499

499

Analogous to set(index,elem) .

public final void removeElementAt(int index)

Analogous to remove(index).

public final boolean removeElement(Object elem)

Analogous to remove(elem).

public final void removeAllElements()

Analogous to clear().

public final E elementAt(int index)

Analogous to get(index).

public final void copyInto(Object[] anArray)

No direct analogue; the closest is toArray(Object[]), although
toArray allocates a new array if the array is too small, where copyInto
will throw an IndexOutOfBoundsException.

public final int indexOf(Object elem, int index)

Searches for the first occurrence of elem, beginning the search at index,
and testing for equality using equals. The closest analogue would be to
create a sublist covering the range and use indexOf on the sublist.

public final int lastIndexOf(Object elem, int index)

Searches backward for the last occurrence of elem, beginning the search at
index, and testing for equality using equals. The closest analogue would
be to create a sublist covering the range and use lastIndexOf on the
sublist.

public final Enumeration<E> elements()

Analogous to iterator(). Equivalent to
Collections.enumeration.

public final E firstElement()

Analogous to get(0).

public final E lastElement()

Analogous to get(size()- 1).

public final void setSize(int newSize)

No analogue. If newSize is less than the current size, extra data is dropped.
If newSize is larger than the current size, any added elements are null.

500

500

public final int capacity()

No analogue. Returns the current capacity of the vector.

In addition to these public methods, protected fields are available to classes that subclass the Vector class.
Be careful what you do (if anything) with these fields because, for example, methods in Vector rely on
elementCount being less than or equal to the length of the elementData array.

protected Object[] elementData

The buffer where elements are stored.

protected int elementCount

The number of elements currently used in the buffer.

protected int capacityIncrement

The number of elements to add to the capacity when elementData runs
out of space. If zero, the size of the buffer is doubled every time it needs to
grow.

21.15.3. Stack

The Stack<E> class extends Vector<E> to add methods for a simple last-in-first-out stack of objects. Use
push to push an object onto the stack and use pop to remove the top element from the stack. The peek
method returns the top item on the stack without removing it. The empty method returns TRue if the stack is
empty. Trying to pop or peek in an empty Stack object will throw an EmptyStackException.

You can use search to find an object's distance from the top of the stack, with 1 being the top of the stack. If
the object isn't found, 1 is returned. The search method uses Object.equals to test whether an object in
the stack is the same as the one it is searching for.

These methods are trivial uses of the Vector methods, so using an ArrayList to implement a Stack
would be simple: using add to implement push, and so on. There is no analogue to Stack in the
collections.

Exercise 21.7: Implement a stack using ArrayList. Should your stack class be a subclass of ArrayList
or use an ArrayList internally, providing different stack-specific methods?

21.15.4. Dictionary

The Dictionary<K,V> abstract class is essentially an interface. It is analogous to the Map interface but
uses the terms key and element instead of key and value. With two exceptions, each method in Dictionary
has the same name as its analogous method in Map: get, put, remove, size, and isEmpty. The two
exceptions are keys and elements. In Map, you get a Set of keys or values that you can iterate over or
otherwise manipulate. In Dictionary, you can only get an Enumeration (iterator) for the keys and
elements, using the keys and elements methods, respectively. The legacy collections did not contain a
Set type, and so Dictionary could not be expressed in those terms.

501

501

21.15.5. Hashtable

The Hashtable<K,V> class is similar to the HashMap class, but implements the methods of
Dictionary as well as (more recently) implementing the Map interface. All methods of Hashtable are
synchronized, unlike HashMap. Beyond the methods inherited from Dictionary and Map, Hashtable
adds the following methods and constructors:

public Hashtable()

Analogous to HashMap().

public Hashtable(int initialCapacity)

Analogous to HashMap(initalCapacity).

public Hashtable(int initialCapacity, float loadFactor)

Analogous to HashMap(initialCapacity,loadFactor) .

public Hashtable(Map<? extends K,? extends V> t)

Analogous to HashMap(map).

public boolean contains(Object elem)

Analogous to containsValue(elem).

21.16. Properties

A Properties object is used to store string keys and associated string elements. This kind of hashtable
often has a default Properties object in which to look for properties that are not specified in the table
itself. The Properties class extends Hashtable<Object,Object>. Standard Hashtable methods
are used for almost all manipulation of a Properties object, but to get and set properties, you can use
string-based methods. In addition to inherited methods, the following methods and constructors are provided:

public Properties()

Creates an empty property map.

public Properties(Properties defaults)

Creates an empty property map with the specified default Properties
object. If a property lookup fails, the default Properties object is queried.
The default Properties object can have its own default Properties
object, and so on. The chain of default objects can be arbitrarily deep.

public String getProperty(String key)

Gets the property element for key. If the key is not found in this object, the
default Properties object (if any) is searched. Returns null if the
property is not found.

502

502

public String getProperty(String key, String defaultElement)

Gets the property element for key. If the key is not found in this object, the
default Properties object (if any) is searched. Returns
defaultElement if the property is not found.

public Object setProperty(String key, String value)

Adds the property key to the map with the given value. This only affects
the Properties object on which it is invokedthe default Properties
object (if any) is unaffected. Returns the previous value that was mapped to
this key, or null if there was none.

public void store(OutputStream out, String header) throws
IOException

Saves properties to an OutputStream. This only works if this
Properties object contains only string keys and values (as the
specification says it must); otherwise you get a ClassCastException. If
not null, the header string is written to the output stream as a single-line
comment. Do not use a multiline header string, or else the saved properties
will not be loadable. Only properties in this object are saved to the file; the
default Properties object (if any) is not saved.

public void load(InputStream in) throws IOException

Loads properties from an InputStream. The property list is presumed to
have been created previously by store. This method puts values into this
Properties object; it does not set values in the default Properties
object.

public Enumeration<?> propertyNames()

Enumerates the keys, including those of any default Properties object.
This method provides a snapshot, and hence can be expensive. The inherited
keys method, by contrast, returns only those properties defined in this object
itself.

public void list(PrintWriter out)

Lists (prints) properties on the given PrintWriter. Useful for debugging.

public void list(PrintStream out)

Lists (prints) properties on the given PrintStream. Also useful for
debugging.

The default Properties object cannot be changed after the object is created. To change the default
Properties object, you can subclass the Properties class and modify the protected field named
defaults that contains the default Properties object.

Science is facts; just as houses are made of stones, so is science made of facts; but a pile of
stones is not a house and a collection of facts is not necessarily science.

503

503

Henri Poincaré

Chapter 22. Miscellaneous Utilities

The best way to make a fire with two sticks is to make sure one of them is a match.

Will Rogers

You will find several standard utility interfaces and classes in the java.util package. You have seen the
collection classes already in Chapter 21. This chapter covers the remainder of the classes except those used for
localization, which are in Chapter 24. The java.util classes covered in this chapter are

Formatter A class for producing formatted text.•
BitSet A dynamically sized bit vector.•
Observer/Observable An interface/class pair that enables an object to be Observable by
having one or more Observer objects that are notified when something interesting happens in the
Observable object.

•

Random A class to generate sequences of pseudorandom numbers.•
Scanner A class for scanning text and parsing it into values of primitive types or strings, based on
regular expression patterns.

•

StringTokenizer A class that splits a string into tokens based on delimiters (by default,
whitespace).

•

Timer/TimerTask A way to schedule tasks to be run in the future.•
UUID A class that represents a universally unique identifier (UUID).•

Finally, we look at two other useful classes, housed in the java.lang package:

Math A class for performing basic mathematical operations, such as trigonometric functions,
exponentiation, logarithms, and so on.

•

StrictMath Defines the same methods as Math but guarantees the use of specific algorithms that
ensure the same results on every virtual machine.

•

22.1. Formatter

The Formatter class allows you to control the way in which primitive values and objects are represented as
text. The common way to represent objects or values as text is to convert the object or value to a string, using
either the toString method of the object or the toString method of the appropriate wrapper class. This
is often done implicitly, either through use of string concatenation or by invoking a particular overload of the
PrintStream or PrintWriterprint methods. This is easy and convenient, but it doesn't give you any
control over the exact form of the string. For example, if you invoke

System.out.println("The value of Math.PI is " + Math.PI);

the output is

The value of Math.PI is 3.141592653589793

504

504

This is correct and informative, but it might provide more detail than the reader really needs to see, or more
than you have room to show. Using a formatter you can control the format of the converted text, such as
restricting the value to only three decimal places, or padding the converted string with spaces so that it
occupies a minimum width regardless of the actual value being converted. All of these operations are possible
starting from the result of toString, but it is much easier to have a formatter do it for you.

The primary method of a Formatter object is the format method. In its simplest form it takes a format
string followed by a sequence of arguments, which are the objects and values you want to format. For
convenience the PrintStream and PrintWriter classes provide a printf method (for "print
formatted") that takes the same arguments as format and passes them through to an associated Formatter
instance. We use the System.out.printf method to demonstrate how format strings are used.

The format string contains normal text together with format specifiers that tell the formatter how you want the
following values to be formatted. For example, you can print the value of Math.PI to three decimal places
using

System.out.printf("The value of Math.PI is %.3f %n", Math.PI);

which prints

The value of Math.PI is 3.142

A format specifier starts with a % character and ends with a character that indicates the type of conversion to
perform. In the example above, the f conversion means that the argument is expected to be a floating-point
value and that it should be formatted in the normal decimal format. In contrast, an e conversion is a
floating-point conversion that produces output in scientific notation (such as 3.142e+00). Other
conversions include 'd for integers in decimal format, x for integers in hexadecimal, and s for strings or
general object conversions. Conversion indicators that can produce non-digit text are defined in both a
lowercase and uppercase form, such as e and E, where the uppercase form indicates that all text in the output
will be converted to uppercase (as if the resulting String had toUpperCase invoked on it).

In addition to the conversion indicator, a format specifier can contain other values that control the layout of
the converted value. In the example above the ".3" is a precision indicator, which for a floating-point
decimal conversion indicates how many decimal places should appear in the result, with the value rounded up
or down as appropriate. You can also control the width of the output text, ensuring that different formatted
elements line up correctly (such as for printing data in a tabular form) regardless of the actual value being
formatted. There are also flags that can be specified to control things like the justification (left or right) and
the padding character to use to maintain the minimum width. The exact meaning of precision, width, and flags
depends on the conversion being applied.

There are two special conversions that we quickly mention. The first is the % conversion used to output the %
character. Because the % character marks the start of a format specifier, you need a way to include a %
character that should actually appear in the output. The format specifier %% will do just that (just as the escape
character \\ is used to produce the single character \). You can specify a width with this conversion to pad
the output with spaces: on the left if no flags are given, and on the right if the flag is given to request
left-justification.

The second special conversion is the line separator conversion n. A format specifier of %n (as used in the
example) outputs the platform specific line separator. The line separator string is defined by the system
property line.separator and is not necessarily a single newline character (\n)see "System Properties"
on page 663. Unlike println that outputs the line separator for you, printf and format require that you

505

505

remember to do this yourself. No width, precision, or flag values can be used with the line separator
conversion.

The following sections look at the format specifiers for numeric, character, and general conversions. The
formatting conversions for dates and times are discussed in "Using Formatter with Dates and Times" on page
706. The Formatter class also supports formatting for instances of the java.math.BigInteger and
java.math.BigDecimal classes, but those are not discussed hereconsult the Formatter class
documentation for information concerning those classes.

22.1.1. Format Specifiers

The general form of a format specifier for general, character, or numeric conversions is

%[argument_index][flags][width][.precision]conversion

where everything except the % and the conversion indicator are optional.

If there is an error in the format string, a mismatch between the conversion and the other formatting requests,
or a mismatch between the conversion and the argument type supplied, then an
IllegalFormatException of some form will be thrown. These exceptions are described later.

The argument index is an optional indicator of which argument this format specifier should be applied to. This
is very useful for referring to the same argument multiple times within the same format string. The argument
index can take two forms: a number indicating which argument it applies to, followed by a $ character; or the
< character meaning "the same argument as the previous format specifier." If the argument index is not
present, then each unmarked format specifier is numbered sequentially, and it is that argument to which the
format specifier is applied. This numbering ignores the presence of any indexed format specifiers. For
example, given

System.out.printf("%3$d %d %2$d %<d %d %n", 1, 2, 3);

the output is

3 1 2 2 2

The first specifier explicitly applies to argument three; the second is the first non-indexed specifier so it
applies to argument one; the third specifier explicitly applies to argument two; the fourth specifier applies to
whatever the third did, so that is again two; the fifth specifier is the second non-indexed specifier so it also
applies to argument two.

If any format specifier indicates an argument that does not exist, then you get a
MissingFormatArgumentException. Examples of this kind of error are using %3$ when there are
only two arguments, or using %< as the first format specifier.

The meaning of flags, width, and precision is similar for the different conversions but the details differ
depending on the exact kind of conversion, as discussed in the following sections.

506

506

When you consider which argument types are expected for each conversion, remember that anything that
applies to a primitive type also applies to its wrapper. For brevity we don't mention the wrapper classes
explicitly.

22.1.2. Integer Conversions

The integer conversions apply to arguments of type byte, short, int, and long. The different
conversions are

d decimal format•
o octal format•
x, X hexadecimal format•

The width value specifies the minimum number of characters to outputincluding additional characters that the
flags may cause to be included. No precision value may be given. The flags applicable to each conversion are
shown in the following table. An entry with a x means the flag is not allowed.

Flag d o x/X Meaning

'-' Left justify (otherwise right justify)

'#' x Include radix: 0 for octal and 0x or 0X for hexadecimal

'+' x x Always include the sign

' ' x x (space) Include a leading space for positive values

'0' Use zero-padding (else spaces)

',' x x Include grouping separators

'(' x x Enclose negative values in parentheses

For example, to print a zero-padded, hexadecimal value with a radix indicator and a minimum width of 10,
you could use

System.out.printf("%0#10x %n", val);

which for val equal to 32 prints

0x00000020

You cannot use + and space together, nor can you use and 0 together. If either of 0 or is given then a width
must be given.

22.1.3. Floating-Point Conversions

The floating-point conversions apply to arguments of type float and double. The different conversions
are

e, Ecomputerized scientific notation (such as 3.142e+00)•

507

507

f, Fdecimal format (such as 3.142)•
g, Ggeneral scientific notation (see below)•
a, Ahexadecimal exponential format (as used for hexadecimal floating-point literalssee page 168)•

In each case a value of NaN or infinity produces the strings "NaN" or "Infinity".

The width value specifies the minimum number of characters to output, with the result being padded if
necessary to fit the requested width. For everything except general scientific conversion, the precision value
specifies the number of digits to output after the decimal point (or hexadecimal point), with the value rounded
as necessary to match that precision. If no precision is given then it defaults to 6, except for the hexadecimal
exponential form where no precision means to use as many places as needed.

A conversion to general scientific notation chooses the output format based on the magnitude of the value and
the precision that is given. In this case precision indicates the number of significant digits (not the number of
fractional digits). If after rounding to the specified precision, the value is smaller than 10-4, or it is greater than
or equal to 10precision, then computerized scientific notation is used; otherwise, decimal format is used. For
example, given

System.out.
 printf("%1$.5g %1$.4g %1$.3g %1$.2g %n", Math.PI * 100);

The output is:

314.16 314.2 314 3.1e+02

You can see the value being rounded according to the number of significant digits requested, and see the
switch to scientific notation when the value exceeds 102.

For the general scientific notation conversion, if the precision is not given it defaults to 6, but a precision of
zero is treated as a precision of 1.

The flags applicable to each conversion are shown in the following table. An entry with x means the flag is
not allowed.

Flag e/E f/F g/G a/A Meaning

'-' Left justify (otherwise right justify)

'#' x Always include the (hexa)decimal point

'+' Always include the sign

' ' (space) Leading space for positive values

'0' Use zero-padding (else spaces)

',' x x Include grouping separators

'(' x Enclose negative values in parentheses

As with the integer conversions, you cannot use + and space together, nor can you use and 0 together. If
either of 0 or is given then a width must be given.

508

508

22.1.4. Character Conversions

The character conversions apply to argument types of byte, short, and char, together with int provided
that the int value represents a valid Unicode code point (otherwise
IllegalFormatCodePointException is thrown).

The conversion indicator for characters is c or C and formats the argument as a Unicode character.

A width value specifies the minimum number of characters to output, with spaces used to pad the output as
necessary. No precision value may be supplied. The only applicable flag is to left-justify the output. If the flag
is given then a width must be given.

22.1.5. General Conversions

There are three general conversions that are unrelated but that are not numeric or character conversions, so we
describe them together. They apply to an argument of any type.

The b and B conversions are boolean conversions. If the argument is null then the output is the string
"false". If the argument is a boolean then the output is either the string "true" or the string "false"
depending on the argument's value, otherwise the output is the string "true".

The h and H conversions are hash code conversions. If the argument is null then the output is the string
"null". Otherwise, the output is the string obtained by passing the object's hashCode result to
Integer.toHexString.

The s and S conversions are string conversions. If the argument is null then the output is the string
"null". Otherwise, if the argument implements the Formattable interface (see next section) then its
formatTo method is invoked to produce a customized output; otherwise, the output is the result of invoking
toString on the argument. The # flag can be passed only to a Formattable argument, and its effect is
determined by the object.

For all the general conversions, the width specifies the minimum number of characters, while the precision
indicates the maximum. Spaces will be used to pad the output to the minimum width if necessary. The
precision is applied first so if it is smaller than the width, the output will be truncated to that maximum size.
The only flag applicable is the flag to left-justify the output. If the flag is given then a width must be given.

22.1.6. Custom Formatting

A class can support custom formatting by implementing the Formattable interface, which defines the
single method formatTo. If an instance of that class is passed as an argument for a string conversion (s or
S) then its formatTo method will be invoked, passing the current formatter as an argument.

public void formatTo(Formatter formatter, int flags, int width,
int precision)

Outputs the representation of the current object by appending the desired text
to the destination of the given formatter, obtained from its out method (see
Section 22.1.8 on page 631). The flags, width, and precision
arguments contain the flags, width, and precision values that were used in the
string conversion format specifier. If no width or precision was given, then 1
is passed. The flags are encoded as a bit mask from the constants of the
FormattableFlags class. Only two flags are supported:

509

509

LEFT_JUSTIFY, which indicates the flag for left-justification, and
ALTERNATE, which indicates the # flag. Each Formattable class is free
to define what ALTERNATE means.

Additionally, the flag value encodes whether the conversion indicator was lowercase or uppercase using the
FormattableFlags.UPPERCASE constant. You can test whether a flag is set by ANDing the flags
value with the desired constant and seeing if the result is non-zero.

By implementing Formattable a class can provide greater flexibility in how it represents itself textually,
compared to the fixed output of the toString method. For example, it can use a long or short form,
depending on the width and precision that were supplied; or it can adapt itself to the locale used by the
formattersee page 632.

22.1.7. Format Exceptions

If any errors occur while processing a format string with a given set of arguments, an exception that is a
subclass of IllegalFormatException will be thrown. The types of exception you can encounter are

DuplicateFormatFlagsException A flag was used more than once.•
FormatFlagsConversionMismatchException A flag was incompatible with the
conversion.

•

IllegalFormatCodePointException An integer value was passed that was not a valid
Unicode codepoint.

•

IllegalFormatConversionException The argument was the wrong type for the conversion.•
IllegalFormatFlagsException The combination of flags was invalid.•
IllegalFormatPrecisionException The precision value was invalid, or the conversion
does not support a precision value.

•

IllegalFormatWidthException The width value was invalid, or the conversion does not
support a width value.

•

MissingFormatArgumentException No argument was supplied in the position expected by a
conversion modifier.

•

MissingFormatWidthException No width was specified when it was required.•
UnknownFormatConversionException A format's conversion indicator was not known.•
UnknownFormatFlagsExceptions An unknown flag was given.•

22.1.8. The Formatter Class

A Formatter object is always associated with some object that is the destination for the formatted text
produced by the formatter. By default the destination is a StringBuilder. The other destination objects
that can be passed to the various constructors are

An arbitrary Appendable object. This is any object to which characters or CharSequence
objects can be appendedsee page 332 for the methods defined by Appendable.

•

A file, specified either as a File object or a string representing the file name•
An OutputStream•

The constructors for the byte-oriented destinations (files and output streams) either work with the platform's
default encoding or take an additional string parameter that represents the character set encoding name to use.
An additional constructor takes a PrintStream as a destination, but only the default platform encoding is
used.

Formatter supports localization (see Chapter 24) and for each type of destination there is an additional

510

510

constructor that takes a Locale object with which the formatter should work. If you do not specify a locale
to the constructor, the default locale is used. The locale being used is returned by the locale method.

The destination of a Formatter object can be obtained from the out method, which returns an
Appendable object.

If writing to the destination object could throw an IOException, then the last IOException to occur (if
any) can be obtained from the ioException method.

Formatter implements Closeable and Flushable. If close or flush are invoked, then the
destination is also closed or flushed if it too implements Closeable or Flushable. Once a formatter has
been closed the only method that can be invoked is ioException; all others throw
FormatterClosedException.

The primary method of Formatter is, of course, format:

public Formatter format(String format, Object... args)

Formats the given arguments according to the given format string and writes
them through to the destination object. The current Formatter object is
returned, allowing format invocations to be chained together.

public Formatter format(Locale loc, String format, Object...
args)

Like the above format method, but uses the specified locale instead of the
one from the current Formatter.

The Formatter class's support of localized output is restricted to a subset of the numeric conversions (and
the date/time conversions discussed in Chapter 24). The localized numeric conversions are the integer decimal
conversion (d) and the three main floating-point conversions (e, f, g and their uppercase counterparts). For
these conversions, digit characters are taken from the active locale, and the correct sign characters, decimal
point character, and grouping character (for the , flag) are also taken from the locale. Similarly, if
zero-padding is requested the zero character is that defined by the locale. The NumberFormat class
described in Chapter 24, on page 710, provides more extensive formatting capabilities for localized numbers.

Exercise 22.1: Write a method that takes an array of floating-point values and a number indicating how many
columns to use, and prints the array contents. Try to ensure that the entries in each column line up neatly.
Assume a line is 80 characters wide.

22.2. BitSet

The BitSet class provides a way to create a bit vector that grows dynamically. In effect, a bit set is a vector
of TRue or false bits indexed from 0 to Integer.MAX_VALUE, all of them initially false. These bits
can be individually set, cleared, or retrieved. BitSet uses only sufficient storage to hold the highest index bit
that has been setany bits beyond that are deemed to be false.

Methods that take indices into the set throw IndexOutOfBoundsException if a supplied index is
negative or, where relevant, if the from index is greater than the to index.

There are two constructors for BitSet:

511

511

public BitSet(int size)

Creates a new bit set with enough initial storage to explicitly represent bits
indexed from 0 to size-1. All bits are initially false.

public BitSet()

Creates a new bit set with a default amount of initial storage. All bits are
initially false.

There are four methods for dealing with individual bits.

public void set(int index)

Sets the bit specified by index to TRue.

public void clear(int index)

Sets the bit specified by index to false.

public void flip(int index)

Sets the bit specified by index to the complement of its current valuetrue
becomes false, and false becomes true.

public boolean get(int index)

Returns the value of the bit specified by index.

A second overloaded form of each of the above methods works on a range of bits. These overloads take a
from index and a to index and either sets, clears, flips, or returns all bits in the range, starting with from
and up to but not including to. For get, the values are returned as a new BitSet. A third overload of
clear takes no arguments and clears the entire set to false. A second variant of the set method takes
both the index (or range) and a boolean value to apply to the bits. This makes it easier for you to change bits
arbitrarily without having to work out whether you need to invoke set or clear.

You can find the index of the next clear or set bit, that is at or after a given index, using the nextClearBit
and nextSetBit methods. If there is no next set bit from that index then 1 is returned.[1]

[1] The only time there can be no next clear bit is if the bit at index Integer.MAX_VALUE
has been setsomething that is extremely unlikely in practice because the bit set could use a
huge amount of memory

Other methods modify the current bit set by applying bitwise logical operations using the bits from another bit
set:

public void and(BitSet other)

Logically ANDs this bit set with other and changes the value of this set to
the result. The resulting value of a bit in this bit set is TRue only if it was
originally true and the corresponding bit in other is also true.

public void andNot(BitSet other)

512

512

Clears all bits in this bit set that are set in other. The resulting value of a bit
in this bit set is true only if it was originally true and the corresponding
bit in other is false.

public void or(BitSet other)

Logically ORs this bit set with other and changes the value of this set to the
result. The resulting value of a bit in this bit set is TRue only if it was
originally true or the corresponding bit in other is TRue.

public void xor(BitSet other)

Logically XORs this bit set with other and changes the value of this set to
the result. The resulting value of a bit in this bit set is true only if it has a
value different from the corresponding bit in other.

You can also ask whether the current bit set has any true bits in common with a second bit set by using the
intersects method.

The remaining methods are

public int cardinality()

Returns the number of bits in this bit set that are true.

public int size()

Returns the number of bits actually stored in this BitSet. Setting a bit index
greater than or equal to this value may increase the storage used by the set.

public int length()

Returns the index of the highest set bit in this BitSet plus one.

public boolean isEmpty()

Returns true if this bit set has no TRue bits.

public int hashCode()

Returns a hash code for this set based on the values of its bits. Do not change
values of bits while a BitSet is in a hash map, or the set will be misplaced.

public boolean equals(Object other)

Returns true if all the bits in other are the same as those in this set.

Here is a class that uses a BitSet to mark which characters occur in a string. Each position in the bit set
represents the numerical value of a character: The 0th position represents the null character (\u0000), the
97th bit represents the character a, and so on. The bit set can be printed to show the characters that it found:

public class WhichChars {
 private BitSet used = new BitSet();

 public WhichChars(String str) {
 for (int i = 0; i < str.length(); i++)

513

513

 used.set(str.charAt(i)); // set bit for char
 }

 public String toString() {
 String desc = "[";
 for (int i = used.nextSetBit(0);
 i >= 0;
 i = used.nextSetBit(i+1)) {
 desc += (char) i;
 }
 return desc + "]";
 }
}

If we pass WhichChars the string "Testing123" we get back

[123Teginst]

which shows each of the characters (including the spaces) that were used in the input string, and which,
incidentally, have now been sorted into numerical order. Notice how easy it is to iterate through all the set bits
in a bit set.

Exercise 22.2: The WhichChars class has a problem marking characters near the top of the Unicode range
because the high character values will leave many unused bits in the lower ranges. Use a HashSet to solve
this problem by storing Character objects for each character seen.

Exercise 22.3: Now use a HashMap to store a BitSet object for each different top byte (high 8 bits)
encountered in the input string, with each BitSet storing the low bytes that have been seen with the
particular high byte.

22.3. Observer/Observable

The Observer/Observable types provide a protocol for an arbitrary number of Observer objects to
watch for changes and events in any number of Observable objects. An Observable object subclasses
the Observable class, which provides methods to maintain a list of Observer objects that want to know
about changes in the Observable object. All objects in the "interested" list must implement the Observer
interface. When an Observable object experiences a noteworthy change or an event that Observer
objects may care about, the Observable object invokes its notifyObservers method, which invokes
each Observer object's update method.

The Observer interface consists of a single method:

public void update(Observable obj, Object arg)

This method is invoked when the Observable object obj has a change or
an event to report. The arg parameter is a way to pass an arbitrary object to
describe the change or event to the observer.

The Observer/Observable mechanism is designed to be general. Each Observable class is left to
define the circumstances under which an Observer object's update method will be invoked. The
Observable object maintains a "changed" flag which subclass methods use to indicate when something of
interest has occurred.

514

514

protected void setChanged()

Marks this object as having been changedhasChanged will now return
truebut does not notify observers.

protected void clearChanged()

Indicates that this object is no longer changed or has notified all observers of
the last changehasChanged will now return false.

public boolean hasChanged()

Returns the current value of the "changed" flag.

When a change occurs, the Observable object should invoke its setChanged method and then notify its
observers with one of the following methods:

public void notifyObservers(Object arg)

Notifies all Observer objects in the list that something has happened, and
then clears the "changed" flag. For each observer in the list, its update
method is invoked with this Observable object as the first argument and
arg as the second.

public void notifyObservers()

Equivalent to notifyObservers(null).

The following Observable methods maintain the list of Observer objects:

public void addObserver(Observer o)

Adds the observer o to the observer list if it's not already there.

public void deleteObserver(Observer o)

Deletes the observer o from the observer list.

public void deleteObservers()

Deletes all Observer objects from the observer list.

public int countObservers()

Returns the number of observers in the observer list.

The methods of Observable use synchronization to ensure consistency when concurrent access to the
object occurs. For example, one thread can be trying to add an observer while another is trying to remove one
and a third is effecting a change on the Observable object. While synchronization is necessary for
maintaining the observer list and making changes to the "changed" flag, no synchronization lock should be
held when the update method of the observers is invoked. Otherwise it would be very easy to create
deadlocks. The default implementation of notifyObservers takes a synchronized snapshot of the current
observer list before invoking update. This means that an observer that is removed while
notifyObservers is still in progress will still be notified of the last change. Conversely, an observer that

515

515

is added while notifyObservers is still in progress will not be notified of the current change. If the
Observable object allows concurrent invocations of methods that generate notifications, it is possible for
update to be called concurrently on each Observer object. Consequently, Observer objects must use
appropriate synchronization within update to ensure proper operation.

The default implementation of notifyObservers uses the invoking thread to invoke update on each
observer. The order in which observers are notified is not specified. A subclass could specialize
notifyObservers to use a different threading model, and/or to provide ordering guarantees.

The following example illustrates how Observer/Observable might be used to monitor users of a
system. First, we define a Users class that is Observable:

import java.util.*;

public class Users extends Observable {
 private Map<String, UserState> loggedIn =
 new HashMap<String, UserState>();

 public void login(String name, String password)
 throws BadUserException
 {
 if (!passwordValid(name, password))
 throw new BadUserException(name);

 UserState state = new UserState(name);
 loggedIn.put(name, state);
 setChanged();
 notifyObservers(state);
 }

 public void logout(UserState state) {
 loggedIn.remove(state.name());
 setChanged();
 notifyObservers(state);
 }

 // ...

}

A Users object stores a map of users who are logged in and maintains UserState objects for each login.
When someone logs in or out, all Observer objects will be passed that user's UserState object. The
notifyObservers method sends messages only if the state changes, so you must invoke setChanged
on Users; otherwise, notifyObservers would do nothing.

Here is how an Observer that maintains a constant display of logged-in users might implement update to
watch a Users object:

import java.util.*;

public class Eye implements Observer {
 Users watching;

 public Eye(Users users) {
 watching = users;
 watching.addObserver(this);
 }
 public void update(Observable users, Object whichState)
 {
 if (users != watching)

516

516

 throw new IllegalArgumentException();

 UserState state = (UserState) whichState;
 if (watching.loggedIn(state)) // user logged in
 addUser(state); // add to my list
 else
 removeUser(state); // remove from list
 }
 // ...
}

Each Eye object watches a particular Users object. When a user logs in or out, Eye is notified because it
invoked the Users object's addObserver method with itself as the interested object. When update is
invoked, it checks the correctness of its parameters and then modifies its display depending on whether the
user in question has logged in or out.

The check for what happened with the UserState object is simple here. You could avoid it by passing an
object describing what happened and to whom instead of passing the UserState object itself. Such a design
makes it easier to add new actions without breaking existing code.

The Observer/Observable mechanism is a looser, more flexible analogue to the wait/notify
mechanism for threads described in "wait, notifyAll, and notify" on page 354. The thread mechanism ensures
that synchronized access protects you from undesired concurrency. The observation mechanism enables any
relationship to be built between two participants, whatever the threading model. Both patterns have producers
of information (Observable and the invoker of notify) and consumers of that information (Observer
and the invoker of wait), but each one fills a different need. Use wait/notify when you design a
thread-based mechanism, and use Observer/Observable when you need something more general.

Exercise 22.4: Provide an implementation of the Attributed interface that uses
Observer/Observable to notify observers of changes.

22.4. Random

The Random class creates objects that manage independent sequences of pseudorandom numbers. If you
don't care what the sequence is and want it as a sequence of double values, use the method
java.lang.Math.random, which creates a single Random object the first time it is invoked and returns
pseudorandom numbers from that objectsee Section 22.9 on page 657. You can gain more control over the
sequence (for example, the ability to set the seed) by creating a Random object and getting values from it.

public Random()

Creates a new random number generator. Its seed will be initialized to a value
based on the current time.

public Random(long seed)

Creates a new random number generator using the specified seed. Two
Random objects created with the same initial seed will return the same
sequence of pseudorandom numbers.

public void setSeed(long seed)

517

517

Sets the seed of the random number generator to seed. This method can be
invoked at any time and resets the sequence to start with the given seed.

public boolean nextBoolean()

Returns a pseudorandom uniformly distributed boolean value.

public int nextInt()

Returns a pseudorandom uniformly distributed int value between the two
values Integer.MIN_VALUE and Integer.MAX_VALUE, inclusive.

public int nextInt(int ceiling)

Like nextInt(), but returns a value that is at least zero and is less than the
value ceiling. Use this instead of using nextInt() and % to get a range.
If ceiling is negative, an IllegalArgumentException is thrown.

public long nextLong()

Returns a pseudorandom uniformly distributed long value between
Long.MIN_VALUE and Long.MAX_VALUE, inclusive.

public void nextBytes(byte[] buf)

Fills the array buf with random bytes.

public float nextFloat()

Returns a pseudorandom uniformly distributed float value between 0.0f
(inclusive) and 1.0f (exclusive).

public double nextdouble()

Returns a pseudorandom uniformly distributed double value between 0.0
(inclusive) and 1.0 (exclusive).

public double nextGaussian()

Returns a pseudorandom Gaussian-distributed double value with mean of
0.0 and standard deviation of 1.0.

All the nextType methods use the protected method next. The next method takes an int that represents
the number of random bits to produce (between 1 and 32) and returns an int with that many bits. These
random bits are then converted to the requested type. For example, nextInt simply returns next(32),
while nextBoolean returns TRue if next(1) is not zero, else it returns false.

You can safely use Random from multiple threads.

The Random class specifies the algorithms to be used to generate the pseudo-random numbers but permits
different algorithms to be used provided the general contract of each method is adhered to. The basic
algorithm (a linear congruential generator) is defined in the next method and is used for all other methods
except nextGaussian. You can create your own random number generator by overriding the next
method to provide a different generating algorithm.

518

518

Exercise 22.5: Given a certain number of six-sided dice, you can calculate the theoretical probability of each
possible total. For example, with two six-sided dice, the probability of a total of seven is one in six. Write a
program that compares the theoretical distribution of sums for a given number of six-sided dice with the
actual results over a large number of "rolls" using Random to generate numbers between one and six. Does it
matter which of the number-generating methods you use?

Exercise 22.6: Write a program that tests nextGaussian, displaying the results of a large number of runs
as a graph (a bar chart of * characters will do).

22.5. Scanner

The Scanner class will help you read files of formatted data, such as those you might generate from a
method that used printf. It uses regular expressions to locate the desired data, and parsers to convert them
into known types. For example, it knows how to use localized number parsing to read in values that humans
might type (such as "20,352").

Many of the methods of Scanner can take a pattern to indicate how the scanner should match input. These
methods all have two overloaded forms: One takes the pattern as a String and the other takes it as a
java.util.regex.Pattern.When we say that a method takes a pattern, you should infer from this that
there are two variants of the method as just described. Supplying a pattern as a string may require that it be
compiled each time (using Pattern.compile), so if a pattern is to be reused it may be more efficient to
use a Pattern object directly. See Section 13.3 on page 321 for a refresher on regular expression patterns.

There are two primary approaches to using Scanner, although they can be reasonably intermixed as desired,
with care. The first is to use it to read a stream of values. The second is line-oriented.

22.5.1. Stream of Values

When reading input as a stream of values, you simply ask Scanner to return the next value in the stream.
The scanner determines the next value by first skipping over any delimiter characters in the input (which by
default matches whitespace) and examining the input up to the next delimiter. For example, the following
code is a rewrite of the sumStream example from page 533:

static double sumStream(Readable source) throws IOException {
 Scanner in = new Scanner(source);
 double result = 0.0;
 while (in.hasNext()) {
 if (in.hasNextDouble())
 result += in.nextDouble();
 else
 in.next();
 }
 IOException ex = in.ioException();
 if (ex != null)
 throw ex;

 return result;
}

You can iterate through the input one token at a time, asking if the next token is a string, int, or double
value, and so forth, and storing it into a variable of the appropriate type.[2] In contrast to
StreamTokenizer, Scanner can produce primitive values other than just double, and it recognizes
numbers in a range of formats, not just the common decimal format. (Essentially, how ever Formatter see

519

519

page 624might write out a number as a string, Scanner can read it back as a number.)

[2] The Scanner class also supports scanning of values into java.math.BigInteger
and java.math.BigDecimal objects.

A scanner needs a source of characters to read from, which in the most general case is represented by an
object that implements the java.lang.Readable interfacethis interface defines a single method, read,
that takes a java.nio.CharBuffer object into which the characters read from the Readable should be
stored. The sumStream method accepts a Readable parameter and passes it to the constructor for
Scanner to indicate it should be used as the input source for that scanner. The java.io.Reader class
implements Readable, so any of the input character streams can be used as a source for a Scanner object.

The loop continues as long as hasNext indicates that the scanner has another token available. Knowing that
there is a token doesn't tell you what kind of token it may be, so we use the hasNextDouble method to ask
if the token is a double value. If so, the value is read with nextdouble and added to the sum. Otherwise,
the value is read (as a String) with next and ignored. The hasNext and next methods should be
familiar to youthey are two of the methods of Iterator. And indeed Scanner implements
Iterator<String> so you can easily iterate through the tokens in an input source.[3] The remove
method of Scanner tHRows UnSupportedOperationException.

[3] Note that Scanner is an Iterator not an Iterable, so it can not be used with the
enhanced for loop. This limitation may be removed in the future.

The hasNext method returns TRue if the scanner has another token to return from next. For each primitive
type except char, hasNextType asks if the next token is of that type, and if so, nextType will return it.
For the integer types there are overloads of hasNextType and nextType that take an int radix for the
number. For example, hasNextInt(8) will return TRue if the next token is a valid octal representation of
an int value. The default radix of the scanner (initially 10) can be changed with the useRadix method, and
retrieved from the radix method.

The hasNext method also has two additional overloads that take a pattern and will return true only if the
next token matches the given pattern. Similarly, next also has two overloads that take a pattern describing
the token to return.

All the methods that get the next token operate as follows: Delimiters from the current position to the first
non-delimiter are ignored; then the next delimiter is found; if the input between the delimiters matches the
pattern then a token has been found and the current position is advanced to the first character after the token.
If there is no next token then NoSuchElementException is thrown. If the method requires a specific
type of token or a token that matches a given radix or pattern, and the next token does not meet those criteria,
then InputMismatchException is thrown. If an exception is thrown then the position of the scanner is
unchanged.

Input sources for scanners can come from several places. There is a constructor that takes a Readable
character source, one that takes a String, and several that take byte sources: File, InputStream or
java.nio.ReadableByteBuffer. By default these byte sources will be converted to characters using
the platform's default encoding, or you can use a form of the constructor that takes the character set name to
use as the encoding.

When the source for a scanner is a file or other input stream, it is possible that when the scanner tries to read
the source it will encounter an IOException. The scanner methods themselves do not declare or throw the
IOException. The responsibility for dealing with these potential exceptions falls to you. If the scanner
encounters an IOException it considers the end of the input source to have been reachedso hasNext will
return false, and any attempt to take the next token will cause NoSuchElementException to be thrown.
To determine whether tokenizing of the source ended because of a true end of input or an exception, you can

520

520

use the ioException method. It returns the last IOException that was thrown by the underlying source,
or null if there have been no exceptions. So, as in the example, when the iteration is complete you should
check to see that it didn't complete prematurely due to an exception.

A scanner identifies tokens by looking for a delimiter pattern in the input stream of characters. By default the
delimiter pattern matches any whitespace, as determined by the Character.isWhitespace method.
You can set the delimiter to a different pattern with the useDelimiter method. The current delimiter
pattern is returned as a Pattern object from the delimiter method. For example, here is a simple
method that reads values from a source that is in comma-separated-values (CSV) format and returns them in a
List:

public static List<String> readCSV(Readable source)
 throws IOException {
 Scanner in = new Scanner(source);
 in.useDelimiter(",|" +LINE_SEPARATOR_PATTERN);
 List<String> vals = new ArrayList<String>();

 while (in.hasNext())
 vals.add(in.next());

 IOException ex = in.ioException();
 if (ex!= null)
 throw ex;

 return vals;
}

Here the delimiter pattern is either a single comma or a line separator, since the values themselves can contain
any other characters, including whitespace. The definition of a line separator is documented in the Pattern
class. To make it easier to read the example, we defined a constant to represent that pattern:

static final String LINE_SEPARATOR_PATTERN =
 "\r\n|[\n\r\u2028\u2029\u0085]";

The Scanner class also provides a close method. When you invoke close on a scanner, the input source
will be closed if it is Closeable. Once a scanner has been closed, attempts to invoke any of the scanning
operations will result in an IllegalStateException. Take care when closing a scanner: The input
source may not be yours to close, such as an InputStreamReader for System.in. As a general rule,
don't close a scanner unless you opened its input source.

22.5.2. Scanning Lines

In line mode, the scanner can process a line at a time using the regular expression pattern that you supply. If
the line matches the pattern then a java.util.regex.MatchResult object can be obtained from the
match method, from which you can extract the groups the pattern defined. Line matching is done with the
findInLine method.

public String findInLine(Pattern pattern)

Attempts to find the given pattern before the next line separator is
encountered. The delimiters of the scanner are ignored during this search. If
the pattern is found then the scanner advances to the next position after the
matching input, and the matching input is returned. If the pattern is not found

521

521

then null is returned and the position of the scanner is unchanged.

Note that if the pattern does not match the entire line then the scanner will be positioned to continue reading
the remainder of the current line; and if the pattern starts in the middle of the line, then all preceding input is
skipped. As usual a second form of this method takes a String representing the pattern.

You can use a scanner's hasNextLine and nextLine methods to tokenize input a complete line at a
time. The hasNextLine method returns true if there is another line of input in this scanner. This means
that between the current position of the scanner and the end of the input there is either a line separator or one
or more other characters. The nextLine method advances the scanner to the start of the next line and returns
all the input that was skipped, excluding the line separator itself.

Consider the example of input that is in comma-separated-value format. This format is often used to export
values from a table, where each line in the output represents a row of the table and each value before a comma
(or a newline) represents the contents of a cell. With a fixed number of cells per row we can process each line
of input as a single entity:

static final int CELLS = 4;

public static List<String[]> readCSVTable(Readable source)
 throws IOException {
 Scanner in = new Scanner(source);
 List<String[]> vals = new ArrayList<String[]>();
 String exp = "^(.*),(.*),(.*),(.*)";
 Pattern pat = Pattern.compile(exp, Pattern.MULTILINE);
 while (in.hasNextLine()) {
 String line = in.findInLine(pat);
 if (line != null) {
 String[] cells = new String[CELLS];
 MatchResult match = in.match();
 for (int i = 0; i < CELLS; i++)
 cells[i] = match.group(i+1);
 vals.add(cells);
 in.nextLine(); // skip newline
 }

 else {
 throw new IOException("input format error");
 }
 }

 IOException ex = in.ioException();
 if (ex!= null)
 throw ex;

 return vals;
}

Each line of the input is expected to have four values separated by commas (naturally you'd want to adapt the
pattern to account for different numbers of cells in different calls to the method). If the line matches what is
expected then each value is extracted from the match group. When a match is found, the newline is left in the
input so we use nextLine to skip over it. As we don't know how many lines there will be, we use a List to
accumulate the rows.

The use of a pattern in multiline mode is common when scanning line-oriented input. The pattern we used has
to match from the start of a line, so we need to include the start-of-line (^) boundary marker, and that only
matches actual lines when the pattern is in multiline mode.

522

522

The findWithinHorizon methods operate similarly to findInLine except that they take an additional
int parameter that specifies the maximum number of characters to look-ahead through. This "horizon" value
is treated as a transparent, non-anchoring bound (see the Matcher class for detailsSection 13.3.4 on page
329). A horizon of zero means there is no look-ahead limit.

The skip method can be used to skip over the input that matches a given pattern. As with findInLine and
findWithinHorizon, it ignores the scanner's delimiters when looking for the pattern. The skipped input
is not returned, rather skip returns the scanner itself so that invocations can be chained together.

Exercise 22.7: Rewrite readCSVTable so that the number of cells of data expected is passed as an
argument.

Exercise 22.8: As it stands, readCSVTable is both too strict and too lenient on the input format it expects.
It is too strict because an empty line at the end of the input will cause the IOException to be thrown. It is
too lenient because a line of input with more than three commas will not cause an exception. Rectify both of
these problems.

Exercise 22.9: Referring back to the discussion of efficiency of regular expressions on page 329, devise at
least four patterns that will parse a line of comma-separated-values. (Hint: In addition to the suggestion on
page 329 also consider the use of greedy versus non-greedy quantifiers.) Write a benchmark program that
compares the efficiency of each pattern, and be sure that you test with both short strings between commas and
very long strings.

22.5.3. Using Scanner

Scanner and StreamTokenizer have some overlap in functionality, but they have quite different
operational models. Scanner is based on regular expressions and so can match tokens based on whatever
regular expressions you devise. However, some seemingly simple tasks can be difficult to express in terms of
regular expression patterns. On the other hand, StreamTokenizer basically processes input a character at
a time and uses the defined character classes to identify words, numbers, whitespace, and ordinary characters.
You can control the character classes to some extent, but you don't have as much flexibility as with regular
expressions. So some things easily expressed with one class are difficult, or at best awkward, to express with
the other. For example, the built-in ability to handle comment lines is a boon for StringTokenizer, while
using a scanner on commented text requires explicit, unobvious handling. For example:

Scanner in = new Scanner(source);
Pattern COMMENT = Pattern.compile("#.*");
String comment;
// ...
while (in.hasNext()) {
 if (in.hasNext(COMMENT)) {
 comment = in.nextLine();
 }
 else {
 // process other tokens
 }
}

This mostly works. The intent is that if we find that the next token matches a comment, then we skip the rest
of the line by using nextLine. Note that you can't, for example, use a pattern of "#.*$" to try to match
from the comment character to the end of the line, unless you are guaranteed there are no delimiters in the
comment itself.

523

523

The above fails to work because it can act like there were two comments when there was only one. Consider a
non-comment line followed by a comment line. The input stream might look something like this:

token\n# This is a comment line\ntoken2

After the last token on the non-comment line is processed, the current input position is just before the line
separator that delimited the end of that token. When hasNext is invoked it looks past the line separator and
sees that there is something there, so it returns true, leaving the current input position where it was. When
hasNext(COMMENT) is invoked, it too ignores the line separator delimiter and sees a pattern on the next
line that matches the comment, so it also returns true, leaving the current input position where it was. When
nextLine is invoked its job is to advance the current position to the beginning of the next line and return the
input that was skipped. The current position is immediately before the line separator, so moving it after the
line separator is a very short move and, other than the line separator, no input is skipped. Consequently,
nextLine returns an empty string. In our example this is not a problem because we loop around again and
match the comment a second time, and this time we remove it properly. However, if your code assumed that
the comment itself was gone after nextLine was invoked, then that assumption would be incorrect. We can
fix this problem like so:

Scanner in = new Scanner(source);
Pattern COMMENT = Pattern.compile("#.*");
String comment;
// ...
while (in.hasNext()) {
 if (in.hasNext(COMMENT)) {
 comment = in.findWithinHorizon(COMMENT, 0);
 in.nextLine();
 }
 else {
 // process other tokens
 }
}

Now when hasNext(COMMENT) tells us that there is a comment ahead, we use
findWithinHorizon(COMMENT,0) to skip the line separator, find the actual comment, and return it.
We don't need to set any horizon because we know from hasNext that the comment is there. After
findWithinHorizon returns the comment, the current position is just before the line separator at the end
of the comment line, so we use nextLine to skip over that to the next line.

Another way to get the scanner to skip comments would be to make the comment pattern part of the delimiter
pattern. But that is not quite as straightforward as it might sound. We leave that approach as an exercise for
the reader.

So skipping comments was trivial with StreamTokenizer and quite involved with Scanner. In contrast,
it is quite simple to change the scanner's delimiter to parse a comma-separated-variable file, but to do the
same with StringTokenizer requires careful manipulation of the character classes to make the comma a
whitespace character and to stop space from being considered a whitespace character. Although relatively
simple to state, the API makes it awkward to do and it is conceptually bizarre.

StreamTokenizer is very good for working with free-format files such as that used in the attribute
reading example on page 533. It read input that consisted of names and values, seperated by whitespace, with
an optional = character in between, and stored them into an Attr object. The names were simply words, and
values could be words or numbers, while the = character was an ordinary character. Pairing of names and
values was trivially done, as was detecting a misplaced = character. In contrast, Scanner has a lot of trouble

524

524

dealing with such a flexible format. If you add the = character to the delimiter it isn't too hard to simply treat
every two words as a name and value pair. However, because delimiters are ignored, you can't detect
misplaced = characters. If you don't make the = character a delimiter, then you have problems when there is
no whitespace between the = and the name or value.

If you wanted to store Attr objects and read them back with a Scanner, you could have more flexibility
with the values than if you used StreamTokenizer, but the file would be more restricted in format. For
example, here is a pair of methods to print and scan attributes:

public static void printAttrs(Writer dest, Attr[] attrs) {
 PrintWriter out = new PrintWriter(dest);
 out.printf("%d attrs%n", attrs.length);
 for (int i = 0; i < attrs.length; i++) {
 Attr attr = attrs[i];
 out.printf("%s=%s%n",
 attr.getName(), attr.getValue());
 }
 out.flush();
}

public static Attr[] scanAttrs(Reader source) {
 Scanner in = new Scanner(source);
 int count = in.nextInt();
 in.nextLine(); // skip rest of line

 Attr[] attrs = new Attr[count];
 Pattern attrPat =
 Pattern.compile("(.*?)=(.*)$", Pattern.MULTILINE);
 for (int i = 0; i < count; i++) {
 in.findInLine(attrPat);
 MatchResult m = in.match();
 attrs[i] = new Attr(m.group(1), m.group(2));
 }
 return attrs;
}

The printAttrs method uses printf to print an attribute in one line, using a = character to separate
name from value. The scanAttrs method will read such a file back in. It uses a combination of
stream-based and line-based Scanner calls. It first reads back the count as an int and then consumes the
rest of the line (the "attrs" from the printf is just for human readability). It then loops getting name/value
lines. The pattern used has two capture groups, the first to get the attribute name (using a non-greedy qualifier
to get the fewest possible characters before the =) and the second to get the value. These groups are pulled out
to create the actual Attr object.

It is no accident that these two methods are paired. Although a Scanner can read many formats of data, it is
best used for data formatted in relatively straightforward ways. Stream mode is useful for reading user input
as well, but when you use Scanner for data you should be able to visualize (if not actually write) the
printf usage that would generate that data. Scanner is extremely powerful, but that power can be difficult
to harness.

Exercise 22.10: Write a method to tokenize input that ignores comments, using the comment pattern as part of
the scanner's delimiter.

Exercise 22.11: Write a version of readCSV that uses a StreamTokenizer rather than a Scanner.

Exercise 22.12: Write a version of the attribute reading method from page 533 that uses a Scanner. For this

525

525

exercise it is only necessary that both versions accept the same correctly formatted input.

Exercise 22.13: Extend your solution to Exercise 22.12 so that misplaced = characters are detected, as in the
StreamTokenizer version. (Hint: You might want to try to dynamically change the delimiter pattern
between certain tokens.)

22.5.4. Localization

Localization is covered in detail in Chapter 24, but since the Scanner class has some support for
localization, we cover that briefly here.

By default a scanner works in the current locale, but you can change it with the useLocale method, which
takes a Locale instance. The locale being used by the scanner can be retrieved from the locale method.

The type-specific numeric scanning methods, like hasNextDouble and nextInt, are fully localized.
They recognize numerical values that are formed from the numeric digit characters of the locale being used,
including the locale-specific decimal separator and grouping separator. In contrast, to use a regular expression
to match a local number, you would need to know what the separator characters were so that you could
account for them in your pattern. Further, any potentially numeric value that is obtained as a string from a
MatchResult must be separately converted into a numeric value. To localize such numeric values you must
use the parsing methods of the java.text.NumberFormat class described in Chapter 24.

22.6. StringTokenizer

The StringTokenizer class is an older and much simpler cousin of the Scanner class, and its use is
discouraged in new codethe Stringsplit method (page 314) can be used as an alternative in many cases.
A StringTokenizer breaks a string into parts, using delimiter characters. A sequence of tokens broken
out of a string is, in effect, an ordered enumeration of those tokens, so StringTokenizer implements the
Enumeration interface[4] (see page 617). StringTokenizer provides methods that are more
specifically typed than Enumeration, which you can use if you know you are working on a
StringTokenizer object. The StringTokenizer enumeration is effectively a snapshot because
String objects are read-only. For example, the following loop breaks a string into tokens separated by
spaces or commas:

[4] For historical reasons it implements Enumeration<Object>, not
Enumeration<String>.

String str = "Gone, and forgotten";
StringTokenizer tokens = new StringTokenizer(str, " ,");
while (tokens.hasMoreTokens())
 System.out.println(tokens.nextToken());

By including the comma in the list of delimiter characters in the StringTokenizer constructor, the
tokenizer consumes commas along with spaces, leaving only the words of the string to be returned one at a
time. The output of this example is

Gone
and
forgotten

526

526

The StringTokenizer class has several methods to control what is considered a word, whether it should
understand numbers or strings specially, and so on:

public StringTokenizer(String str, String delim,boolean
returnTokens)

Constructs a StringTokenizer on the string str, using the characters in
delim as the delimiter set. The returnTokens boolean determines
whether delimiters are returned as tokens or skipped. If they are returned as
tokens, each delimiter character is returned separately.

public StringTokenizer(String str, String delim)

Equivalent to StringTokenizer(str, delim, false), meaning
that delimiters are skipped, not returned.

public StringTokenizer(String str)

Equivalent to StringTokenizer(str," \t\n\r\f"), meaning that
the delimiters are the whitespace characters and are skipped.

public boolean hasMoreTokens()

Returns true if more tokens exist.

public String nextToken()

Returns the next token of the string. If there are no more tokens, a
NoSuchElementException is thrown.

public String nextToken(String delim)

Switches the delimiter set to the characters in delim and returns the next
token. There is no way to set a new delimiter set without getting the next
token. If there are no more tokens, a NoSuchElementException is
thrown.

public int countTokens()

Returns the number of tokens remaining in the string using the current
delimiter set. This is the number of times nextToken can return before it
will generate an exception. When you need the number of tokens, this
method is faster than repeatedly invoking nextToken because the token
strings are merely counted, not constructed and returned.

The methods StringTokenizer implements for the Enumeration interface (hasMoreElements and
nextElement) are equivalent to hasMoreTokens and nextToken, respectively.

The delimiter characters are processed individually when StringTokenizer looks for the next token, so it
cannot identify tokens separated by a multicharacter delimiter. If you need a multicharacter delimiter, use
either the String class's split method or a Scanner.

Exercise 22.14: Write a method that will take a string containing floating-point numbers, break it up using
whitespace as the delimiter, and return the sum of the numbers.

527

527

22.7. Timer and TimerTask

The Timer class helps you set up tasks that will happen at some future point, including repeating events.
Each Timer object has an associated thread that wakes up when one of its TimerTask objects is destined to
run. For example, the following code will set up a task that prints the virtual machine's memory usage
approximately once a second:

Timer timer = new Timer(true);
timer.scheduleAtFixedRate(new MemoryWatchTask(), 0, 1000);

This code creates a new Timer object that will be responsible for scheduling and executing a
MemoryWatchTask (which you will see shortly). The TRue passed to the Timer constructor tells Timer
to use a daemon thread (see page 369) so that the memory tracing activity will not keep the virtual machine
alive when other threads are complete.

The scheduleAtFixedRate invocation shown tells timer to schedule the task starting with no delay
(the 0 that is the second argument) and repeat it every thousand milliseconds (the 1000 that is the third
argument). So starting immediately, timer will invoke the run method of a MemoryWatchTask:

import java.util.TimerTask;
import java.util.Date;

public class MemoryWatchTask extends TimerTask {
 public void run() {
 System.out.print(new Date() + ": ");
 Runtime rt = Runtime.getRuntime();
 System.out.print(rt.freeMemory() + " free, ");
 System.out.print(rt.totalMemory() + " total");
 System.out.println();
 }
}

MemoryWatchTask extends the abstract TimerTask to define a task that prints the current free and total
memory, prefixed by the current time. TimerTask implements the Runnable interface, and its run
method is what is invoked by a Timer object when a task is to be run. Because the setup code told timer to
execute once a second, the thread used by timer will wait one second between task executions.

TimerTask has three methods:

public abstract void run()

Defines the action to be performed by this TimerTask.

public boolean cancel()

Cancels this TimerTask so that it will never run again (or at all if it hasn't
run yet). Returns true if the task was scheduled for repeated execution or
was a once-only task that had not yet been run. Returns false if the task
was a once-only task that has already run, the task was never scheduled, or
the task has previously been cancelled. Essentially, this method returns true
if it prevented the task from having a scheduled execution.

528

528

public long scheduledExecutionTime()

Returns the scheduled execution time of the most recent actual execution
(possibly the in-progress execution) of this TimerTask. The returned value
represents the time in milliseconds. This method is most often used inside
run to see if the current execution of the task occurred soon enough to
warrant execution; if the task was delayed too long run may decide not to do
anything.

You can cancel either a single task or an entire timer by invoking the cancel method of TimerTask or
Timer. Cancelling a task means that it will not be scheduled in the future. Cancelling a Timer object
prevents any future execution of any of its tasks. If you purge a timer then all references to cancelled tasks
are removed from its internal queue of tasks to schedule.

Each Timer object uses a single thread to schedule its task executions. You can control whether this thread is
a daemon thread by the boolean you specify to the Timer constructor.

public Timer(boolean isDaemon)

Creates a new Timer whose underlying thread has its daemon state set
according to isDaemon.

public Timer()

Equivalent to Timer(false).

public Timer(String name)

Equivalent to Timer(false) but gives the associated thread the given
name. This is useful for debugging and monitoring purposes.

public Timer(String name, boolean isdaemon)

Equivalent to Timer(isDaemon) but gives the associated thread the given
name. This is useful for debugging and monitoring purposes.

If the thread is not specified to be a daemon, it will be a user thread. When the timer is garbage
collectedwhich can only happen when all references to it are dropped and no tasks remain to be executedthe
user thread will terminate. You should not rely on this behavior since it depends on the garbage collector
discovering the unreachability of the timer object, which can happen anytime or never.

There are three kinds of task scheduling. A once-only scheduling means that the task will be executed once. A
fixed-delay scheduling lets you define the amount of time between the start of one execution and the next. The
task essentially executes periodically, but any delay in the start of one execution (due to general thread
scheduling considerations, garbage collection, or other background activity) causes the next execution to be
similarly delayed, so that an execution starts relative to the start of the previous execution. In contrast, a
fixed-rate scheduling starts each execution relative to the start of the initial execution. If one execution is
delayed, there will be a shorter gap before the next executionpossibly no gap, depending on the extent of the
delay. You use fixed-delay scheduling when the frequency of tasks is what matters, such as time delays
between animation frames in some circumstances. You use fixed-rate scheduling when the absolute time
matters, such as alarms or timers.

public void schedule(TimerTask task, Date time)

529

529

Schedules the given task for a once-only execution at the specified time.

public void schedule(TimerTask task, long delay)

Schedules the given task for a once-only execution after the specified
delay (in milliseconds),

public void schedule(TimerTask task, Date firstTime, long
period)

Schedules the given task to execute on a fixed-delay schedule until
cancelled, starting at firstTime, executing every period milliseconds.

public void schedule(TimerTask task, long delay, long period)

Schedules the given task to execute on a fixed-delay schedule until
cancelled, starting after the given delay, executing every period
milliseconds.

public void scheduleAtFixedRate(TimerTask task, Date firstTime,
long period)

Schedules the given task to execute on a fixed-rate schedule until cancelled,
starting at firstTime, executing every period milliseconds.

public void scheduleAtFixedRate(TimerTask task, long delay,
long period)

Schedules the given task to execute on a fixed-rate schedule until cancelled,
starting after the given delay, executing every period milliseconds.

Any time you specify that is in the past schedules an immediate execution. All times are in millisecondsthe
Date class's getTime method converts a Date to milliseconds (see "Time, Dates, and Calendars" on page
695)and are approximate because the timer uses THRead.wait(long) to schedule future executions, and
wait, like sleep, does not guarantee precision. If a delay is so large that adding it to the current time would
cause an overflow, you will get an IllegalArgumentException.

A TimerTask object can only be scheduled with one Timer, and a cancelled Timer cannot have any new
tasks scheduled. If you attempt to schedule a task that violates either of these restrictions or if you schedule an
already cancelled TimerTask, you will get an IllegalStateException.

A Timer's thread is subject to the usual thread scheduling of a system and takes no steps to influence its
priority in any wayit is created with the priority of the thread that created the Timer. If you need to boost the
priority of a given task when it is executing, set the thread priority within the run method. If you want to
boost the priority of the Timer tHRead itself, you must create the Timer from a thread that already has the
desired priority level.

There is no way to ask which tasks are being governed by a particular Timer.

22.8. UUID

The UUID class provides immutable objects that represent universally unique identifiers. These are 128-bit
values that are generated in such a way that they are guaranteed to be unique. There are four different versions

530

530

of UUID values, generally known as types 1, 2, 3, and 4. You can ask a UUID object for its version by using
the version method.

The usual way to create a type 4 (random) UUID is to use the static factory method randomUUID. A type 3
(name-based) UUID can be obtained from the static factory method nameUUIDFromBytes, which takes an
array of bytes representing the name.

You can directly construct an arbitrary form UUID by supplying two long values that represent the upper
and lower halves. Of course, there are no guarantees about uniqueness for such a constructed UUIDit is up to
you to supply appropriate values. The two halves of a UUID object can be retrieved as long values from the
getMostSignificantBits and getLeastSignificantBits methods.

The layout of a UUID is determined by which variant is used to implement it. There are four variants: 0, 2, 6,
and 7. The UUID class always generates variant 2 UUID valuesknown as the Leach-Salz variant. The details
of these variants are not important for this discussion. You can ask a UUID object for its variant by using the
variant method. Two UUID objects are equal only if they have the same variant and 128-bit value.

The toString method returns a string representation of a UUID that can be passed into the static
fromString factory method to get a UUID object.

The remaining methods are applicable only to type 1 (time-based) UUID values, and throw
UnsupportedOperationException if invoked on other types:

public long timestamp()

Returns the 60-bit timestamp associated with this UUID.

public int clockSequence()

Returns the 14-bit clock sequence value associated with this UUID.

public long node()

Returns the 48-bit node value associated with this UUID. This value relates to
the host address of the machine on which this UUID was generated.

22.9. Math and StrictMath

The Math class consists of static constants and methods for common mathematical manipulations that use
normal floating-point semantics. The StrictMath class defines the same constants and methods but always
uses specific algorithms. This means that StrictMath methods always return the same values across
different virtual machines, while Math methods are allowed to vary within specified limits. Both classes have
two useful double constants: E approximates e (2.7182818284590452354), and PI approximates π
(3.14159265358979323846). In the following table of the main Math and StrictMath methods, angles are
in radians and all parameters and return values are double unless stated otherwise:

Function Value

sin(a) sine(a)

cos(a) cosine(a)

tan(a) tangent(a)

531

531

asin(v) arcsine(v), with v in the range [1.0, 1.0]

acos(v) arccosine(v), with v in the range [1.0, 1.0]

atan(v) arctangent(v), returned in the range [π/2,π/2]

atan2(x,y) arctangent(x/y), returned in the range [π,π]

toRadians(d) Given d in degrees, returns equivalent angle in radians

toDegrees(r) given r in radians, returns equivalent angle in degrees

exp(x) e x

sinh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

tanh(x) hyperbolic tangent of x

pow(y,x) y x

log(x) ln x (natural log of x)

log10(x) base 10 logarithm of x

sqrt(x) Square root of x

cbrt(x) Cubic root of x

signum(x) signum function: 1 if x is positive; 1 if x is negative; 0 if x is zero. There are double
and float versions

ceil(x) Smallest whole number x

floor(x) Largest whole number x

rint(x) x rounded to the nearest integer; if neither integer is nearer, rounds to the even integer

round(x) (int) floor(x + 0.5) for float x (long) floor(x + 0.5) for
double x

abs(x) | x | for any numeric type. (the absolute value of the most negative value of an int or
long is itself and therefore negative; that's how two's complement integers work)

max(x,y) Larger of x and y for any numeric type

min(x,y) Smaller of x and y for any numeric type

hypot(x,y) Calculates the length of the hypotenuse of a right-angled triangle with sides of length x

and y; that is, it calculates with no intermediate overflow or underflow

The static method IEEEremainder calculates remainder as defined by the IEEE 754 standard. The
remainder operator %, as described in "Floating-Point Arithmetic" on page 202, obeys the rule

(x/y)*y + x%y == x

This preserves one kind of symmetry: Symmetry around zero. That is, if x%y is z, then changing the sign of
either x or y will change only the sign of z, never its absolute value. For example, 7%2.5 is 2.0, and

532

532

-7%2.5 is -2.0. The IEEE standard defines remainder for x and y differently, preserving symmetry of
spacing along the number linethe result of IEEEremainder(-7,2.5) is 0.5. The IEEE remainder
mechanism keeps resulting values y units apart, as contrasted with the remainder operator's symmetry around
zero. The method is provided because both kinds of remainder are useful.

The static method random generates a pseudorandom number r in the range 0.0 r < 1.0. More control over
pseudorandom number generation is provided by the Random class, as you learned on page 639.

The algorithms used in StrictMath are those defined in the FDLIBM "C" math library; if you need a
complete understanding of these issues, consult The Java™ Language Specification, Third Edition.

See "java.math Mathematics" on page 722 for brief coverage of some other math-related classes.

Exercise 22.15: Write a calculator that has all Math or StrictMath functions, as well as (at least) the basic
operators +, -, *, /, and %. (The simplest form is probably a reverse Polish stack calculator because operator
precedence is not an issue.)

Computers are uselessthey can only give you answers.

Pablo Picasso

Chapter 23. System Programming

GLENDOWER: I can call spirits from the vasty deep. HOTSPUR: Why, so can I, or so can
any man; But will they come when you do call for them?

William Shakespeare, King Henry IV, Part 1

Sometimes your application must interact with the runtime system of the Java virtual machine or the
underlying operating system. Such interactions include executing other programs, shutting down the runtime
system, and reading and writing the system properties that allow communication between the operating
system and the runtime system. Three main classes in java.lang provide this access:

The System class provides static methods to manipulate system state. It provides for the reading and
writing of system properties, provides the standard input and output streams, and provides a number
of miscellaneous utility functions. For convenience, several methods in System operate on the
current Runtime object.

•

The Runtime class provides an interface to the runtime system of the executing virtual machine. The
current Runtime object provides access to functionality that is per-runtime, such as interacting with
the garbage collector, executing other programs and shutting down the runtime system.

•

The Process class represents a running process that was created by calling Runtime.exec to
execute another program, or through direct use of a ProcessBuilder object.

•

These interactions and others can require security to protect your computer's integrity. So we also look at
security and how different security policies are enforced in the runtime system. We start, though, by looking
at the System class.

533

533

23.1. The System Class

The System class provides static methods to manipulate system state and acts as a repository for
system-wide resources. System provides functionality in four general areas:

The standard I/O streams•
Manipulating system properties•
Utilities and convenience methods for accessing the current Runtime•
Security•

You'll learn about security in more detail in Section 23.5 on page 677.

23.1.1. Standard I/O Streams

The standard input, output, and error streams are available as static fields of the System class.

public static final InputStream in

Standard input stream for reading data.

public static final PrintStream out

Standard output stream for printing messages.

public static final PrintStream err

Standard error stream for printing error messages. The user can often redirect
standard output to a file. But applications also need to print error messages
that the user will see even if standard output is redirected. The err stream is
specifically devoted to error messages that are not rerouted with the regular
output.

For historical reasons, both out and err are PrintStream objects, not PrintWriter objects. See
"Print Streams" on page 525 for a discussion about PrintStream and PrintWriter types.

Although each of the standard stream references is declared final, the static methods setIn, setOut, and
setErr allow you to redefine the actual streams to which these references are bound (by using native code to
bypass the language level restriction of not assigning final variables). These methods are security checked
and throw SecurityException if you do not have permission to change the standard streams.

23.1.2. System Properties

System properties define the system environment. They are stored by the System class in a Properties
object (see page 620). Property names consist of multiple parts separated by periods. For example, here is a
dump of the standard properties on one system:

[View full width]
Standard System Properties
java.version=1.5.0_02
java.vendor=Sun Microsystems Inc.
java.vendor.url=http://java.sun.com/
java.vm.specification.version=1.0
java.vm.specification.vendor=Sun Microsystems Inc.
java.vm.specification.name=Java Virtual Machine Specification

534

534

java.vm.version=1.5.0_02-b09
java.vm.vendor=Sun Microsystems Inc.
java.vm.name=Java HotSpot(TM) Client VM
java.specification.version=1.5
java.specification.vendor=Sun Microsystems Inc.
java.specification.name=Java Platform API Specification
java.home=/opt/jdk1.5.0_02/jre
java.class.version=49.0
java.class.path=classes
java.library.path=/opt/jdk1.5.0_02/jre/lib/i386/client:/opt/jdk1.5.0_02/jre/lib/i386:/opt
/jdk1.5.0_02/jre/../lib/i386

java.io.tmpdir=/tmp
java.compiler=
java.ext.dirs=/opt/jdk1.5.0_02/jre/lib/ext
os.name=Linux
os.arch=i386
os.version=2.4.20-31.9smp
file.separator=/
path.separator=:
line.separator=\n
user.name=dholmes
user.home=/home/dholmes
user.dir=/home/dholmes/JPL-4e/src

These properties are defined on all systems, although the values will certainly vary. On any given system
many more properties may be defined. Some of the standard properties are used by classes in the standard
packages. The File class, for example, uses the file.separator property to build up and break down
pathnames. You are also free to use properties. The following method looks for a personal configuration file
in the user's home directory:

public static File personalConfig(String fileName) {
 String home = System.getProperty("user.home");
 if (home == null)
 return null;
 else
 return new File(home, fileName);
}

The methods of the System class that deal with the system properties are

public static Properties getProperties()

Gets the Properties object that defines all system properties.

public static String getProperty(String key)

Returns the value of the system property named in key.

public static String getProperty(String key, String
defaultValue)

Returns the value of the system property named in key. If it has no
definition, it returns defaultValue.

public static String setProperty(String key, String value)

535

535

Sets the value of the system property named in key to the given value,
returning the previous value or null if the property was not previously set.

public static String clearProperty(String key)

Removes the system property named in key, returning the previous value, or
null if the property was not previously set.

public static void setProperties(Properties props)

Sets the Properties object that defines all system properties to be
props.

All these methods are security checked and may throw SecurityException. However, being denied
access to the entire set of properties does not necessarily mean you will be denied access to individual
properties.

Property values are stored as strings, but the strings can represent other types, such as integers or booleans.
Methods are available to read properties and decode them into some of the primitive types. These decoding
methods are static methods of the primitive type's class. Each method has a String parameter that names the
property to retrieve. Some forms have a second parameter (shown as def later) that is the default value to
return if no property is found with that name. Methods that lack a default value parameter return an object that
contains the default value for the type. All these methods decode values in the standard formats for constants
of the primitive type:

public static boolean Boolean.getBoolean(String name)
public static Integer Integer.getInteger(String name)
public static Integer

Integer.getInteger(String name, Integer def)
public static Integer Integer.getInteger(String name, int def)
public static Long Long.getLong(String name)
public static Long Long.getLong(String name, Long def)
public static Long Long.getLong(String name, long def)

The getBoolean method is different from the othersit returns a boolean value instead of an object of
class Boolean. If the property isn't present, getBoolean returns false; the other methods return null.

The classes Character, Byte, Short, Float, and Double do not have property fetching methods. You
can get the value as a string and use the mechanisms described in "String Conversions" on page 316 to
convert to the appropriate primitive type.

23.1.3. Utility Methods

The System class also contains a number of utility methods:

public static long currentTimeMillis()

Returns the current time in milliseconds since the epoch (00:00:00 GMT,
January 1, 1970). The time is returned in a long. Sophisticated applications
may require more functionality (see "Time, Dates, and Calendars" on page
695).

public static long nanoTime()

536

536

Returns the current value, in nanoseconds, of the most precise available
system timer. This method can only be used to measure elapsed time and is
not related to any notion of calendar time or wall-clock time, and is not
relative to the epoch. Although the precision is in nanoseconds, there are no
guarantees as to the accuracy.

public static void arraycopy(Object src, int srcPos, Object
dst, int dstPos, int count)

Copies the contents of the source array, starting at src[srcPos], to the
destination array, starting at dst[dstPos]. Exactly count elements will
be copied. If an attempt is made to access outside either array an
IndexOutOfBoundsException is thrown. If the values in the source
array are not compatible with the destination array an
ArrayStoreException is thrown. "Compatible" means that each object
in the source array must be assignable to the component type of the
destination array. For arrays of primitive types, the types must be the same,
not just assignable; arraycopy cannot be used to copy an array of short
to an array of int. The arraycopy method works correctly on overlapping
arrays, so it can be used to copy one part of an array over another part. You
can, for example, shift everything in an array one slot toward the beginning,
as shown in the method squeezeOut on page 318.

public static int identityHashCode(Object obj)

Returns a hashcode for obj using the algorithm that Object.hashCode
defines. This allows algorithms that rely on identity hashing to work even if
the class of obj overrides hashCode.

A number of other methods in System are convenience methods that operate on the current Runtime
objectwhich can be obtained via the static method Runtime.getRuntime. For each method an invocation
System.method is equivalent to the invocation Runtime.getRuntime().method; consequently,
these methods are described as we discuss the Runtime class. The methods are

public static void exit(int status)
public static void gc()
public static void runFinalization()
public static void loadLibrary(String libname)
public static void load(String filename)

23.2. Creating Processes

As you have learned, a running system can have many threads of execution. Most systems that host a Java
virtual machine can also run multiple programs. You can execute new programs by using one of the
Runtime.exec convenience methods. Each successful invocation of exec creates a new Process object
that represents the program running in its own process. You can use a Process object to query the process's
state and invoke methods to control its progress. Process is an abstract class whose subclasses are defined
on each system to work with that system's processes. The two basic forms of exec are

public Process exec(String[] cmdArray) tHRows IOException

537

537

Runs the command in cmdArray on the current system. Returns a
Process object (described below) to represent it. The string in
cmdArray[0] is the name of the command, and any subsequent strings in
the array are passed to the command as arguments.

public Process exec(String command) tHRows IOException

Equivalent to the array form of exec with the string command split into an
array wherever whitespace occurs, using a default StringTokenizer (see
page 651).

The newly created process is called a child process. By analogy, the creating process is a parent process.

Creating processes is a privileged operation and a SecurityException is thrown if you are not permitted
to do it. If anything goes wrong when the system tries to create the process, an IOException is thrown.

23.2.1. Process

The exec methods return a Process object for each child process created. This object represents the child
process in two ways. First, it provides methods to get input, output, and error streams for the child process:[1]

[1] For historical reasons these are byte stream objects instead of character streams. You can
use InputStreamReader and OutputStreamWriter to convert the bytes to
characters under the system default encoding or another of your choosing.

public abstract OutputStream getOutputStream()

Returns an OutputStream connected to the standard input of the child
process. Data written on this stream is read by the child process as its input.

public abstract InputStream getInputStream()

Returns an InputStream connected to the standard output of the child
process. When the child writes data on its output, it can be read from this
stream.

public abstract InputStream getErrorStream()

Returns an InputStream connected to the error output stream of the child
process. When the child writes data on its error output, it can be read from
this stream.

Here, for example, is a method that connects the standard streams of the parent process to the standard streams
of the child process so that whatever the user types will go to the specified program and whatever the program
produces will be seen by the user:

public static Process userProg(String cmd)
 throws IOException
{
 Process proc = Runtime.getRuntime().exec(cmd);
 plugTogether(System.in, proc.getOutputStream());
 plugTogether(System.out, proc.getInputStream());
 plugTogether(System.err, proc.getErrorStream());
 return proc;
}

538

538

// ... definition of plugTogether ...

This code assumes that a method plugTogether exists to connect two streams by reading the bytes from
one stream and writing them onto the other.

The second way a Process object represents the child process is by providing methods to control the
process and discover its termination status:

public abstract int waitFor() tHRows InterruptedException

Waits indefinitely for the process to complete, returning the value it passed to
either System.exit or its equivalent (zero means success, nonzero means
failure). If the process has already completed, the value is simply returned.

public abstract int exitValue()

Returns the exit value for the process. If the process has not completed,
exitValue throws IllegalThreadStateException.

public abstract void destroy()

Kills the process. Does nothing if the process has already completed.
Garbage collection of a Process object does not mean that the process is
destroyed; it will merely be unavailable for manipulation.

For example, the following method returns a String array that contains the output of the ls command with
the specified command-line arguments. It throws an LSFailedException if the command completed
unsuccessfully:

// We have imported java.io.* and java.util.*
public String[] ls(String dir, String opts)
 throws LSFailedException
{
 try {
 // start up the command
 String[] cmdArray = { "/bin/ls", opts, dir };
 Process child = Runtime.getRuntime().exec(cmdArray);
 InputStream lsOut = child.getInputStream();
 InputStreamReader r = new InputStreamReader(lsOut);
 BufferedReader in = new BufferedReader(r);

 // read the command's output
 List<String> lines = new ArrayList<String>();
 String line;
 while ((line = in.readLine()) != null)
 lines.add(line);
 if (child.waitFor() != 0) // if the ls failed
 throw new LSFailedException(child.exitValue());
 return lines.toArray(new String[lines.size()]);
 } catch (LSFailedException e) {
 throw e;
 } catch (Exception e) {
 throw new LSFailedException(e.toString());
 }
}

539

539

In the ls method we want to treat the output as character data, so we wrap the input stream that lets us read
the child's output through an InputStreamReader. If we wanted to treat the child's output as a stream of
bytes, we could easily do that instead. If the example were written to use the second form of exec, the code
would look like this:

String cmd = "/bin/ls " + opts + " " + dir;
Process child = Runtime.getRuntime().exec(cmd);

Process is an abstract class. Each implementation of a Java virtual machine may provide one or more
appropriate extended classes of Process that can interact with processes on the underlying system. Such
classes might have extended functionality that would be useful for programming on the underlying system.
The local documentation should contain information about this extended functionality.

Note that there is no requirement that the child process execute asynchronously or concurrently with respect to
the parent processin a particular system exec could appear to block until the child process terminates.

Exercise 23.1: Write the plugTogether method. You will need threads.

23.2.2. Process Environments

Two other forms of Runtime.exec enable you to specify a set of environment variables, which are
system-dependent values that can be queried as desired by the new process. Environment variables are passed
to exec as a String array; each element of the array specifies the name and value of an environment
variable in the form name=value. The name cannot contain any spaces, although the value can be any
string. The environment variables are passed as the second parameter:

public Process exec(String[] cmdArray, String[] env)
 throws IOException
public Process exec(String command, String[] env)
 throws IOException

The single argument forms of exec are equivalent to passing null for env, which means that the created
process inherits the environment variables of its parent.

Environment variables are interpreted in a system-dependent way by the child process's program. They can
hold information such as the current user name, the current working directory, search paths, or other useful
information that may be needed by a running program. The environment variables mechanism is supported
because existing programs on many different kinds of platforms understand them. You can get the
environment variables of the current runtime process from the System.getenv method, which returns an
unmodifiable map of all the name/value pairs. Individual values can be retrieved using the System.getenv
method which takes a string argument representing the name of the environment variable. The preferred way
to communicate between different virtual machine runtimes is with system properties (see page 663).
However, this remains the only means of querying and subsequently modifying the environment when
executing a non-Java program.

There remain two further forms of exec that allow the initial working directory of the child process to be
specified:

public Process exec(String[] cmdArray, String[] env, File dir)
 throws IOException
public Process exec(String command, String[] env, File dir)

540

540

 throws IOException

The child process is given an initial working directory as specified by the path of dir. If dir is null, the
child process inherits the current working directory of the parentas specified by the system property
user.dir. The one- and two-argument forms of exec are equivalent to passing null for dir.

23.2.3. ProcessBuilder

The exec methods of Runtime are convenience methods that use the more general ProcessBuilder
class. ProcessBuilder encapsulates the three key attributes of an external process: the command, the
environment, and the current working directory. You can then start an external process with those attributes
by using the ProcessBuilder object's start methodwhich returns a Process object, just as exec
does.

ProcessBuilder has two constructors: One takes a sequence of String objects that represent the
command; the other a List<String> that represents the command.

A fourth attribute you can control with ProcessBuilder, but not with exec, is whether the standard error
stream of the process is redirected to match the standard output stream of the process. Redirecting the error
stream merges all output into one stream, which makes it much easier to correlate when errors occur relative
to normal processing.

ProcessBuilder provides methods to query and set each of the four attributes. Each query method simply
names the attribute and returns its valuefor example, command returns the current command as a
List<String>. The other query methods are

public File directory()

Returns the working directory.

public Map<String, String> environment()

Returns a map containing all the environment variable settings

public boolean redirectErrorStream()

Returns true if the standard error stream should be redirected to the
standard output stream.

The setting methods have the same names as the query methods, but they take suitable arguments for the
attribute and return the ProcessBuilder object. However, there is no method to set the environment.
Instead, the map returned by environment can be modified directly and that will affect the environment of
any process subsequently started. Once a process has been started, any subsequent changes to the attributes of
the ProcessBuilder that started it have no effect on that process.

By returning the ProcessBuilder object different calls to set attributes can be chained together and
ultimately start invoked. For example, here is how we could rewrite the ls example, but with the error
stream redirected:

public String[] ls(String dir, String opts)
 throws LSFailedException
{
 try {

541

541

 // start up the command
 Process child =
 new ProcessBuilder("/bin/ls", opts, dir).
 redirectErrorStream(true).start();

 // ... as before ...

}

23.2.4. Portability

Any program that uses exec or ProcessBuilder is not portable across all systems. Not all environments
have processes, and those that have them can have widely varying commands and syntax for invoking those
commands. Also, because running arbitrary commands raises serious security issues, the system may not
allow all programs to start processes. Be very cautious about choosing to do this because it has a strong
negative impact on your ability to run your program everywhere.

Exercise 23.2: Write a program that runs exec on its command-line arguments and prints the output from the
command, preceding each line of output by its line number.

Exercise 23.3: Write a program that runs exec on command-line arguments and prints the output from the
command, killing the command when a particular string appears in the output.

23.3. Shutdown

Normally, an execution of a virtual machine terminates when the last user thread terminates. A Runtime can
also be shut down explicitly with its exit method, passing an integer status code that can be communicated
to the environment executing the virtual machinezero to indicate successful completion of a task and non-zero
to indicate failure. This method abruptly terminates all threads in the runtime system no matter what their
state. They are not interrupted or even stopped. They simply cease to exist as the virtual machine itself stops
runningno finally clauses are executed.

In either case, when exit is invoked or the last user thread terminates, the shutdown sequence is initiated.
The virtual machine can also be shut down externally, such as by a user interrupting the virtual machine from
a keyboard (on many systems by typing control-C) or when the user logs out or the computer is shut down.

All the methods related to shutting down the runtime system are security checked and throw
SecurityException if you don't have required permissions.

23.3.1. Shutdown Hooks

An application can register a shutdown hook with the runtime system. Shutdown hooks are threads that
represent actions that should be taken before the virtual machine exits. Hooks typically clean up external
resources such as files and network connections.

public void addShutdownHook(Thread hook)

Registers a new virtual-machine shutdown hook. If hook has already been
registered or has already been started an IllegalArgumentException
is thrown.

542

542

public boolean removeShutdownHook(Thread hook)

Unregisters a previously registered virtual machine shutdown hook. Returns
TRue if hook was registered and has been unregistered. Returns false if
hook was not previously registered.

You cannot add or remove shutdown hooks after shutdown has commenced; you will get
IllegalStateException if you try.

When shutdown is initiated, the virtual machine will invoke the start method on all shutdown hook
THRead objects. You cannot rely on any orderingshutdown hook threads may be executed before, after, or at
the same time as any other shutdown hook thread depending on thread scheduling.

You must be careful about this lack of ordering. Suppose, for example, you were writing a class that stored
state in a database. You might register a shutdown hook that closed the database. However, a program using
your class might want to register its own shutdown hook that writes some final state information through your
class to the database. If your shutdown hook is run first (closing the database), the program's shutdown hook
would fail in writing its final state. You can improve this situation by writing your class to reopen the
database when needed, although this might add complexity to your class and possibly even some bad race
conditions. Or you might design your class so that it doesn't need any shutdown hooks.

It is also important to realize that the shutdown hook threads will execute concurrently with other threads in
the system. If shutdown was initiated because the last user thread terminated, then the shutdown hook threads
will execute concurrently with any daemon threads in the system. If shutdown was initiated by a call to exit,
then the shutdown hook threads will execute concurrently with both daemon and user threads. Your shutdown
hook threads must be carefully written to ensure correct synchronization while avoiding potential deadlocks.

Your shutdown hooks should execute quickly. When users interrupt a program, for example, they expect the
program to terminate quickly. And when a virtual machine is terminated because a user logs out or the
computer is shut down, the virtual machine may be allowed only a small amount of time before it is killed
forcibly. Interacting with a user should be done before shutdown, not during it.

23.3.2. The Shutdown Sequence

The shutdown sequence is initiated when the last user thread terminates, the Runtime.exit method is
invoked, or the external environment signals the virtual machine to shutdown. When shutdown is initiated all
the shutdown hook threads are started and allowed to run to completion. If any of these threads fails to
terminate the shutdown sequence will not complete. If shutdown was initiated internally the virtual machine
will not terminate. If shutdown was signaled from the external environment then failure to shutdown may
result in a forced termination of the virtual machine.

If a shutdown hook thread incurs an uncaught exception, no special action is taken; it is handled like any other
uncaught exception in a thread. In particular, it does not cause the shutdown process to abort.

When the last shutdown hook thread has terminated, the halt method will be invoked. It is halt that
actually causes the virtual machine to cease running. The halt method also takes an integer status as an
argument whose meaning is the same as that of exit: Zero indicates successful execution of the entire virtual
machine. A shutdown hook can invoke halt to end the shutdown phase. Invoking halt directlyeither before
or during the shutdown phaseis dangerous since it prevents uncompleted hooks from doing their cleanup. You
will probably never be in a situation where invoking halt is correct.

If exit is called while shutdown is in progress the call to exit will block indefinitely. The effect of this on
the shutdown sequence is not specified, so don't do this.

543

543

In rare circumstances, the virtual machine will abort rather than perform an orderly shutdown. This can
happen, for example, if an internal error is detected in the virtual machine that prevents an orderly
shutdownsuch as errant native code overwriting system data structures. However, the environment hosting the
virtual machine can also force the virtual machine to abortfor example, under UNIX systems a SIGKILL
signal will force the virtual machine to abort. When the virtual machine is forced to terminate in this way, no
guarantees can be made about whether or not shutdown hooks will run.

23.3.3. Shutdown Strategies

Generally, you should let a program finish normally rather than forcibly shut it down with exit. This is
particularly so with multithreaded programs, where the thread that decides it is time for the program to exit
may have no idea what the other threads are doing.

Designing a multithreaded application in a way that makes it safe to exit at arbitrary points in the program is
either trivial or extremely complex. It is trivial when none of the threads are performing actions that must be
completedfor example, having a thousand threads all trying to solve a numerical problem. It is complex
whenever any of the threads perform actions that must be completed.

You can communicate the fact that shutdown is required by writing your threads to respond to the
interrupt methodas you learned on page 365. You can broadcast the shutdown request to all your threads
by invoking the interrupt method of the parent ThreadGroup of your application. This is no guarantee
that a program will terminate, however, because libraries that you have used may have created user threads
that do not respond to interrupt requeststhe AWT graphics library is one well-known example.

There are two circumstances when you must invoke exit: when it is the only way to terminate some of the
threads and hence your application, and when your application must return a status code. In both cases you
need to delay the call to exit until all your application threads have had a chance to terminate cleanly. One
way is for the thread initiating the termination to join the other threads and so know when those threads
have terminated. However, an application may have to maintain its own list of the threads it creates because
simply inspecting the ThreadGroup may return library threads that do not terminate and for which join
will not return.

The decision to shutdown a program should be made at a high-level within the applicationoften within main
or the run method of a thread in the top-level application ThreadGroup or in the code that responds to
events in a graphical user interface. Methods that encounter errors should simply report those errors via
exceptions that allow the high-level code to take appropriate action. Utility code should never terminate an
application because it encounters an errorthis code lacks knowledge of the application that allows an informed
decision to be made; hence, exceptions are used to communicate with higher-level code.

23.4. The Rest of Runtime

The Runtime class provides functionality in six different areas:

Interacting with the garbage collector and querying memory usage•
Asking for the number of processors available•
Executing external programs•
Terminating the current Runtime•
Loading native code libraries•
Debugging•

544

544

You have already learned about the first four of these areas (you learned about interacting with the garbage
collector via the gc and runFinalization methods in Chapter 17, on page 452, and about
availableProcessors in Chapter 14 on page 359). Now is the time to cover the final two.

23.4.1. Loading Native Code

In Chapter 2, you learned about the native modifier (see page 74) that can be applied to methods and which
signifies that the method's implementation is being provided by native code. At runtime the native code for
such methods must be loaded into the virtual machine so that the methods can be executed. The details of this
process are system-dependent, but two methods in Runtime allow this activity to occur:

public void loadLibrary(String libname)

Loads the dynamic library with the specified library name. The library
corresponds to a file in the local file system that is located in some place
where the system knows to look for library files. The actual mapping from
the library name to a file name is system-dependent.

public void load(String filename)

Loads the file specified by filename as a dynamic library. In contrast with
loadLibrary, load allows the library file to be located anywhere in the
file system.

Typically, classes that have native methods load the corresponding library as part of the initialization of the
class by placing the load invocation in a static initialization block. However, the library could be lazily
loaded when an actual invocation of the method occurs.

Loading native code libraries is, naturally, a privileged operation, and you will get a SecurityException
if you do not have the required permissions. If the library cannot be found or if an error occurs while the
system tries to load the library, an UnsatisfiedLinkError is thrown.

A related method in class SystemmapLibraryNamemaps a library name into a system-dependent library
name. For example, the library name "awt" might map to "awt.dll" under Windows, while under UNIX
it might map to "libawt.so".

23.4.2. Debugging

Two methods in Runtime support the debugging of applications:

public void TRaceInstructions(boolean on)

Enables or disables the tracing of instructions depending on the value of on.
If on is TRue, this method suggests that the virtual machine emit debugging
information for each instruction as it is executed.

public void traceMethodCalls(boolean on)

Enables or disables the tracing of method calls depending on the value of on.
If on is true, this method suggests that the virtual machine emit debugging
information for each method when it is called.

545

545

The format of this debugging information and the file or other output stream to which it is emitted depend on
the host environment. Each virtual machine is free to do what it wants with these calls, including ignoring
them if the local runtime system has nowhere to put the trace output, although they are likely to work in a
development environment.

These methods are fairly low-level debugging tools. Typically, a virtual machine will also support high-level
debuggers and profilers through the JVM™ Tool Interface (JVMTI); interested readers should consult that
specification for more information.

23.5. Security

Security is a very complex issue and a full discussion of it is well beyond the scope of this bookyou can read
Inside Java™ 2 Platform Security, Second Edition, a companion book in this series, for all the details. What
we can do, however, is provide an overview of the security architecture and some of its key components.
Information on other aspects of security is given in "java.security and Related Packages Security Tools" on
page 732.

To perform a security-checked operation you must have permission to perform that operation. Together, all
permissions in a system and the way in which they are assigned define the security policy for that system. A
protection domain encloses a set of classes whose instances are granted the same set of permissions and that
all come from the same code source. Protection domains are established via the class loading mechanism. To
enable the security policy of a system and activate the protection domains, you need to install a security
manager.[2]

[2] Some virtual machines allow a startup argument that causes a default security manager to
be created and installed. For example, using the JDK™ 5.0 you define the system property
java.security.manager by passing the argument -Djava.security.manager to
the java command.

The classes and interfaces used for security are spread across a number of packages so we use the fully
qualified name the first time we introduce a specific class or interface.

23.5.1. The SecurityManager Class

The java.lang.SecurityManager class allows applications to implement a security policy by
determining, before performing a possibly unsafe or sensitive operation, whether it is being attempted in a
security context that allows the operation to be performed. The application can then allow or disallow the
operation.

The SecurityManager class contains many methods with names that begin with the word "check." These
methods are called by various methods in the standard libraries before those methods perform certain
potentially sensitive operations, such as accessing files, creating and controlling threads, creating class
loaders, performing some forms of reflection, and controlling security itself. The invocation of such a check
method typically looks like this:

SecurityManager security = System.getSecurityManager();
if (security != null) {
 security.checkXXX(...);
}

546

546

The security manager is given an opportunity to prevent completion of the operation by throwing an
exception. A security manager routine simply returns if the operation is permitted but throws a
SecurityException if the operation is not permitted.

You can get and set the security manager with methods of the System class:

public static void setSecurityManager(SecurityManager s)

Sets the system security manager object. If a security manager already exists
this new manager will replace it, provided the existing manager supports
replacement and you have permission to replace it; otherwise, a
SecurityException is thrown.

public static SecurityManager getSecurityManager()

Gets the system security manager. If none has been set null is returned and
you are assumed to have all permissions.

The security manager delegates the actual security check to an access control object. Each check method just
invokes the security manager's checkPermission method, passing the appropriate
java.security.Permission object for the requested action. The default implementation of
checkPermission then calls

java.security.AccessController.checkPermission(perm);

If a requested access is allowed, checkPermission returns quietly. If denied, a
java.security.AccessControlException (a type of SecurityException) is thrown.

This form of checkPermission always performs security checks within the context of the current
threadwhich is basically the set of protection domains of which it is a member. Given that a protection domain
is a set of classes with the same permissions, a thread can be a member of multiple protection domains when
the call stack contains active methods on objects of different classes.

The security manager's getSecurityContext method returns the security context for a thread as a
java.security.AccessControlContext object. This class also defines a checkPermission
method, but it evaluates that method in the context that it encapsulates, not in the context of the calling thread.
This feature is used when one context (such as a thread) must perform a security check for another context.
For example, consider a worker thread that executes work requests from different sources. The worker thread
has permission to perform a range of actions, but the submitters of work requests may not have those same
permissions. When a work request is submitted, the security context for the submitter is stored along with the
work request. When the worker thread performs the work, it uses the stored context to ensure that any security
checks are performed with respect to the submitter of the request, not the worker thread itself. In simple cases,
this might involve invoking the security manager's two-argument checkPermission method, which takes
both a Permission object and an AccessControlContext object as arguments. In more general
situations, the worker thread may use the doPrivileged methods of AccessController, which you
will learn about shortly.

23.5.2. Permissions

Permissions fall into a number of categories, each managed by a particular class, for example:

File java.io.FilePermission•

547

547

Network java.net.NetPermission•
Properties java.util.PropertyPermission•
Reflection java.lang.reflect.ReflectPermission•
Runtime java.lang.RuntimePermission•
Security java.security.SecurityPermission•
Serialization java.io.SerializablePermission•
Sockets java.net.SocketPermission•

All but FilePermission and SocketPermission are subclasses of
java.security.BasicPermission, which itself is an abstract subclass of the top-level class for
permissions, which is java.security.Permission. BasicPermission defines a simple permission
based on the name. For example, the RuntimePermission with name "exitVM" represents the
permission to invoke Runtime.exit to shutdown the virtual machine. Here are some other basic
RuntimePermission names and what they represent:

"createClassLoader" Invoke the ClassLoader constructors.•
"setSecurityManager" Invoke System.setSecurityManager.•
"modifyThread" Invoke Thread methods interrupt, setPriority, setDaemon, or
setName.

•

Basic permissions are something you either have or you don't. The names for basic permissions follow the
hierarchical naming scheme used for system properties (see page 663). An asterisk may appear at the end of
the name, following a "." or by itself, to signify a wildcard match. For example: "java.*" or "*" are
valid; "*java" or "x*y" are not valid.

FilePermission and SocketPermission are subclasses of Permission. These classes can have a
more complicated name syntax than that used for basic permissions. For example, for a FilePermission
object, the permission name is the pathname of a file (or directory) and can cover multiple files by using "*"
to mean all files in the specified directory and using "-" to mean all files in the specified directory as well as
all files in all subdirectories.

All permissions can also have an action list associated with them that defines the different actions permitted
by that object. For example, the action list for a FilePermission object can contain any combination of
"read", "write", "execute", or "delete", specifying actions that can be performed on the named
file (or directory). Many basic permissions do not use the action list, but some, such as
PropertyPermission do. The name of a PropertyPermission is the name of the property it
represents and the actions can be "read" or "write", which let you invoke System.getProperty and
System.setProperty, respectively, with that property name. For example, a PropertyPermission
with the name "java.*" and action "read" allows you to retrieve the values of all system properties that
start with "java.".

23.5.3. Security Policies

The security policy for a given execution of the runtime system is represented by a
java.security.Policy object or, more specifically, by a concrete subclass of the abstract Policy
class. The Policy object maintains the sets of permissions that have been assigned to the different protection
domains, according to their code source. How the security policy is communicated to the Policy object is a
function of the actual implementation of that policy. The default implementation is to use policy files to list
the different permissions that are granted to each code source.

For example, a sample policy file entry granting code from the /home/sysadmin directory read access to
the file /tmp/abc is

grant codeBase "file:/home/sysadmin/" {

548

548

 permission java.io.FilePermission "/tmp/abc", "read";
};

To find out how security policies are defined in your local system, consult your local documentation.

Classes loaded by the bootstrap loader are considered to be trusted and do not need explicit permissions set in
the security policy. Some virtual machine implementations also support the standard extensions mechanism,
which allows classes to be identified as trusted by placing them in special locations accessed by the extensions
class loader. These classes do not need explicit permissions set either.

23.5.4. Access Controllers and Privileged Execution

The AccessController class is used for three purposes:

It provides the basic checkPermission method used by security managers to perform a security
check.

•

It provides a way to create a "snapshot" of the current calling context by using getContext, which
returns an AccessControlContext.

•

It provides a means to run code as privileged, thus changing the set of permissions that might
otherwise be associated with the code.

•

We have discussed (to the extent we intend to) the first two of these. In this section we look at what it means
to have privileged execution.

A protection domain (represented by java.security.ProtectionDomain) encompasses a code
source (represented by java.security.CodeSource) and the permissions granted to code from that
code source, as determined by the security policy currently in effect. A code source extends the notion of a
code base (the location classes were loaded from) to include information about the digital certificates
associated with those classes. Digital certificates can be used to verify the authenticity of a file and ensure that
the file has not been tampered with in any way. Classes with the same certificates and from the same location
are placed in the same domain, and a class belongs to one and only one protection domain. Classes that have
the same permissions but are from different code sources belong to different domains.

Each applet or application runs in its appropriate domain, determined by its code source. For an applet (or an
application running under a security manager) to be allowed to perform a secured action, the applet or
application must be granted permission for that particular action. More specifically, whenever a secure action
is attempted, all code traversed by the execution thread up to that point must have permission for that action
unless some code on the thread has been marked as privileged. For example, suppose that access control
checking occurs in a thread of execution that has a chain of multiple callersthink of this as multiple method
calls that potentially cross the protection domain boundaries. When the
AccessControllercheckPermission method is invoked by the most recent caller, the basic
algorithm for deciding whether to allow or deny the requested action is as follows:

If the code for any caller in the call chain does not have the requested permission, an
AccessControlException is thrown, unless a caller whose code is granted the said
permission has been marked as privileged and all parties subsequently called by this caller
(directly or indirectly) have the said permission.

Marking code as privileged enables a piece of trusted code to temporarily enable access to more actions than
are directly available to the code that called it. This is necessary in some situations. For example, an
application may not be allowed direct access to files that contain fonts, but the system utility to display a
document must obtain those fonts on behalf of the user. This requires that the system utility code becomes

549

549

privileged while obtaining the fonts.

The doPrivileged method of AccessController take as an argument a
java.security.PrivilegedAction<T> object whose run method defines the code to be marked as
privileged. For example, your call to doPrivileged can look like the following:

void someMethod() {
 // ...normal code here...
 AccessController.doPrivileged(
 new PrivilegedAction<Object>() {
 public Object run() {
 // privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 }
);
 // ...normal code here...
}

The doPrivileged method executes the run method in privileged mode. Privileged execution is a way for
a class with a given permission to temporarily grant that permission to the thread that executes the privileged
code. It will not let you gain permissions that you do not already have. The class defining someMethod must
have the permission RuntimePermission("loadLibrary.awt"); otherwise, any thread that invokes
someMethod will get a SecurityException. It is guaranteed that privileges will be revoked after the
PrivilegedAction object's run method returns.

The PrivilegedAction<T> interface's single method run returns a T object. Another form of
doPrivileged takes a PrivilegedExceptionAction<T> object, whose run method also returns
T, but which can throw any checked exception. For both of these methods there is a second overloaded form
of doPrivileged that takes an AccessControlContext as an argument and uses that context to
establish the permissions that the privileged code should run with.

You should use doPrivileged with extreme care and ensure that your privileged sections of code are no
longer than necessary and that they perform only actions you fully control. For example, it would be an
extreme security risk for a method with, say, all I/O permissions, to accept a Runnable argument and invoke
its run method within a privileged section of code, unless you wouldn't mind if that method removed all the
files on your disk.

Power corrupts. Absolute power is kind of neat.

John Lehman, U.S. Secretary of the Navy, 19811987

Chapter 24. Internationalization and Localization

Nobody can be exactly like me. Sometimes even I have trouble doing it.

Tallulah Bankhead

The credo of "Write once, run anywhere™" means that your code will run in many places where languages
and customs are different from yours. With a little care you can write programs that can adapt to these
variations gracefully. Keeping your programs supple in this fashion is called internationalization. You have
several tools for internationalizing your code. Using internationalization tools to adapt your program to a

550

550

specific localesuch as by translating messages into the local languageis called localization.

The first tool is inherent in the language: Strings are in Unicode, which can express almost any written
language on our planet. Someone must still translate the strings, and displaying the translated text to users
requires fonts for those characters. Still, having Unicode is a big boost for localizing your code.

The nexus of internationalization and localization is the locale, which defines a "place." A place can be a
language, culture, or countryanything with an associated set of customs that requires changes in program
behavior. Each running program has a default locale that is the user's preferred place. It is up to each program
to adapt to a locale's customs as best it can. The locale concept is represented by the Locale class, which is
part of the java.util package.

Given a locale, several tools can help your program behave in a locally comprehensible fashion. A common
pattern is for a class to define the methods for performing locale-sensitive operations. A generic "get instance"
static method of this class returns an object (possibly of a subclass) suitable for the default locale. The class
will also provide an overload of each "get instance" method that takes a locale argument and returns a suitable
object for a particular locale. For example, by invoking the class's getInstance methods, you can get an
appropriate java.util.Calendar object that works with the user's preferred dates and times. The
returned Calendar object will understand how to translate system time into dates using the customs of the
default locale. If the user were Mexican, an object that was a Calendar adapted to Mexican customs could
be returned. A Chinese user might get an object of a different subclass that worked under the Chinese calendar
customs.

If your program displays information to the user, you will likely want to localize the output: Saying "That's
not right" to someone who doesn't understand English is probably pointless, so you would like to translate
(localize) the message for speakers in other locales. The resource bundle mechanisms help you make this
possible by mapping string keys to arbitrary resources. You use the values returned by a resource bundle to
make your program speak in other tonguesinstead of writing the literal message strings in your code, you look
up the strings from a resource bundle by string keys. When the program is moved to another locale, someone
can translate the messages in the resource bundle and your program will work for that new locale without your
changing a line of code.

The classes described in this chapter come mostly from the package java.util. There are occasional brief
discussions of classes in the text internationalization and localization package java.text, with an overview
of some of its capabilities in Section 24.6 on page 708, but a full discussion on this subject is outside the
scope of this book.

24.1. Locale

A java.util.Locale object describes a specific placecultural, political, or geographical. Using a locale,
objects can localize their behavior to a user's expectations. An object that does so is called locale-sensitive.
For example, date formatting can be localized by using the locale-sensitive DateFormat class (described
later in this chapter), so the date written in the United Kingdom as 26/11/72 would be written 26.11.72
in Iceland, 11/26/72 in the United States, or 72.26.11 in Latvia.

A single locale represents issues of language, country, and other traditions. There can be separate locales for
U.S. English, U.K. English, Australian English, Pakistani English, and so forth. Although the language is
arguably in common for these locales, the customs of date, currency, and numeric representation vary.

Your code will rarely get or create Locale objects directly but instead will use the default locale that reflects
the user's preference. You typically use this locale implicitly by getting resources or resource bundles as
shown with other locale-sensitive classes. For example, you get the default calendar object like this:

551

551

Calendar now = Calendar.getInstance();

The Calendar class's getInstance method looks up the default locale to configure the calendar object it
returns. When you write your own locale-sensitive classes, you get the default locale from the static
getdefault method of the Locale class.

If you write code that lets a user select a locale, you may need to create Locale objects. There are three
constructors:

public Locale(String language, String country, String variant)

Creates a Locale object that represents the given language and country,
where language is the two-letter ISO 639 code for the language (such as
"et" for Estonian) and country is the two-letter ISO 3166 code for the
country (such as "KY" for Cayman Islands). "Further Reading" on page 755
lists references for these codes. The variant can specify anything, such as
an operating environment (such as "POSIX" or "MAC") or company or era.
If you specify more than one variant, separate the two with an underscore. To
leave any part of the locale unspecified, use "", an empty stringnot null.

public Locale(String language, String country)

Equivalent to Locale(language,country, "").

public Locale(String language)

Equivalent to Locale(language,"", "").

The language and country can be in any case, but they will always be translated to lowercase for the language
and uppercase for the country to conform to the governing standards. The variant is translated into uppercase.

The Locale class defines static Locale objects for several well-known locales, such as CANADA_FRENCH
and KOREA for countries, and KOREAN and TRADITIONAL_CHINESE for languages. These objects are
simply conveniences and have no special privileges compared to any Locale object you may create.

The static method setDefault changes the default locale. The default locale is shared state and should
always reflect the user's preference. If you have code that must operate in a different locale, you can specify
that locale to locale-sensitive classes either as an argument when you get resources or on specific operations.
You should rarely need to change the default locale.

Locale provides methods for getting the parts of the locale description. The methods getCountry,
getLanguage, and getVariant return the values defined during construction. These are terse codes that
most users will not know. These methods have "display" variantsgetdisplayCountry,
getdisplayLanguage, and getdisplayVariantthat return human-readable versions of the values.
The method getdisplayName returns a human-readable summary of the entire locale description, and
toString returns the terse equivalent, using underscores to separate the parts. These "display" methods
return values that are localized according to the default locale.

You can optionally provide a Locale argument to any of the "display" methods to get a description of the
given locale under the provided locale. For example, if we print the value of

Locale.ITALY.getDisplayCountry(Locale.FRANCE)

552

552

we get

Italie

the French name for Italy.

The methods getISO3Country and getISO3Language return three-character ISO codes for the
country and language of the locale, respectively.

24.2. Resource Bundles

When you internationalize code, you commonly have units of meaningsuch as text or soundsthat must be
translated or otherwise made appropriate for each locale. If you put English text directly into your program,
localizing that code is difficultit requires finding all the strings in your program, identifying which ones are
shown to users, and translating them in the code, thereby creating a second version of your program for, say,
Swahili users. When you repeat this process for a large number of locales the task becomes a nightmare.

The resource bundle classes in java.util help you address this problem in a cleaner and more flexible
fashion. The abstract class ResourceBundle defines methods to look up resources in a bundle by string
key and to provide a parent bundle that will be searched if a bundle doesn't have a key. This inheritance
feature allows one bundle to be just like another bundle except that a few resource values are modified or
added. For example, a U.S. English bundle might use a U.K. English bundle for a parent, providing
replacements for resources that have different spelling. ResourceBundle provides the following public
methods:

public final String getString(String key) tHRows
MissingResourceException

Returns the string stored in the bundle under the given key.

public final String[] getStringArray(String key) throws
MissingResourceException

Returns the string array stored in the bundle under the given key.

public final Object getObject(String key) throws
MissingResourceException

Returns the object stored in the bundle under the given key.

public abstract Enumeration getKeys()

Returns an Enumeration of the keys understood by this bundle, including
all those of the parent.

Each resource bundle defines a set of string keys that map to locale-sensitive resources. These strings can be
anything you like, although it is best to make them mnemonic. When you want to use the resource you look it
up by name. If the resource is not found a MissingResourceException is thrown. The resources
themselves can be of any type but are commonly strings, so the getString methods are provided for

553

553

convenience.

The following example shows an internationalized way to rewrite the "Hello, world" example. This
internationalized version requires a program called GlobalHello and a resource bundle for the program's
strings called GlobalRes, which will define a set of constants for the localizable strings. First, the program:

import java.util.*;

public class GlobalHello {
 public static void main(String[] args) {
 ResourceBundle res =
 ResourceBundle.getBundle("GlobalRes");
 String msg;
 if (args.length > 0)
 msg = res.getString(GlobalRes.GOODBYE);
 else
 msg = res.getString(GlobalRes.HELLO);
 System.out.println(msg);
 }
}

The program first gets its resource bundle. Then it checks whether any arguments are provided on the
command line. If some are, it says good-bye; otherwise it says hello. The program logic determines which
message to display, but the actual string to print is looked up by key (GlobalRes.HELLO or
GlobalRes.GOODBYE).

Each resource bundle is a set of associated classes and property files. In our example, GlobalRes is the
name of a class that extends ResourceBundle, implementing the methods necessary to map a message key
to a localized translation of that message. You define classes for the various locales for which you want to
localize the messages, naming the classes to reflect the locale. For example, the bundle class that manages
GlobalRes messages for the Lingala language would be GlobalRes_ln because "ln" is the two-letter
code for Lingala. French would be mapped in GlobalRes_fr, and Canadian French would be
GlobalRes_fr_CA, which might have a parent bundle of GlobalRes_fr.

We have chosen to make the key strings constants in the GlobalRes class. Using constants prevents errors
of misspelling. If you pass literal strings such as "hello" to getString, a misspelling will show up only
when the erroneous getString is executed, and that might not happen during testing. If you use constants,
a misspelling will be caught by the compiler (unless you are unlucky enough to accidentally spell the name of
another constant).

You find resources by calling one of two static getBundle methods in ResourceBundle: the one we
used, which searches the current locale for the best available version of the bundle you name; and the other
method, which lets you specify both bundle name and desired locale. A fully qualified bundle name has the
form package.Bundle_la_CO_va, where package.Bundle is the general fully qualified name for
the bundle class (such as GlobalRes), la is the two-letter language code (lowercase), CO is the two-letter
country code (uppercase), and va is the list of variants separated by underscores. If a bundle with the full
name cannot be found, the last component is dropped and the search is repeated with this shorter name. This
process is repeated until only the last locale modifier is left. If even this search fails and if you invoked
getBundle with a specified locale, the search is restarted with the full name of the bundle for the default
locale. If this second search ends with no bundle found or if you were searching in the default locale,
getBundle checks using just the bundle name. If even that bundle does not exist, getBundle throws a
MissingBundleException.

For example, suppose you ask for the bundle GlobalRes, specifying a locale for an Esperanto speaker
living in Kiribati who is left-handed, and the default locale of the user is for a Nepali speaker in Bhutan who

554

554

works for Acme, Inc. The longest possible search would be:

GlobalRes_eo_KI_left
GlobalRes_eo_KI
GlobalRes_eo
GlobalRes_ne_BT_Acme
GlobalRes_ne_BT
GlobalRes_ne
GlobalRes

The first resource bundle that is found ends the search, being considered the best available match.

The examples you have seen use resource bundles to fetch strings, but remember that you can use
getObject to get any type of object. Bundles are used to store images, URLs, audio sources, graphics
components, and any other kind of locale-sensitive resource that can be represented by an object.

Mapping string keys to localized resource objects is usually straightforwardsimply use one of the provided
subclasses of ResourceBundle that implement the lookup for you: ListResourceBundle and
PropertyResourceBundle.

24.2.1. ListResourceBundle

ListResourceBundle maps a simple list of keys to their localized objects. It is an abstract subclass of
ResourceBundle for which you provide a getContents method that returns an array of key/resource
pairs as an array of arrays of Object. The keys must be strings, but the resources can be any kind of object.
The ListResourceBundle takes this array and builds the maps for the various "get" methods. The
following classes use ListResourceBundle to define a few locales for GlobalRes. First, the base
bundle:

public class GlobalRes extends ListResourceBundle {
 public static final String HELLO = "hello";
 public static final String GOODBYE = "goodbye";

 public Object[][] getContents() {
 return contents;
 }

 private static final Object[][] contents = {
 { GlobalRes.HELLO, "Ciao" },
 { GlobalRes.GOODBYE, "Ciao" },
 };
}

This is the top-level bundlewhen no other bundle is found, this will be used. We have chosen Italian for the
default. Before any "get" method is executed, GlobalRes.getContents will be invoked and the
contents array's values will seed the data structures used by the "get" methods. ListResourceBundle
uses an internal lookup table for efficient access; it does not search through your array of keys. The
GlobalRes class also defines the constants that name known resources in the bundle. Here is another bundle
for a more specific locale:

public class GlobalRes_en extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }

555

555

 private static final Object[][] contents = {
 { GlobalRes.HELLO, "Hello" },
 { GlobalRes.GOODBYE, "Goodbye" },
 };
}

This bundle covers the English-language locale en. It provides specific values for each localizable string. The
next bundle uses the inheritance feature:

public class GlobalRes_en_AU extends ListResourceBundle {
 // mostly like basic English - our parent bundle

 public Object[][] getContents() { return contents; }

 private static final Object[][] contents = {
 { GlobalRes.HELLO, "G'day" },
 };
}

This bundle is for English speakers from Australia (AU). It provides a more colloquial version of the HELLO
string and inherits all other strings from the general English locale GlobalRes_en. Whenever a resource
bundle is instantiated, its parent chain is established. This proceeds by successively dropping the variant,
country, and language components from the base bundle name and instantiating those bundles if they exist. If
they do exist then setParent is called on the preceding bundle passing the new bundle as the parent. So in
our example, when GlobalRes_en_AU is created, the system will create GlobalRes_en and set it as the
parent of GlobalRes_en_AU. In turn, the parent of GlobalRes_en will be the base bundle
GlobalRes.

Given these classes, someone with an English-language locale (en) would get the values returned by
GlobalRes_en unless the locale also specified the country Australia (AU), in which case values from
GlobalRes_en_AU would be used. Everyone else would see those in GlobalRes.

24.2.2. PropertyResourceBundle

PropertyResourceBundle is a subclass of ResourceBundle that reads its list of resources from a
text property description. Instead of using an array of key/resource pairs, the text contains key/resource pairs
as lines of the form

key=value

Both keys and values must be strings. A PropertyResourceBundle object reads the text from an
InputStream passed to the PropertyResourceBundle constructor and uses the information it reads
to build a lookup table for efficient access.

The bundle search process that we described earlier actually has an additional step that looks for a file
ResName.properties after it looks for a class ResName. For example, if the search process doesn't find
the class GlobalRes_eo_KI_left it will then look for the file
GlobalRes_eo_KI_left.properties before looking for the next resources class. If that file exists, an
input stream is created for it and used to construct a PropertyResourceBundle that will read the

556

556

properties from the file.

It is easier to use property files than to create subclasses of ListResourceBundle but the files have two
limitations. First, they can only define string resources whereas ListResourceBundle can define
arbitrary objects. Second, the only legal character encoding for property files is the byte format of ISO
8859-1. This means that other Unicode characters must be encoded with \uxxxx escape sequences.

24.2.3. Subclassing ResourceBundle

ListResourceBundle, PropertyResourceBundle, and .properties files will be sufficient for
most of your bundles, but you can create your own subclass of ResourceBundle if they are not. You must
implement two methods:

protected abstract Object handleGetObject(String key) tHRows
MissingResourceException

Returns the object associated with the given key. If the key is not defined in
this bundle, it returns null, and that causes the ResourceBundle to
check in the parent (if any). Do not throw
MissingResourceException unless you check the parent instead of
letting the bundle do it. All the "get" methods are written in terms of this one
method.

public abstract Enumeration getKeys()

Returns an Enumeration of the keys understood by this bundle, including
all those of the parent.

Exercise 24.1: Get GlobalHello to work with the example locales. Add some more locales, using
ListResourceBundle, .properties files, and your own specific subclass of ResourceBundle.

24.3. Currency

Currency encoding is highly sensitive to locale, and the java.util.Currency class helps you properly
format currency values. You obtain a Currency object from one of its static getInstance methods, one
of which takes a Locale object while the other takes a currency code as a String (codes are from the ISO
4217 standard).

The Currency class does not directly map currency values into localized strings but gives you information
you need to do so. The information at your disposal is

public String getSymbol()

Returns the symbol of this currency for the default locale.

public String getSymbol(Locale locale)

Returns the symbol of this currency for the specified locale. If there is no
locale specific symbol then the ISO 4217 currency code is returned. Many
currencies share the same symbol in their own locale. For example, the $
symbol represents U.S. dollars in the United States, Canadian dollars in

557

557

Canada, and Australian dollars in Australiato name but a few. The local
currency symbol is usually reserved for the local currency, so each locale can
change the representation used for other currencies. For example, if this
currency object represents the U.S. dollar, then invoking getSymbol with a
U.S locale will return "$" because it is the local currency. However,
invoking getSymbol with a Canadian locale will return "USD" (the
currency code for the U.S. dollar) because the $ symbol is reserved for the
Canadian dollar in the Canadian locale.

public int geTDefaultFractionDigits()

Returns the default number of fraction digits used with this currency. For
example, the British pound would have a value of 2 because two digits
usually follow the decimal point for pence (such as in £18.29), whereas the
Japanese yen would have zero because yen values typically have no
fractional part (such as ¥1200). Some "currencies" are not really currencies at
all (IMF Special Drawing Rights, for example), and they return 1.

public String getCurrencyCode()

Returns the ISO 4217 currency code of this currency.

Exercise 24.2: Select six different locales and six different currencies, and print a table showing the currency
symbol for each currency in each locale.

24.4. Time, Dates, and Calendars

Time is represented as a long integer measured in milliseconds since midnight Greenwich Mean Time (GMT)
January 1, 1970. This starting point for time measurement is known as the epoch. This value is signed, so
negative values signify time before the beginning of the epoch. The System.currentTimeMillis
method returns the current time. This value will express dates into the year A.D. 292,280,995, which should
suffice for most purposes.

You can use java.util.Date to hold a time and perform some simple time-related operations. When a
new Date object is created, you can specify a long value for its time. If you use the no-arg constructor, the
Date object will mark the time of its creation. A Date object can be used for simple operations. For
example, the simplest program to print the current time (repeated from page 37) is

import java.util.Date;

class Date2 {
 public static void main(String[] args) {
 Date now = new Date();
 System.out.println(now);
 }
}

This program will produce output such as the following:

Sun Mar 20 08:48:38 GMT+10:00 2005

558

558

Note that this is not localized output. No matter what the default locale, the date will be in this format,
adjusted for the current time zone.

You can compare two dates with the before and after methods, which return TRue if the object on which
they are invoked is before or after the other date. Or you can compare the long values you get from invoking
getTime on the two objects. The method setTime lets you change the time to a different long.

The Date class provides no support for localization and has effectively been replaced by the more
sophisticated and locale-sensitive Calendar and DateFormat classes.

24.4.1. Calendars

Calendars mark the passage of time. Most of the world uses the same calendar, commonly called the
Gregorian calendar after Pope Gregory XIII, under whose auspices it was first instituted. Many other
calendars exist in the world, and the calendar abstractions are designed to express such variations. A given
moment in time is expressed as a date according to a particular calendar, and the same moment can be
expressed as different dates by different calendars. The calendar abstraction is couched in the following form:

An abstract Calendar class that represents various ways of marking time•
An abstract TimeZone class that represents time zone offsets and other adjustments, such as daylight
saving time

•

An abstract java.text.DateFormat class that defines how one can format and parse date and
time strings

•

Because the Gregorian calendar is commonly used, you also have the following concrete implementations of
the abstractions:

A GregorianCalendar class•
A SimpleTimeZone class for use with GregorianCalendar•
A java.text.SimpleDateFormat class that formats and parses Gregorian dates and times•

For example, the following code creates a GregorianCalendar object representing midnight (00:00:00),
October 26, 1972, in the local time zone, then prints its value:

Calendar cal =
 new GregorianCalendar(1972, Calendar.OCTOBER, 26);
System.out.println(cal.getTime());

The method getTime returns a Date object for the calendar object's time, which was set by converting a
year, month, and date into a millisecond-measured long. The output would be something like this
(depending on your local time zone of course):

Thu Oct 26 00:00:00 GMT+10:00 1972

You can also work directly with the millisecond time value by using getTimeInMillis and
setTimeInMillis. These are equivalent to working with a Date object; for example,
getTimeInMillis is equivalent to invoking getTime().getTime().

The abstract Calendar class provides a large set of constants that are useful in many calendars, such as
Calendar.AM and Calendar.PM for calendars that use 12-hour clocks. Some constants are useful only

559

559

for certain calendars, but no calendar class is required to use such constants. In particular, the month names in
Calendar (such as Calendar.JUNE) are names for the various month numbers (such as 5month numbers
start at 0), with a special month UNDECIMBER for the thirteenth month that many calendars have. But no
calendar is required to use these constants.

Each Calendar object represents a particular moment in time on that calendar. The Calendar class
provides only constructors that create an object for the current time, either in the default locale and time zone
or in specified ones.

Calendar objects represent a moment in time, but they are not responsible for displaying the date. That
locale-sensitive procedure is the job of the DateFormat class, which will soon be described.

You can obtain a calendar object for a locale by invoking one of the static Calendar.getInstance
methods. With no arguments, getInstance returns an object of the best available calendar type (currently
only GregorianCalendar) for the default locale and time zone, set to the current time. The other
overloads allow you to specify the locale, the time zone, or both. The static getAvailableLocales
method returns an array of Locale objects for which calendars are installed on the system.

With a calendar object in hand, you can manipulate the date. The following example prints the next week of
days for a given calendar object:

public static void oneWeek(PrintStream out, Calendar cal) {
 Calendar cur = (Calendar) cal.clone(); //modifiable copy
 int dow = cal.get(Calendar.DAY_OF_WEEK);
 do {
 out.println(cur.getTime());
 cur.add(Calendar.DAY_OF_WEEK, 1);
 } while (cur.get(Calendar.DAY_OF_WEEK) != dow);
}

First we make a copy of the calendar argument so that we can make changes without affecting the calendar we
were passed.[1] Instead of assuming that there are seven days in a week (who knows what kind of calendar we
were given?), we loop, printing the time and adding one day to that time, until we have printed a week's worth
of days. We detect whether a week has passed by looking for the next day whose "day of the week" is the
same as that of the original object.

[1] For historical reasons Calendar.clone returns Object not Calendar, so a cast is
required.

The Calendar class defines many kinds of calendar fields for calendar objects, such as DAY_OF_WEEK in
the preceding code. These calendar fields are constants used in the methods that manipulate parts of the time:

MILLISECOND

SECOND

MINUTE

HOUR

HOUR_OF_DAY

AM_PM

560

560

DAY_OF_WEEK

DAY_OF_WEEK_IN_MONTH

DAY_OF_MONTH

DATE

DAY_OF_YEAR

WEEK_OF_MONTH

WEEK_OF_YEAR

MONTH

YEAR

ERA

ZONE_OFFSET

DST_OFFSET

FIELD_COUNT

An int is used to store values for all these calendar field types. You use these constantsor any others defined
by a particular calendar classto specify a calendar field to the following methods (always as the first
argument):

get Returns the value of the field

set Sets the value of the field to the provided int

clear Clears the value of the field to "unspecified"

isSet Returns true if the field has been set

add Adds an int amount to the specified field

roll Rolls the field up to the next value if the second boolean argument is true,
or down if it is false

getMinimum Gets the minimum valid value for the field

getMaximum Gets the maximum valid value for the field

getGreatestMinimum Gets the highest minimum value for the field; if it varies, this can be different
from getMinimum

getLeastMaximum Gets the smallest maximum value for the field; if it varies, this can be different
from getMaximum

The greatest minimum and least maximum describe cases in which a value can vary within the overall
boundaries. For example, the least maximum value for DAY_OF_MONTH on the Gregorian calendar is 28
because February, the shortest month, can have as few as 28 days. The maximum value is 31 because no

561

561

month has more than 31 days.

The set method allows you to specify a date by certain calendar fields and then calculate the time associated
with that date. For example, you can calculate on which day of the week a particular date falls:

public static int dotw(int year, int month, int date) {
 Calendar cal = new GregorianCalendar();
 cal.set(Calendar.YEAR, year);
 cal.set(Calendar.MONTH, month);
 cal.set(Calendar.DATE, date);
 return cal.get(Calendar.DAY_OF_WEEK);
}

The method dotw calculates the day of the week on the Gregorian calendar for the given date. It creates a
Gregorian calendar object, sets the date fields for year, month, and day, and returns the resulting day of the
week.

The clear method can be used to reset a field's value to be unspecified. You can use clear with no
parameters to clear all calendar fields. The isSet method returns true if a field currently has a value set.

Three variants of set change particular fields you commonly need to manipulate, leaving unspecified fields
alone:

public void set(int year, int month, int date)
public void set(int year, int month, int date, int hrs, int min)
public void set(int year, int month, int date, int hrs, int min, int sec)

You can also use setTime to set the calendar's time from a Date object.

A calendar field that is out of range can be interpreted correctly. For example, January 32 can be equivalent to
February 1. Whether it is treated as such or as an error depends on whether the calendar is considered to be
lenient. A lenient calendar will do its best to interpret values as valid. A strict (non-lenient) calendar will not
accept any values out of range, throwing IllegalArgumentException. The setLenient method
takes a boolean that specifies whether parsing should be lenient; isLenient returns the current setting.

A week can start on any day, depending on the calendar. You can discover the first day of the week with the
method getFirstDayOfWeek. In a Gregorian calendar for the United States this method would return
SUNDAY, whereas Ireland uses MONDAY. You can change this by invoking setFirstDayOfWeek with a
valid weekday index.

Some calendars require a minimum number of days in the first week of the year. The method
getMinimalDaysInFirstWeek returns that number; the method setMinimalDaysInFirstWeek
lets you change it. The minimum number of days in a week is important when you are trying to determine in
which week a particular date fallsfor example, in some calendars, if January 1 is a Friday it may be considered
part of the last week of the preceding year.

You can compare two Calendar objects by using compareTo since Calendar implements
Comparable. If you prefer, you can use the before and after methods to compare the objects.

562

562

24.4.2. Time Zones

TimeZone is an abstract class that encapsulates not only offset from GMT but also other offset issues, such as
daylight saving time. As with other locale-sensitive classes, you can get the default TimeZone by invoking
the static method geTDefault. You can change the default time zone by passing setDefault a new
TimeZone object to useor null to reset to the original default time zone. Time zones are understood by
particular calendar types, so you should ensure that the default calendar and time zone are compatible.

Each time zone has a string identifier that is interpreted by the time zone object and can be displayed to the
user. These identifiers use a long form consisting of a major and minor regional name, separated by '/'. For
example, the following are all valid time zone identifiers: America/New_York,
Australia/Brisbane, Africa/Timbuktu. Many time zones have a short form identifier often just a
three letter acronymsome of which are recognized by TimeZone for backward compatibility. You should
endeavor to always use the long formafter all, while many people know that EST stands for "Eastern Standard
Time," that doesn't tell you for which country. TimeZone also recognizes generic identifiers expressed as the
difference in time from GMT. For example, GMT+10:00 and GMT-4:00 are both valid generic time zone
identifiers. You can get an array of all the identifiers available on your system from the static method
getAvailableIDs. If you want only those for a given offset from GMT, you can invoke
getAvailableIDs with that offset. An offset might, for example, have identifiers for both daylight saving
and standard time zones.

You can find the identifier of a given TimeZone object from getID, and you can set it with setID. Setting
the identifier changes only the identifier on the time zoneit does not change the offset or other values. You can
get the time zone for a given identifier by passing it to the static method getTimeZone.

A time zone can be converted into a displayable form by using one of the getdisplayName methods,
similar to those of Locale. These methods allow you to specify whether to use the default locale or a
specified one, and whether to use a short or long format. The string returned by the display methods is
controlled by a DateFormat object (which you'll see a little later). These objects maintain their own tables
of information on how to format different time zones. On a given system they may not maintain information
for all the supported time zones, in which case the generic identifier form is used, such as in the example on
page 696.

Each time zone has a raw offset from GMT, which can be either positive or negative. You can get or set the
raw offset by using getrawOffset or set RawOffset, but you should rarely need to do this.

Daylight saving time supplements the raw offset with a seasonal time shift. The value of this shift can be
obtained from getdSTSavingsthe default implementation returns 3,600,000 (the number of milliseconds in
an hour). You can ask whether a time zone ever uses daylight saving time during the year by invoking the
method useDaylightTime, which returns a boolean. The method inDaylightTime returns true if
the Date argument you pass would fall inside daylight saving time in the zone.

You can obtain the exact offset for a time zone on a given date by specifying that date in milliseconds or by
using calendar fields to specify the year and month and so on.

public int getOffset(long date)

Returns the offset from GMT for the given time in this time zone, taking any
daylight saving time offset into account

public abstract int getOffset(int era, int year, int month, int
day, int dayOfWeek, int milliseconds)

Returns the offset from GMT for the given time in this time zone, taking any

563

563

daylight saving time offset into account. All parameters are interpreted
relative to the calendar for which the particular time zone implementation is
designed. The era parameter represents calendar-specific eras, such as
B.C. and A.D. in the Gregorian calendar.

24.4.3. GregorianCalendar and SimpleTimeZone

The GregorianCalendar class is a concrete subclass of Calendar that reflects UTC (Coordinated
Universal Time), although it cannot always do so exactly. Imprecise behavior is inherited from the time
mechanisms of the underlying system.[2] Parts of a date are specified in UTC standard units and ranges. Here
are the ranges for GregorianCalendar:

[2] Almost all modern systems assume that one day is 24*60*60 seconds. In UTC, about once
a year an extra second, called a leap second, is added to a day to account for the wobble of the
Earth. Most computer clocks are not accurate enough to reflect this distinction, so neither is
the Date class. Some computer standards are defined in GMT, which is the "civil" name for
the standard; UT is the scientific name for the same standard. The distinction between UTC
and UT is that UT is based on an atomic clock and UTC is based on astronomical observations.
For almost all practical purposes, this is an invisibly fine hair to split. See "Further Reading"
on page 755 for references.

YEAR 1292278994

MONTH 011

DATE Day of the month, 131

HOUR_OF_DAY 023

MINUTE 059

SECOND 059

MILLISECOND 0999

The GregorianCalendar class supports several constructors:

public GregorianCalendar()

Creates a GregorianCalendar object that represents the current time in
the default time zone with the default locale.

public GregorianCalendar(int year, int month, int date, int
hrs, int min, int sec)

Creates a GregorianCalendar object that represents the given date in
the default time zone with the default locale.

public GregorianCalendar(int year, int month, int date, int
hrs, int min)

Equivalent to GregorianCalendar(year,month, date,hrs,
min,0) that is, the beginning of the specified minute.

564

564

public GregorianCalendar(int year, int month, int date)

Equivalent to GregorianCalendar(year,month, date,0, 0,0)
that is, midnight on the given date (which is considered to be the start of the
day).

public GregorianCalendar(Locale locale)

Creates a GregorianCalendar object that represents the current time in
the default time zone with the given locale.

public GregorianCalendar(TimeZone timeZone)

Creates a GregorianCalendar object that represents the current time in
the given timeZone with the default locale.

public GregorianCalendar(TimeZone zone, Locale locale)

Creates a GregorianCalendar object that represents the current time in
the given timeZone with the given locale.

In addition to the methods it inherits from Calendar, GregorianCalendar provides an isLeapYear
method that returns TRue if the passed in year is a leap year in that calendar.

The Gregorian calendar was preceded by the Julian calendar in many places. In a GregorianCalendar
object, the default date at which this change happened is midnight local time on October 15, 1582. This is
when the first countries switched, but others changed later. The getGregorianChange method returns the
time the calendar is currently using for the change as a Date. You can set a calendar's change-over time by
using setGregorianChange with a Date object.

The SimpleTimeZone class is a concrete subclass of TimeZone that expresses values for Gregorian
calendars. It does not handle historical complexities, but instead projects current practices onto all times. For
historical dates that precede the use of daylight saving time, for example, you will want to use a calendar with
a time zone you have selected that ignores daylight saving time. For future dates, SimpleTimeZone is
probably as good a guess as any.

24.5. Formatting and Parsing Dates and Times

Date and time formatting is a separate issue from calendars, although they are closely related. Formatting is
localized in a different way. Not only are the names of days and months different in different locales that
share the same calendar, but also the order in which a dates' components are expressed changes. In the United
States it is customary in short dates to put the month before the date, so that July 5 is written as 7/5. In many
European countries the date comes first, so 5 July becomes 5/7 or 5.7 or …

In the previous sections the word "date" meant a number of milliseconds since the epoch, which could be
interpreted as year, month, day-of-month, hours, minutes, and seconds information. When dealing with the
formatting classes you must distinguish between dates, which deal with year, month, and day-of-month
information, and times, which deal with hours, minutes, and seconds.

Date and time formatting issues are text issues, so the classes for formatting are in the java.text
packagethough the java.util.Formatter class (see page 624) also supports some localized date
formatting as you shall see. The Date2 program on page 695 is simple because it does not localize its output.
If you want localization, you need a DateFormat object.

565

565

DateFormat provides several ways to format and parse dates and times. It is a subclass of the general
Format class, discussed in Section 24.6.2 on page 710. There are three kinds of formatters, each returned by
different static methods: date formatters from geTDateInstance, time formatters from
getTimeInstance, and date/time formatters from getdateTimeInstance. Each of these formatters
understands four formatting styles: SHORT, MEDIUM, LONG, and FULL, which are constants defined in
DateFormat. And for each of them you can either use the default locale or specify one. For example, to get
a medium date formatter in the default locale, you would use

Format fmt = DateFormat.getDateInstance(DateFormat.MEDIUM);

To get a date and time formatter that uses dates in short form and times in full form in a Japanese locale, you
would use

Locale japan = new Locale("jp", "JP");
Format fmt = DateFormat.getDateTimeInstance(
 DateFormat.SHORT, DateFormat.FULL, japan
);

For all the various "get instance" methods, if both formatting style and locale are specified the locale is the
last parameter. The date/time methods require two formatting styles: the first for the date part, the second for
the time. The simplest getInstance method takes no arguments and returns a date/time formatter for short
formats in the default locale. The getAvailableLocales method returns an array of Locale objects for
which date and time formatting is configured.

The following list shows how each formatting style is expressed for the same date. The output is from a
date/time formatter for U.S. locales, with the same formatting mode used for both dates and times:

FULL: Friday, August 29, 1986 5:00:00 PM EDT
LONG: August 29, 1986 5:00:00 PM EDT
MEDIUM: Aug 29, 1986 5:00:00 PM
SHORT: 8/29/86 5:00 PM

Each DateFormat object has an associated calendar and time zone set by the "get instance" method that
created it. They are returned by getCalendar and getTimeZone, respectively. You can set these values
by using setCalendar and setTimeZone. Each DateFormat object has a reference to a
NumberFormat object for formatting numbers. You can use the methods getNumberFormat and
setNumberFormat. (Number formatting is covered briefly in Section 24.6.2 on page 710.)

You format dates with one of several format methods based on the formatting parameters described earlier:

public final String format(Date date)

Returns a formatted string for date.

public abstract StringBuffer format(Date date, StringBuffer
appendTo, FieldPosition pos)

Adds the formatted string for date to the end of appendTo.

566

566

public abstract StringBuffer format(Object obj, StringBuffer
appendTo, FieldPosition pos)

Adds the formatted string for obj to the end of appendTo. The object can
be either a Date or a Number whose longValue is a time in milliseconds.

The pos argument is a FieldPosition object that tracks the starting and ending index for a specific field
within the formatted output. You create a FieldPosition object by passing an integer code that represents
the field that the object should track. These codes are static fields in DateFormat, such as MINUTE_FIELD
or MONTH_FIELD. Suppose you construct a FieldPosition object pos with MINUTE_FIELD and then
pass it as an argument to a format method. When format returns, the getBeginIndex and
getEndIndex methods of pos will return the start and end indices of the characters representing minutes
within the formatted string. A specific formatter could also use the FieldPosition object to align the
represented field within the formatted string. To make that happen, you would first invoke the
setBeginIndex and setEndIndex methods of pos, passing the indices where you would like that field
to start and end in the formatted string. Exactly how the formatter aligns the formatted text depends on the
formatter implementation.

A DateFormat object can also be used to parse dates. Date parsing can be lenient or not, depending on your
preference. Lenient date parsing is as forgiving as it can be, whereas strict parsing requires the format and
information to be proper and complete. The default is to be lenient. You can use setLenient to set
leniency to be true or false. You can test leniency via isLenient.

The parsing methods are

public Date parse(String text) throws ParseException

Tries to parse text into a date and/or time. If successful, a Date object is
returned; otherwise, a ParseException is thrown.

public abstract Date parse(String text, ParsePosition pos)

Tries to parse text into a date and/or time. If successful, a Date object is
returned; otherwise, returns a null reference. When the method is called,
pos is the position at which to start parsing; at the end it will either be
positioned after the parsed text or will remain unchanged if an error occurred.

public Object parseObject(String text, ParsePosition pos)

Returns the result of parse(text,pos) . This method is provided to
fulfill the generic contract of Format.

The class java.text.SimpleDateFormat is a concrete implementation of DateFormat that is used
in many locales. If you are writing a DateFormat class, you may find it useful to extend
SimpleDateFormat. SimpleDateFormat uses methods in the DateFormatSymbols class to get
localized strings and symbols for date representation. When formatting or parsing dates, you should usually
not create SimpleDateFormat objects; instead, you should use one of the "get instance" methods to return
an appropriate formatter.

DateFormat has protected fields calendar and numberFormat that give direct access to the values
publicly manipulated with the set and get methods.

Exercise 24.3: Write a program that takes a string argument that is parsed into the date to print, and print that
date in all possible styles. How lenient will the date parsing be?

567

567

24.5.1. Using Formatter with Dates and Times

The java.util.Formatter class, described in Chapter 22, also supports the formatting of date and time
information using a supplied Date or Calendar object, or a date represented as a long (or Long). Using
the available format conversions you can extract information about that date/time, including things like the
day of the month, the day of the week, the year, the hour of the day, and so forth.

The output of the formatter is localized according to the locale associated with that formatter, so things like
the name of the day and month will be in the correct languagehowever, digits themselves are not localized.
Unlike DateFormat, a formatter cannot help you with localization issues such as knowing whether the
month or the day should come first in a dateit simply provides access to each individual component and your
program must combine them in the right way.

A date/time conversion is indicated by a format conversion of t (or T for uppercase output), followed by
various suffixes that indicate what is to be output and in what form. The following table lists the conversion
suffixes related to times:

H Hour of the day for 24-hour clock format. Two digits: 0023

I Hour of the day for 12-hour clock format. Two digits: 0112

k Hour of the day for 24-hour clock format: 023

l Hour of the day for 12-hour clock format: 112

M Minute within the hour. Two digits: 0059

S Seconds within the minute. Two digits: 0060 (60 is a leap second)

L Milliseconds within the second. Three digits: 000999

N Nanoseconds within the second. Nine digits: 000000000999999999

p Locale specific AM or PM marker.

z Numeric offset from GMT (as per RFC 822). E.g. +1000

Z String representing the abbreviation for the time zone

s Seconds since the epoch.

Q Milliseconds since the epoch.

So, for example, the following code will print out the current time in the familiar hh:mm:ss format:

System.out.printf("%1$tH:%1$tM:%1$tS %n", new Date());

The conversion suffixes that deal with dates are

B Full month name

b Abbreviated month name

h Same as 'b'

A Full name of the day of the week

568

568

a Short name of the day of the week

C The four digit year divided by 100. Two digits: 0099

Y Year. Four digits: 00009999

y Year: Two digits: 0099

j Day of the year. Three digits: 001999

m Month in year. Two digits: 0199

d Day of month. Two digits: 0199

e Day of month: 199

Naturally, the valid range for day of month, month of year, and so forth, depends on the calendar that is being
used. To continue the example, the following code will print the current date in the common mm/dd/yy
format:

System.out.printf("%1$tm/%1$td/%1$ty %n", new Date());

As you can see, all the information about a date or time can be extracted and you can combine the pieces in
whatever way you need. Doing so, however, is rather tedious both for the writer and any subsequent readers
of the code. To ease the tedium a third set of conversion suffixes provides convenient shorthands for common
combinations of the other conversions:

R Time in 24-hour clock hh:mm format ("%tH:%tM")

T Time in 24-hour clock hh:mm:ss format ("%tH:%tM:%tS")

r Time in 12-hour clock h:mm:ss am/pm format ("%tI:%tM:%tS %Tp")

D Date in mm/dd/yy format ("%tm/%td/%ty")

F Complete date in ISO 8601 format ("%tY-%tm-%TD")

c Long date and time format ("%ta %tb %td %tT %tZ %tY")

So the previous examples could be combined in the more compact and somewhat more readable

System.out.printf("%1$tT %1$tD %n", new Date());

As with all format conversions a width can be specified before the conversion indicator, to specify the
minimum number of characters to output. If the converted value is smaller than the width then the output is
padded with spaces. The only format flag that can be specified with the date/time conversions is the '' flag for
left-justificationif this flag is given then a width must be supplied as well.

569

569

24.6. Internationalization and Localization for Text

The package java.text provides several types for localizing text behavior, such as collation (comparing
strings), and formatting and parsing text, numbers, and dates. You have already learned about dates in detail
so in this section we look at general formatting and parsing, and collation.

24.6.1. Collation

Comparing strings in a locale-sensitive fashion is called collation. The central class for collation is
Collator, which provides a compare method that takes two strings and returns an int less than, equal to,
or greater than zero as the first string is less than, equal to, or greater than the second.

As with most locale-sensitive classes, you get the best available Collator object for a locale from a
getInstance method, either passing a specific Locale object or specifying no locale and so using the
default locale. For example, you get the best available collator to sort a set of Russian-language strings like
this:

Locale russian = new Locale("ru", "");
Collator coll = Collator.getInstance(russian);

You then can use coll.compare to determine the order of strings. A Collator object takes localitynot
Unicode equivalenceinto account when comparing. For example, in a French-speaking locale, the characters ç
and c are considered equivalent for sorting purposes. A naïve sort that used String.compare would put
all strings starting with ç after all those starting with c (indeed, it would put them after z), but in a French
locale this would be wrong. They should be sorted according to the characters that follow the initial c or ç
characters in the strings.

Determining collation factors for a string can be expensive. A CollationKey object examines a string
once, so you can compare precomputed keys instead of comparing strings with a Collator. The method
Collator.getCollationKey returns a key for a string. For example, because Collator implements
the interface Comparator, you could use a Collator to maintain a sorted set of strings:

class CollatorSorting {
 private TreeSet<String> sortedStrings;

 CollatorSorting(Collator collator) {

 sortedStrings = new TreeSet<String>(collator);
 }

 void add(String str) {
 sortedStrings.add(str);
 }

 Iterator<String> strings() {
 return sortedStrings.iterator();
 }
}

Each time a new string is inserted in sortedStrings, the Collator is used as a Comparator, with its
compare method invoked on various elements of the set until the TReeSet finds the proper place to insert
the string. This results in several comparisons. You can make this quicker at the cost of space by creating a

570

570

treeMap that uses a CollationKey to map to the original string. CollationKey implements the
interface Comparable with a compareTo method that can be much more efficient than using
Collator.compare.

class CollationKeySorting {
 private TreeMap<CollationKey, String> sortedStrings;
 private Collator collator;

 CollationKeySorting(Collator collator) {
 this.collator = collator;
 sortedStrings = new TreeMap<CollationKey, String>();
 }

 void add(String str) {
 sortedStrings.put(
 collator.getCollationKey(str), str);
 }

 Iterator<String> strings() {
 return sortedStrings.values().iterator();
 }
}

24.6.2. Formatting and Parsing

The abstract Format class provides methods to format and parse objects according to a locale. Format
declares a format method that takes an object and returns a formatted String, tHRowing
IllegalArgumentException if the object is not of a type known to the formatting object. Format also
declares a parseObject method that takes a String and returns an object initialized from the parsed data,
throwing ParseException if the string is not understood. Each of these methods is implemented as
appropriate for the particular kind of formatting. The package java.text provides three Format
subclasses:

DateFormat was discussed in the previous section.•
MessageFormat helps you localize output when printing messages that contain values from your
program. Because word order varies among languages, you cannot simply use a localized string
concatenated with your program's values. For example, the English phrase "a fantastic menu" would
in French have the word order "un menu fantastique." A message that took adjectives and nouns from
lists and displayed them in such a phrase could use a MessageFormat object to localize the order.

•

NumberFormat is an abstract class that defines a general way to format and parse various kinds of
numbers for different locales. It has two subclasses: ChoiceFormat to choose among alternatives
based on number (such as picking between a singular or plural variant of a word); and
DecimalFormat to format and parse decimal numbers. (The formatting capabilities of
NumberFormat are more powerful than those provided by java.util.Formatter.)

•

NumberFormat in turn has four different kinds of "get instance" methods. Each method uses either a
provided Locale object or the default locale.

getNumberInstance returns a general number formatter/parser. This is the kind of object
returned by the generic getInstance method.

•

getIntegerInstance returns a number formatter/parser that rounds floating-point values to the
nearest integer.

•

getCurrencyInstance returns a formatter/parser for currency values. The Currency object
used by a NumberFormatter can also be retrieved with the getCurrency method.

•

getPercentInstance returns a formatter/parser for percentages.•

571

571

Here is a method you can use to print a number using the format for several different locales:

public void reformat(double num, String[] locales) {
 for (String loc : locales) {
 Locale pl = parseLocale(loc);
 NumberFormat fmt = NumberFormat.getInstance(pl);
 System.out.print(fmt.format(num));
 System.out.println("\t" + pl.getDisplayName());
 }
}

public static Locale parseLocale(String desc) {
 StringTokenizer st = new StringTokenizer(desc, "_");
 String lang = "", ctry = "", var = "";
 try {
 lang = st.nextToken();
 ctry = st.nextToken();
 var = st.nextToken();
 } catch (java.util.NoSuchElementException e) {
 ; // fine, let the others default
 }
 return new Locale(lang, ctry, var);
}

The first argument to reformat is the number to format; the other arguments specify locales. We use a
StringTokenizer to break locale argument strings into constituent components. For example, cy_GB
will be broken into the language cy (Welsh), the country GB (United Kingdom), and the empty variant "".
We create a Locale object from each result, get a number formatter for that locale, and then print the
formatted number and the locale. When run with the number 5372.97 and the locale arguments en_US, lv,
it_CH, and lt, reformat prints:

5,372.97 English (United States)
5 372,97 Latvian
5'372.97 Italian (Switzerland)
5.372,97 Lithuanian

A similar method can be written that takes a locale and a number formatted in that locale, uses the parse
method to get a Number object, and prints the resulting value formatted according to a list of other locales:

public void parseAndReformat(String locale, String number,
 String[] locales)
 throws ParseException
{
 Locale loc = LocalNumber.parseLocale(locale);
 NumberFormat parser = NumberFormat.getInstance(loc);
 Number num = parser.parse(number);
 for (String str : locales) {
 Locale pl = LocalNumber.parseLocale(str);
 NumberFormat fmt = NumberFormat.getInstance(pl);
 System.out.println(fmt.format(num));
 }
}

When run with the original locale it_CH, the number string "5'372.97" and the locale arguments en_US,
lv, and lt, parseAndReformat prints:

572

572

5,372.97
5 372,97
5.372,97

24.6.3. Text Boundaries

Parsing requires finding boundaries in text. The class BreakIterator provides a locale-sensitive tool for
locating such break points. It has four kinds of "get instance" methods that return specific types of
BreakIterator objects:

getCharacterInstance returns an iterator that shows valid breaks in a string for individual
characters (not necessarily a char).

•

getWordInstance returns an iterator that shows word breaks in a string.•
getLineInstance returns an iterator that shows where it is proper to break a line in a string, for
purposes such as wrapping text.

•

getSentenceInstance returns an iterator that shows where sentence breaks occur in a string.•

The following code prints each break shown by a given BreakIterator:

static void showBreaks(BreakIterator breaks, String str) {
 breaks.setText(str);
 int start = breaks.first();
 int end = breaks.next();
 while (end != BreakIterator.DONE) {
 System.out.println(str.substring(start, end));
 start = end;
 end = breaks.next();
 }
 System.out.println(str.substring(start)); // the last
}

A BreakIterator is a different style of iterator from the usual java.util.Iterator objects you
have seen. It provides several methods for iterating forward and backward within a string, looking for
different break positions.

You should always use these boundary classes when breaking up text because the issues involved are subtle
and widely varying. For example, the logical characters used in these classes are not necessarily equivalent to
a single char. Unicode characters can be combined, so it can take more than one 16-bit Unicode value to
constitute a logical character. And word breaks are not necessarily spacessome languages do not even use
spaces.

Never speak more clearly than you think

Jeremey Bernstein

Chapter 25. Standard Packages

No unmet needs exist, and current unmet needs that are being met will continue to be met.

Transportation Commission on Unmet Needs, California

573

573

The Java™ 2 Platform Standard Edition comes with many standard packages. These packages, all subpackages
of the root java package, define the main classes and interfaces for the platform. Throughout this book we
have taught you about many of these classes, particularly those relating to the core language and those most
commonly used in general programs. The main packages that we have covered are

java.lang The main language classes, such as Object, String, Thread, Class, and so on.
The subpackage java.lang.annotation defines some annotation types and was covered in
Chapter 15. The subpackage java.lang.reflect provides a way to examine types in detail and
was covered in Chapter 16. The subpackage java.lang.ref defines the weak reference types that
allow you to influence garbage collection and was covered in Chapter 17.

•

java.io Input and output and some file system manipulation. This package was covered
extensively in Chapter 20.

•

java.util Classes of general utility. Defines the collection classes both new and legacy that were
covered in Chapter 21 and the localization classes covered in Chapter 24. Miscellaneous utilities were
covered in Chapter 22.

•

java.util.regex Classes for regular expressions. These were covered in Chapter 13.•
java.security The platform security classes, which were briefly described in Chapter 23. It
contains a number of other classes for encryption, authentication, digital signatures, and other useful
security-related code.

•

java.text Internationalization and localization for formatting and parsing numbers and dates,
sorting strings, and message lookup by key. These were touched on briefly in Chapter 24.

•

We mentioned these main packages briefly, without covering them in detail:

java.nio The "New I/O" classes that we briefly introduced at the end of Chapter 20. The
CharBuffer class from this package also pops up in a couple of other places.

•

java.nio.charset Classes for defining character sets and their encodings. This package was
briefly covered in Chapter 13.

•

java.util.concurrent Contains (amongst other things) the concurrent collections that were
briefly discussed in Chapter 21.

•

In addition, there are main packages we haven't covered at all:

java.awt The Abstract Window Toolkit abstraction layer for writing platform-independent
graphical user interfaces.

•

java.applet The Applet class and related types for writing subprograms that can be hosted
inside other applications, such as HTML browsers.

•

java.beans The JavaBeans components for user-composable code.•
java.lang.instrument Services for defining agents that can instrument applications running
on a virtual machine.

•

java.lang.management Services for monitoring and managing both the virtual machine and the
operating system on which it runs.

•

java.math Mathematical manipulations. Currently, this package has only three classes, which
handle some kinds of arbitrary-precision arithmetic.

•

java.net Networking classes for sockets, URLs, and so on.•
java.rmi Remote Method Invocation, with which you can invoke methods on objects running in
other virtual machines, typically across a network.

•

java.sql The JDBC package for using relational databases.•
java.util.jar Classes for reading and writing JAR (Java ARchive) files. These archive files can
be used to distribute packages of related classes and resources, as covered in "Package Objects and
Specifications" on page 477.

•

java.util.logging A framework for logging from within your code.•
java.util.prefs Provides a mechanism for managing user and system preferences, as well as
application configuration.

•

574

574

java.util.zip Classes for reading and writing ZIP files.•

Further packages exist outside the java package of the platform, in what are known as the standard
extensions, for example:

javax.accessibility A framework for developing GUIs that are more accessible to people
with disabilities.

•

javax.naming Classes and subpackages for working with directory and naming services.•
javax.sound Has subpackages for creating and manipulating sounds.•
javax.swing The Swing package of GUI components.•

And there are packages that provide interaction between the platform and other environments:

org.omg.CORBA Classes for the Common Object Request Broker Architecture (CORBA), object
request brokers (ORB's).

•

org.omg.CosNaming The Common Object Service's naming classes.•

Other versions of the platform, such as the Java™ 2 Platform Enterprise Edition, contain even more packages.

This book cannot be large enough to contain full coverage of every one of these packagessome of them
require complete books of their own. This chapter discusses some of the java subpackages not otherwise
covered in this book, giving an overview of the purpose and contents, as well as some of the other packages
we have listed. All these packages are covered in detail in your local documentation and the java packages
are covered in the volumes of The Java™ Class Libraries, Second Edition. Most of the java packages,
including the AWT and applet packages and some extensions such as Swing, are taught in the different
versions of The Java™ Tutorial. These books and all others cited in this chapter are part of this official series
of documentation from the sourcethe people who invented the Java programming language, its virtual
machine, and many of its packages.

25.1. java.awt The Abstract Window Toolkit

The Abstract Window Toolkit allows you to write graphical user interfaces (GUIs) that will run on every
system in a reasonable way. The AWT displays GUI components (such as buttons, labels, and text fields) using
(by default) the local platform's look and feel, showing Macintosh buttons on a Mac, Motif buttons on X
platforms, Windows buttons on Windows systems, and so on.

For this to work, you may need to change how you think about laying out your GUI. You may be accustomed
to interactive tools that let you place the various GUI components on the screen exactly where you want them
to be. Such absolute placement will not work for a portable interface because, for example, the size of a button
is different on different systems. When your interface is used on a system other than the one on which you
designed it, some buttons will overlap and others will have ugly gaps between them.

Although you can use absolute placement in AWT, it is not recommended. When you place a component into
an AWT display frame, the frame's layout manager decides where to put it. Almost all the layout managers
provided with the AWT use relative placement: Components are placed and sized relative to other components.
All the provided layout managers implement either the interface LayoutManager or its extended interface
LayoutManager2. Layout managers range from the simple (FlowLayout adds components to a line until
they don't fit and then starts a new line) to the sophisticated (GridBagLayout has a great deal of
flexibility). You can also write your own layout manager.

Instead of thinking about where a check box should go on the screen, you should think about how it should be
placed relative to other components. Then choose a layout manager for the frame in which the check box will

575

575

be placed and add the components so that they have the expected relationships. If you do this right, your
interface will look clean on all platforms.

AWT has a set of standard GUI components: labels, buttons, check boxes, choice lists, scroll bars, text fields,
text regions, and so on. Several top-level containers, such as dialog boxes and windows, let you place other
components inside them (preferably using a relative-placement layout manager).

When you need to draw your own graphics on the screen, the simplest technique is to subclass Component
or Container, overriding the paint method to draw what you need using the Graphics object passed to
paint. Component is the basis for many customized user-interface components when no standard
component does what is needed. You would subclass Container if your drawn component contained other
components.

The AWT is an event-based system. When the user performs an action, such as moving a mouse, clicking a
mouse button, or typing a key, an event is generated that identifies the underlying component as the source of
that event and that encapsulates the nature of that event. The event is then placed in a central event queue, and
will be serviced by a single event thread. The event thread takes events from the queue one at a time and
dispatches them to their source components. You can also generate events programmaticallyfor example,
invoking repaint on a component puts an UPDATE event into the event queueor can create event objects
and insert them directly into the event queue.

Components are notified of events (mouse up, mouse down, mouse drag, keyboard events, and the like) by
having methods invoked on them by the event thread. You can also register listener objects that are notified
when an event occurs within a component. For example, a button that lets the user exit the program might be
set up like this:

Button b = new Button("Exit");
b.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 }
);
gui.add(b);

Action events come from the basic action on the component, such as pressing a button or selecting a check
box. The ActionEvent class has details of an action event, such as the keyboard modifiers (such as the Alt
or Control key) that were being pressed when the action occurred. To receive this event you must register
interest in action events, either by adding an ActionListener to the component as shown here or by
invoking enableEvents with an appropriate mask.

The ActionListener interface in the previous example is a listener interface. Listener interfaces extend
java.util.EventListener and exist for many kinds of events: mouse, keyboard, window, item, text,
container, and general component events. You use objects that implement listener interfaces to trigger method
execution when events occurall of which get executed by the event thread. When an event occurs, the
component's processEvent method is called, which in turn calls processXXXEvent for the specific
event, and that in turn will call the XXXOccurred method of all registered listeners for that event.

Other classes in java.awt allow you to set colors, fonts, and so on. All these properties are inherited by
default from outer componentsthe default colors of a button are those of the frame in which it has been placed.
You can override this setting at any level by explicitly specifying a color for a component. That component
and all its contained components will change to the specified color unless a subcomponent has its color
specified.

576

576

Various subpackages of java.awt allow you to manipulate images, sounds, and other media:

java.awt.color color manipulation tools•
java.awt.datatransfer moving data between applications, such as with cut, copy, and paste•
java.awt.dnd drag-and-drop functionality•
java.awt.event various event listener and adapter classes for connecting events to your code•
java.awt.font font manipulation APIs•
java.awt.geom 2D geometry•
java.awt.im input method interfaces for localized input devices•
java.awt.image several interfaces and classes for reading and manipulating images•
java.awt.print printing APIs•

25.2. java.applet Applets

Applets are a way to run code inside another applicationcommonly a web browser. Applets are the first
exposure many people have to the Java virtual machine and its uses. An applet is defined primarily by the
protocol that governs its lifetime and the methods by which it can query and manipulate its runtime
environment. The types in java.appletprimarily the Applet superclass itselfdefine this environment.

When an <applet> or <object> tag is found in a web page's HTML, the browser downloads the code for
the named class from a URL, creates an object of that class, creates a region on the web page for that object to
control, and then invokes the object's init methodoften creating a THReadGroup and THRead just for this
applet. As the applet runs, it can download other classes from the server as needed. Applets are usually run in
a tightly secured "sandbox" in which potentially dangerous operations (such as file access, network access,
and running local programs) are restricted by the security policy.

The method init is one of four lifecycle methods defined for the applet in the Applet class. After init is
called, start is called, which tells the applet that it is active and should perform its function. If the browser
decides that the applet is no longer of interest to the user, for example, the user leaves the page the applet was
on, the applet's stop method is invoked to tell it to stop what it was doing. If the user returns to the applet's
page the browser may invoke start again to tell the applet to recommenceso the applet can cycle through a
stopstart sequence as the user presses the "Back" and "Forward" buttons (or their equivalents) to visit and
leave the page. When the browser decides that the applet is no longer of interest (perhaps because the user has
moved a number of pages away) the applet's destroy method is invoked to free up any resources used by
the applet. If the applet's page is now revisited the lifecycle will recommence with init being called again.
The browser ultimately defines the lifecycle of an applet and may choose to invoke destroy immediately
after stop when the user leaves the page. Whether or not an applet class is unloaded and reloaded between
visits to the applet is again a feature of the browser.

These lifecycle methods are typically overridden by applet classes. For example, if an applet uses a thread to
do its work, init would typically create the thread; start would invoke the thread's start method the
first time and ask it to continue execution on subsequent invocations; stop could ask the thread to pause to
prevent it from consuming resources while the page is not visible; and destroy could interrupt the thread
because the thread would no longer be needed.

An applet can get parameters from a <param> tag to customize its behavior. It might get colors, fonts, or the
URL of an image to display.

Applets usually run in a highly constrained security environment to protect your computer and network from
unwelcome inspection or invasion by a hostile applet. This means that certain conveniences, such as a local
scratch disk, may not be available by default. You can grant permission to perform particular actions to
individual applets by specifying an appropriate security policy.

577

577

The applet model is a good example of how the Java platform provides power. The fact that the same code
runs on all systems in the same way allows a single piece of code (an applet) to run in a variety of browsers on
a variety of windowing systems running on a larger variety of operating systems. The portability of Java
bytecodes allows you to execute part of your application on the server and another part on the client system
via downloaded code, whichever is appropriate. It is the same platform on both sides: the Java virtual
machine. The ability to move code from one place to another and execute it in a secure environment enables
new ways of thinking about where to execute what part of your design.

25.3. java.beans Components

The JavaBeans™ component architecture helps independent vendors write classes that can be treated as
components of larger systems assembled by users. The java.beans package provides necessary and useful
classes for writing such beans. A bean exports properties, generates events, and implements methods. By
following certain design patterns or by implementing methods that provide a description of these facets of
behavior, you can compose beans by using interactive tools to build a system the user needs.

Much of a bean's behavior is simplified if you follow expected design patterns. For example, if your bean
class is called Ernest and you provide a class named ErnestBeanInfo that implements the BeanInfo
interface, the JavaBeans tools will use ErnestBeanInfo as a source of information about the behavior of
the bean: the events it supports, the icons it uses, and so on.

Providing a BeanInfo object is itself optionalthe JavaBeans system will use reflection to infer events and
properties. For example, if a class Ernest has methods named getImportance and setImportance,
the JavaBeans system will assume that you have an importance property that can be set, either directly or
via another bean. Builder tools are expected to present the properties and events to users, who can use them to
connect beans as components to build custom applications.

AWT components are beans, and the event model described earlier for AWT components is also the JavaBeans
event model.

The JavaBeans component architecture is designed to interoperate with existing component architectures,
extending the "Write Once, Run Anywhere" capability to create a homogeneous component platform.

The subpackage java.beans.beancontext defines interfaces and classes that are used to talk about the
context in which a bean or set of beans is executing. Bean contexts can be nested.

25.4. java.math Mathematics

The package java.math is destined for classes that help with mathematical calculations. Currently, it has
three classesBigInteger, BigDecimal and MathContextand an enum, RoundingMode, that defines
different rounding modes.

The class BigInteger provides arbitrary-precision integer arithmetic, providing analogous operations for
all integer operations except >>>, which is equivalent to >> because there is no sign bit to copy in an
arbitrary-precision integer. Neither will the provided single-bit operations (clearBit and setBit) change
the sign of the number on which they operate. BigInteger behaves as if it were defined in
two's-complement notationthe same notation used by the primitive integer types. Binary bitwise operations
start by extending the sign of the smaller number and then executing the operation, just as operations on
primitive values do. BigInteger objects are immutable, so all operations on them produce new
BigInteger objects. The following simple method returns an iterator over the prime factors of a number:

578

578

static final BigInteger ONE = BigInteger.valueOf(1);
static final BigInteger TWO = BigInteger.valueOf(2);
static final BigInteger THREE = BigInteger.valueOf(3);
public static Iterator<BigInteger> factors(BigInteger num) {
 ArrayList<BigInteger> factors =
 new ArrayList<BigInteger>();

 if (num.compareTo(ONE) <= 0) { // num<=ONE means skip it
 factors.add(num);
 return factors.iterator();
 }

 BigInteger div = TWO; // divisor
 BigInteger divsq = BigInteger.valueOf(4); // div squared

 while (num.compareTo(divsq) >= 0) {
 BigInteger[] res = num.divideAndRemainder(div);
 if (res[1].signum() == 0) { // if remainder is zero
 factors.add(div);
 num = res[0];
 } else { // try next divisor
 if (div == TWO)
 div = THREE;
 else
 div = div.add(TWO);
 divsq = div.multiply(div);
 }
 }
 if (!num.equals(ONE)) // leftover must be a factor
 factors.add(num);
 return factors.iterator();
}

The constants ONE, TWO, and THREE are used often, so we create objects for them once. If the number we are
factoring is less than or equal to one, we treat it as its own factor (BigInteger and BigDecimal
implement the Comparable interface described on page 574). After this validity test we perform the real
work of the method: testing potential divisors. If a divisor divides into the number evenly, it is a prime factor,
and we proceed with the result of the division to find more factors. We first try two, and then all odd numbers,
until we reach a divisor whose square is larger than the current number. You could optimize this method in
any number of ways, but it shows how to use some BigInteger functionality.

BigDecimal provides an arbitrary-precision signed decimal number consisting of an arbitrary-precision
integer and an int scale that says how many decimal places are to the right of the decimal point. The actual
precision required can be set through a MathContext object that is either associated with the
BigDecimal at construction time or passed as an argument to the actual operation being performed.

Decimal division and changing a number's scale require rounding, which you can specify on each operation or
through an associated MathContext object. You can require that rounding be up, down, toward zero, away
from zero, or toward the nearest value. You can also assert that no rounding will be necessary, in which case
ArithmeticException will be thrown if you are found to be wrong. The eight different rounding modes
are defined by the RoundingMode enum.

25.5. java.net The Network

The java.net package provides classes for working with network infrastructure, such as sockets, network
addresses, Uniform Resource Identifiers (URIs), and Uniform Resource Locators (URLs).

579

579

The java.net package is centered around the Socket class, which represents a connection to another
socketpossibly on another machineacross which bytes can flow. You typically create a socket with a host
name or InetAddress and a port number. You can also specify a local InetAddress and port to which
the socket will be bound. A ServerSocket class lets you listen on a port for incoming connection requests,
creating a socket for each request. For example, the following program accepts input on a socket:

import java.net.*;
import java.io.*;

public class AcceptInput {
 public static final int PORT = 0xCAFE;

 public static void main(String[] args)
 throws IOException
 {
 ServerSocket server = new ServerSocket(PORT);
 byte[] bytes = new byte[1024];
 for (;;) {
 try {
 System.out.println("---------------------");

 Socket sock = server.accept();
 InputStream in = sock.getInputStream();
 int len;
 while ((len = in.read(bytes)) > 0)
 System.out.write(bytes, 0, len);
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

This program creates a ServerSocket and repeatedly accepts connections to it. The Socket obtained for
each connection is queried for an input stream and the data from that socket is read from the stream and
written to the standard output stream, printing whatever bytes it receives. A client that shipped its standard
input to the server might look like this:

import java.net.*;
import java.io.*;

public class WriteOutput {
 public static void main(String[] args)
 throws IOException
 {
 String host = args[0];
 Socket sock = new Socket(host, AcceptInput.PORT);
 OutputStream out = sock.getOutputStream();
 int ch;
 while ((ch = System.in.read()) != -1)
 out.write(ch);
 out.close();
 }
}

Once we have the actual Socket connection, I/O is performed, like all other I/O, using an appropriate input
or output stream.

580

580

A URL object stores a URL, providing methods to examine and set its various parts (protocol, host, port
number, and file). A URL object simply names a resourceyou invoke openConnection to connect to the
named resource. The openConnection method returns a URLConnection object that lets you get the
header fields and content of the resource as input and output streams. The following program reads the
contents of a URL:

import java.net.*;
import java.io.*;

public class ReadURL {
 public static void main(String[] args) {
 for (String url : args) {
 try {
 readURL(url);
 } catch (Exception e) {
 System.err.println(url + ":");
 e.printStackTrace();
 }
 }
 }

 private static void readURL(String name)
 throws MalformedURLException, IOException
 {
 URL url = new URL(name);
 URLConnection connect = url.openConnection();
 InputStream in = connect.getInputStream();
 byte[] bytes = new byte[1024];

 int len; // number of bytes actually read
 while ((len = in.read(bytes)) >= 0)
 System.out.write(bytes, 0, len);
 }
}

The URLEncoder class lets you turn an ISO Latin-1 string (such as a user-typed query) into a form that can
be included as part of a URL. ASCII letters and digits remain unchanged, the space character is converted to a
+, and all other characters are represented by their lower 8 bits in hex preceded by a %.

The File.toURL method creates a file URL for the path specified by that File object.

You can create DatagramSocket objects for sockets that send and receive DatagramPacket objects,
which contain an array of bytes. Datagrams are a connectionless packet delivery service, in which packets are
individually addressed and routed and could be received in any order. With the MulticastSocket
subclass of DatagramSocket, you can set up a socket that can send and receive packets to and from
multiple addresses.

25.6. java.rmi Remote Method Invocation

When you can download and run code on other systems, the face of distributed computing changes. The Java
platform's Remote Method Invocation (RMI) gives you a way to create objects whose methods can be invoked
from other virtual machines, including those running on completely different hosts. Because RMI is designed
for communicating between Java virtual machines it can take advantage of the architecture's features and can
operate in a natural fashion for programmers. RMI is contained in the package java.rmi and its
subpackages, most notably the package java.rmi.server for RMI server implementations.

581

581

To use RMI you must first design one or more remote interfacesinterfaces whose methods can be invoked
remotely. A remote interface extends the Remote interface, and its methods throw RemoteException in
addition to any other exceptions. Here, for example, is a simple definition of a compute server interface that
will accept Task objects for execution, returning the resulting Object:

import java.rmi.*;

public interface ComputeServer extends Remote {
 Object compute(Task task) throws RemoteException;
}

The Task interface is generic, allowing a ComputeServer to do any computation requested of it:

public interface Task extends java.io.Serializable {
 Object run();
}

Task itself is not a remote interface. Each ComputeServer object will run on a host and will be asked to
execute tasks locally on its own host and return any results. (Traditionally, the application invoking a remote
method is called the client of the invocation, and the application executing the method is called the server,
although a client of one invocation may be the server of another.) Task extends Serializable because all
local types passed to or returned from a remote method must be serializable.

Each method of a remote interface is required to throw RemoteException because any invocation of a
remote method can have failures that must be signaled. Recovery from these failures is unlike recovery in
local computation, where methods always arrive at their intended objects and either results are always
returned or you clearly know that they were not returned.

When you invoke a remote method, network failures create new uncertaintiesif the network fails after the
request is transmitted from the client, the client doesn't know whether the request was received. The failure
may have happened before the invocation reached the server, or it may have happened after it reached the
server but before results could be returned. There is no way for the client to know which of these two cases
actually happened. If the request is to withdraw money from your bank account, you would not want to simply
retransmit the requestit might get there twice. Remote interfaces must be designed to allow clients to recover
from such partial failures. Methods may be idempotentmeaning the method can safely be reinvokedor some
other recovery method may be provided for the interface, such as transactions that can be aborted when
non-idempotent methods fail. The users of a remote object must recover from such failures, and the declared
RemoteException helps them do so.

Here is a simple implementation of the ComputeServer interface:

import java.rmi.*;
import java.rmi.server.*;

public class ComputeServerImpl
 extends UnicastRemoteObject
 implements ComputeServer
{
 public ComputeServerImpl() throws RemoteException { }

 public Object compute(Task task) {
 return task.run();
 }

 public static void main(String[] args)

582

582

 throws java.io.IOException
 {
 // use the default, restrictive security manager
 System.setSecurityManager(new RMISecurityManager());

 ComputeServer server = new ComputeServerImpl();
 Naming.rebind("ComputeServer", server);
 System.out.println("Ready to receive tasks");
 }
}

This code is also straightforward. When a compute invocation arrives from a client,
ComputeServerImpl implements the ComputeServer interface by taking the Task object it is given
and invoking its run method, returning the resulting Object. Each incoming request typically gets its own
thread, so this compute server implementation could have many concurrently executing tasks for different
clients. ComputeServerImpl extends UnicastRemoteObject, which provides references for
single-server remote method invocation. UnicastRemoteObject, like most types needed only by servers,
is defined in java.rmi.server. The ComputeServerImpl constructor declares that it throws
RemoteException because it can be thrown by the (implicitly invoked) UnicastRemoteObject
constructor when it registers the object with the RMI system.

Now comes the fun part. Clients can ask the server to perform any computation at all. Suppose, for example,
that you want to compute π to some number of decimal places. You can have the compute server do this for
you:

import java.math.BigDecimal;

public class Pi implements Task {
 private int decimals;

 /** Calculate Pi to a given number of decimal places */
 public Pi(int decimals) {
 this.decimals = decimals;
 }

 public Object run() {
 BigDecimal res = computePi();
 return res;
 }

 BigDecimal computePi() {
 // ...
 }
}

The Pi class implements the Task interface with a run method that returns a java.math.BigDecimal
object containing the computed result. You then put the compiled Pi class someplace where it can be
downloaded from a URL, just as an applet class would be. The URL from which to download the code will be
set as a property for your client.

When you invoke the compute server's compute method, passing a Pi object, the server will need the Pi
class. It will look at the URL that has been implicitly passed with the request, download the class, and run it in
a secure sandbox. It will then invoke the Pi object's run method and return the result.

This ComputeServer example leverages the Java virtual machine's homogeneous computing model, in
which all code means the same thing on all platforms, and its security model, in which downloaded code can

583

583

be run securely.

Many environments can use the basic infrastructure just described. A compute farm that uses a large number
of computers to render animation can use such a system to feed those computers images to be rendered, sound
computations, and other tasks. This simple example needs some hardening to be used in other situations,
especially when Task objects could not be trusted to be friendly. All you need is a Java virtual machine at
both ends of the network.

UnicastRemoteObject references are for remote services that are started by the user or system. You can
use java.rmi.activation.Activatable for references to remote objects that you want to be started
automatically when they are first needed.

Because of the dangers inherent in running downloaded code, RMI requires that a security manager be
installed. The RMISecurityManager class is a very conservative security manager that you can install to
prevent unauthorized access to your system, or you can provide your own security manager.

Your server class may not be able to extend an RMI server class because your class must extend a different
class. For example, an applet class must extend Applet and so cannot extend UnicastRemoteObject.
You can create servers that do not extend UnicastRemoteObject by having your class's constructor
invoke a static method:

public class SnazzyApplet extends Applet
 implements SnazzyRemote
{
 public SnazzyApplet() throws RemoteException {
 UnicastRemoteObject.exportObject(this);
 }
 // ... implement SnazzyRemote and Applet methods ...
}

Classes are downloaded from client to server (or server to client) only if they are needed. Classes will often be
known on both sides. For example, BigDecimal is part of the core, so both the client and the server already
know about it and it will not be downloaded. User-defined classes are treated in the same wayif both the client
and server have a class installed, it will not be downloaded across the network.

Arguments and return values of remote methods are handled somewhat differently from those of local
methods. RMI passes arguments and return values by using object serialization (see page 549). When a remote
reference is passed as an argument or return value, the receiver will get a reference to the same remote object
that was passed. This is how local references act in local methodsan object reference refers to the same object
in both the invoking code and the invoked method. Primitive types, too, are passed in the same way locally
and remotely; the receiver gets a copy of the value.

References to local objects must be passed differently. Local objects are not designed to deal with partial
failures, so it is not possible to pass across the network a remote reference to a local object. Local objects are
instead passed by a deep copy made by serialization. Any remote references contained within the object or in
any part of the graph of objects it denotes will be passed as described earlier. All other parts of the graph will
be serialized on the sender's system and deserialized on the receiver's. Changes made on one side will not be
visible to the other side, because each side has its own local copy of the object.

The RMI registry provides a simple naming system to store remote references for bootstrapping your clients.
This is not a full naming system, but it will let you store objects that register or find top-level services. The
registry is accessed via the Naming class.

584

584

Server objects are governed by a "best effort" distributed garbage collector. When no outstanding references
to a remote object exist, that object can be collected. This is similar in principle to garbage collection for local
objects, but the failures of distributed computing make surety impossible. If a client hasn't been in contact for
a long time, it is presumed to have gone away without notifying the server (possibly the system crashed). If a
long-lived network failure is actually at fault, the client may find that the server has been garbage-collected
when the network reconnects. Every reasonable effort is made to preclude this possibility. A server can ensure
that it will never be garbage-collected by simply holding on to a remote reference to itself, thus ensuring that
at least one remote reference will keep it alive. This reference can be dropped when the server decides that it
no longer must be forced to be alive.

RMI is explicitly designed to take advantage of having both client and server in the Java programming
language. This gives it a form that is simple and direct for people who know the language. You can, of course,
implement any server methods you like as native methods. Native methods can help you use RMI as a
bridge to existing native code, such as in two- and three-tier systems.

The subpackage java.rmi.activation provides for activatable servers, which will be started when they
receive messages if they are not already running. Multiple servers can be put in the same activation group, and
will then be run in the same virtual machine.

25.7. java.security and Related Packages Security Tools

The security architecture that was introduced in Chapter 23 is quite extensive and incorporates a range of
mechanisms for encryption, authorization, authentication, and so forth. These mechanisms are spread across a
number of packages.

The package java.security contains several useful tools for security-related functions: digital signatures,
message digests, key management, and cryptographic keys. Subpackages define abstractions for certificates
(java.security.cert), RSA and DSA keys (java.security.interfaces), and key and
algorithm parameter specifications (java.security.spec).

The javax.security subpackages complement these tools with a full authentication and authorization
framework (javax.security.auth and its subpackages), including support for the Simple
Authentication and Security Layer (SASL) as defined by RFC 2222 (the javax.security.sasl
package). The authorization component allows specification of access controls based on code location, code
signers, and code executors (subjects), using common protocols such as Kerberos and X500.

The javax.crypto package and subpackages (interfaces and spec) provide rich mechanisms for
cryptography, including encryption with various kinds of ciphers, MAC generation, and key creation and
agreement.

The org.ietf.jgss package provides a framework that helps you use security services such as
authentication, data integrity, and data confidentiality from a variety of underlying security mechanisms. The
security mechanisms an application can choose are identified with unique object identifiers. For example, the
Kerberos v5 GSS-API mechanism has the object identifier 1.2.840.113554.1.2.2. This mechanism is available
through the default instance of the GSSManager class.

Because there are many ways to approach things like cryptography and authentication, and there will be many
more in the future, the security architecture provides abstractions of security interactions. Implementations of
the abstractions are supplied by providers. Each platform has one or more providers. The
java.security.Security utility class provides methods to find out which providers are available.
Providers can interoperate through the provided abstractions.

585

585

Much more information on these packages, and on security in general in the virtual machine, is in Inside
Java™ 2 Platform Security, Second Edition.

25.8. java.sql Relational Database Access

The package java.sql provides the Java Database Connectivity™ (JDBC) package for using relational
databases. These classes and methods can be implemented directly by your database vendor or through the
industry-standard Open Database Connectivity (ODBC) interface. JDBC is, in effect, a mapping of ODBC. The
JDBC package and other issues about relational databases are covered in JDBC™ API Tutorial and Reference,
Third Edition.

25.9. Utility Subpackages

Some of the utility classes in java.util are not independent classes but groups of related classes that
together provide a particular functionality. These classes are themselves grouped into subpackages within
java.util.[1]

[1] For pragmatic reasons the collections classes had to be defined at the top level of
java.util, rather than in a subpackage, because of the existing legacy collections.

25.9.1. Concurrency Utilities java.util.concurrent

The package java.util.concurrent, together with its subpackages provides a range of utilities for
writing efficient multithreaded applications. These utilities expand the in-built synchronization facilities of the
Java programming language to allow building concurrent applications that would not otherwise be possible
with synchronized code, and to simplify common synchronization tasks that would otherwise be tedious and
error-prone to write using the language facilities. The utilities provided can be divided into five categories:

Concurrent collections These were described in Chapter 21.•
Synchronizers A group of utility classes that simplify common synchronization tasks (discussed
below).

•

Executor framework A framework for asynchronous task execution, including a flexible,
high-performance thread pool implementation.

•

Locks and Conditions Classes that provide locking and waiting capabilities that go beyond those of
the built-in monitor capabilities.

•

Atomic variables A set of classes that allow safe expression of lock-free and wait-free algorithms
within an application.

•

There are four synchronizer classes:

Semaphore A counting semaphore. Useful for many situations in which access to a resource must
be controlled. To use the resource a thread must acquire a (conceptual) permit, or token, from the
semaphore. If none is available then the thread blocks until one is. When finished with the resource
the thread releases the permit back to the semaphore to allow other threads to proceed. A counting
semaphore can hold an arbitrary number of permits; a binary semaphore is a semaphore with only one
permit.

•

CountDownLatch A utility for blocking until a given number of events have occurred or until
certain conditions hold. The latch is created with a given number of events to expect. Each thread that
triggers an event or sets a condition calls the countDown method which decrements the initial count.

•

586

586

A thread that calls the await method will block until the latch has counted down to zero.
CyclicBarrier A utility that forces all threads using the barrier to wait until all those threads are
ready to pass the barrier. This is useful for multi-phase algorithms in which all threads must complete
a given phase before any threads commence the next phase.

•

Exchanger A simple utility that allows two threads to exchange data. The first thread to arrive at
the exchanger waits until the other arrives, they then exchange data and proceed.

•

An Executor knows how to execute a taskwhich is represented by a Runnable objectand replaces the
direct creation of new threads within an application. Depending on the implementation used, the Executor
may execute the task in the current thread, submit the task to a thread pool for later execution, or perhaps
create a new thread to execute the task. The Executor abstracts all the details of thread creation and
management and allows the problem of executing tasks to be separated from the problem of generating tasks.
An ExecutorService expands on the basic executor to provide lifecycle managementsuch as shutting
down an executor. Particular implementations of ExecutorService provide thread pools
(ThreadPoolExecutor) and permit the scheduling of tasks in the future
(ScheduledThreadPoolExecutor).

The Callable interface defines a task that can return a result (unlike a Runnable). A Future represents
a computationsuch as that in a Callablethat may not yet have completed or even begun. You can submit a
Future to an Executor (using the concrete FutureTask class) knowing that at some time in the future
the result of the computation will be available. You can use the Future to ask whether the task has
completed or to block until the task completes and the result is available.

The java.util.concurrent.locks subpackage defines the Lock and Condition interfaces and the
ReentrantLock implementation. Lock abstracts the functionality of locking, as implied in the use of
synchronized blocks and methods, to allow more flexible locking. A Lock can be locked in one method
and unlocked in a different onesomething that is needed in some concurrent traversal algorithms, and which is
impossible to do with synchronized blocks or methods. In addition, the methods of Lock allow you to
acquire the lock only if it is availablethat is, you don't block trying to acquire the lockor to stop trying to
acquire the lock if interrupted or if a certain time has elapsed.

A Condition abstracts the functionality of the Object monitor methods wait, notify, and
notifyAll into a distinct interface with methods await, signal, and signalAll. Condition
objects are used with Lock objects the same way that wait/notify are used with monitors. The advantage
is that while there is only a single wait-set per object, a Lock can have as many associated Condition
objects as you need. The ReentrantLock class is one useful implementation of Lock that gives you
Condition objects that are functionally equivalent to synchronized methods and blocks, plus the use of
the monitor methods.

The package also contains the ReadWriteLock interfaceand an implementationfor a lock that allows for
both exclusive use and shared useinformally, only one writer may hold the lock (exclusive) but arbitrarily
many readers can hold the lock (shared).

The java.util.concurrent.atomic package provides classes that represents values (int, long,
references, and arrays of these values) that can be manipulated atomically. These classes provide operations
that without the use of locks or in-built synchronization can, for example, get, set, increment, or decrement an
integer. Atomic variables are used in the implementation of high-performance concurrent algorithms. For each
basic atomic variable class, such as AtomicInteger, there is a corresponding atomic field updater class,
such as AtomicIntegerFieldUpdater, that allows you to access a given field of an object atomically.
These classes also provide the compareAndSet operation that is the fundamental operation in most
lock-free and wait-free concurrent algorithms. It will atomically set a variable to a new value only if the
variable currently holds an expected value.

587

587

25.9.2. Archive Files java.util.jar

The java.util.jar package provides classes for reading and writing the JAR (Java ARchive) file format,
which is based on the standard ZIP file format with an optional manifest file. JAR files can be used to
distribute the classes and resources of a Package as a single unit. The manifest stores information about the
JAR file contents and provides the specification information for the Package contained thereinas we
discussed on page 477.

Archive files define a format for storing multiple files within a single file, and allow for the compression of
those original file contents. A full description of archive files, particularly the JAR format, is beyond the
scope of this book. For illustration we briefly describe each of the classes within the java.util.jar
package:

Attributes maps Manifest attribute names to associated string values.•
Attributes. Namerepresents an attribute's name. The main function of this class is to define static
Attributes.Name objects for each attribute that a manifest may have. For example, the object
corresponding to the "Manifest-Version" attribute of a manifest is stored in the static field
Attributes.Name.MANIFEST_VERSION.

•

JarEntry represents a JAR file entry.•
JarFile represents an actual JAR file and allows that JAR file to be read or written.•
JarInputStream reads a JAR file. Methods exist that read each entry of the JAR file into a new
JarEntry object.

•

JarOutputStream writes a JAR file. Methods exist that take a JarEntry object that is written
to the JAR file.

•

Manifest maintains manifest entry names and their associated attributes.•

A JarFile represents an actual JAR file and allows its contents to be read or written with the appropriate
streams. A JAR file consists of a manifest and a number of JAR entries that can be read or written
individually. The manifest contains all the attributes of the JAR file and all the attributes of the entries in the
JAR file. The manifest is decoded with the Manifest and Attributes classes. Each JarEntry
contains the per-entry attributes extracted from the manifest.

Most users never need to use the classes within java.util.jar. JAR files can be created via tools
supplied as part of your development environment and are read automatically by the class loader within the
virtual machine when needed.

25.9.3. ZIP Files java.util.zip

The java.util.zip package provides classes for reading and writing standard ZIP and GZIP file
formats. We mention it only for completeness, as it predates the newer JAR file format and forms its basis.

ZipFile represents a ZIP or GZIP format file.•
ZipEntry represents an entry in a ZIP or GZIP format file.•
ZipInputStream reads ZIP file format.•
ZipOutputStream writes ZIP file format.•
GZIPInputStream reads GZIP file format.•
GZIPOutputStream writes GZIP file format.•
Deflater provides general support for using ZLIB compression.•
DeflaterOutputStream writes using ZLIB compression•
Inflater provides general support for using ZLIB decompression.•
InflaterInputStream reads ZLIB compressed data.•
CheckedInputStream reads a stream, creating a checksum of the data.•
CheckedOutputStream writes a stream, creating a checksum of the data.•

588

588

CRC32 computes a checksum using the CRC-32 algorithm.•
Adler32 computes a checksum using the Adler-32 algorithm.•

25.10. javax.* Standard Extensions

Standard extensions are packages or collections of packages that can be downloaded to extend the capabilities
of a particular virtual machine. They will usually have names starting with javax, although future exceptions
may be made. Conversely, packages with javax in the name may become part of the main set of packages
over time. For example, the javax.swing and javax.accessibility packages are part of the main
set. The name indicates that they were at first not part of the main set, but integrated later.

Standard extensions are a mechanism that allows growth in the capabilities of the platform without further
extensions to the core packages required of all virtual machines. New standard extensions can be defined and
made available, but only installed where they are needed. Several standard extensions are defined, and more
are on the way. Listing them all is far outside the scope of this bookyou can find more information on the
Web, especially at http://java.sun.com.

25.11. javax.accessibility Accessibility for GUIs

Graphical user interfaces traditionally assume certain kinds of abilities on the part of the user, such as the
ability to use a mouse or keyboard. These assumptions are a problem for some people. The
javax.accessiblity interfaces and classes provide a way to write interfaces that can use assistive
technologies for input and output, allowing people with different abilities to use the same interfaces. If an
application fully supports the accessibility API, then it should be compatible with, and friendly toward,
assistive technologies such as screen readers and magnifiers.

25.12. javax.naming Directory and Naming Services

This package defines the naming operations of the Java Naming and Directory Interface™ (JNDI), with the
subpackage javax.naming.directory, defining the directory operations. These are designed to be
independent of any specific naming or directory service implementation. Thus a variety of servicesnew,
emerging, and already deployed onescan be accessed in a common way.

A context, represented by the Context interface, consists of a set of name-to-object bindings. Context is
the core interface for looking up, binding, unbinding, and renaming objects, and for creating and destroying
subcontexts. lookup is the most commonly used operation. You supply lookup the name of the object you
want to look up, and it returns the object bound to that name. For example, the following code fragment looks
up a printer and sends a document to the printer object to be printed:

Printer printer = (Printer) ctx.lookup("Duplex");
printer.print(report);

Every naming method in the Context interface has two overloads: one that accepts a Name argument and
one that accepts a string name. Name is an interface that represents a generic namean ordered sequence of
zero or more components. For these methods, you can use Name to represent a composite name
(CompositeName) so that you can use a name that spans multiple namespaces.

589

589

http://java.sun.com

The overloads that accept Name arguments are useful for applications that need to manipulate names:
composing them, comparing components, and so on. The overloads that accept string names are likely to be
more useful for simple applications, such as those that simply read in a name and look up the corresponding
object.

The Binding class represents a name-to-object binding. It is a tuple containing the name of the bound
object, the name of the object's class, and the object itself. The Binding class is actually a subclass of
NameClassPair, which consists simply of the object's name and the object's class name. The
NameClassPair is useful when you only want information about the object's class and do not want to pay
the extra cost of getting the object.

Objects are stored in naming and directory services in different ways. If an object store supports storing
objects it might store that object in its serialized form. However, some naming and directory services do not
support the storing of such objects. Furthermore, for some objects in the directory, Java programs are just one
group of applications that access them. In this case, a serialized object might not be the most appropriate
representation. JNDI defines a Reference that contains information on how to construct a copy of the
object. JNDI will attempt to turn references looked up from the directory into the objects they represent so
that JNDI clients have the illusion that what is stored in the directory are objects.

In JNDI, all naming and directory operations are performed relative to a contextthere are no absolute roots.
Therefore, JNDI defines an InitialContext class that provides a starting point for naming and directory
operations. Once you have an initial context, you can use it to look up other contexts and objects.

The DirContext interface represents a directory context. It defines methods for examining and updating
attributes associated with a directory object, or directory entry as it is sometimes called. You use
getAttributes to retrieve the attributes associated with a directory object (for which you supply the
name). You can add, replace, or remove attributes and/or attribute values with the modifyAttributes
method.

DirContext also behaves as a naming context by extending the Context interface. This means that any
directory object can also provide a naming context. For example, the directory object for a person might
contain the attributes of that person, and also provide a context for naming objects relative to that person such
as printers and home directory.

DirContext contains methods for performing content-based searching of the directory. In the simplest and
most common form of usage, the application specifies a set of attributespossibly with specific valuesto match,
and submits this attribute set to the search method. Other overloads of search support more sophisticated
search filters.

The subpackage javax.naming.event supports event notification for directory and naming services.
Events include adding or removing objects, as well as events signifying changes in the stored objects
themselves.

The subpackage javax.naming.spi defines the Service Provider Interface (SPI) which allows for
dynamically plugging in support for using JNDI.

25.13. javax.sound Sound Manipulation

The javax.sound package consists only of subpackages. javax.sound.midi provides interfaces for
reading, writing, sequencing, and synthesizing data that conforms to the Musical Instrument Digital Interface
(MIDI) format. javax.sound.sampled provides classes and interfaces for capturing, processing, and
playing back digital (sampled) audio data. Each of these has a SPI subpackage to support the dynamic

590

590

addition of sound services.

25.14. javax.swing Swing GUI Components

The Swing components are a rich set of graphical user-interface controls. They are written to look and behave
for the user identically on all systems as far as possible. This is in contrast to the AWT components which rely
on the native GUI components. An AWT button will look like a Windows button on a Windows machine, a
Macintosh button on a Macintosh computer, and so forthits interaction with the program is the same on all
platforms, but the user will see the native look and feel. A Swing component can have the same look on all
platformsits code is written in the Java programming language. The look and feel is "pluggable"you or the
user can use one of the standard look-and-feels or invent one. Swing components are also give you more
control over the look and behavior of the system. You only occasionally need such control, but it is nice to
have it when you do need it.

The Swing components use the same event model as AWT and JavaBeans components, although the
components do define some new events.

Several subpackages define interface objects, tools for defining a custom pluggable look-and-feel, support
HTML and text editing, and support some of the more complex components, such as tree displays and tables.

25.15. org.omg.CORBA CORBA APIs

The package org.omg.CORBA, its various subpackages and other org.omg subpackages (such as
CosNaming) provide the mapping of the OMG CORBA APIs and services to the Java programming
language. (The package names are different from the standard core package names because they are defined
by the Object Management Group and incorporated into the core package set.) CORBA is a way to send
messages between processes that are not necessarily written in the same programming language. This is
distinct from RMI, which communicates between programs written, at least in part, in the Java programming
language (we use the phrase "at least in part" because RMI programs can include native code).

Programming today is a race between software engineers striving to build bigger and better
idiot-proof programs, and the universe trying to produce bigger and better idiots. So far the
universe is winning.

Rich Cook

Appendix A. Application Evolution

With every passing hour our solar system comes 43,000 miles closer to globular cluster M13
in the constellation Hercules, and still there are some misfits who continue to insist that there
is no such thing as progress.

Ransom K. Ferm

The Java platform has undergone a number of changes since it was first introduced, but none more significant
than those that occurred with the 5.0 release. While in general we try to avoid issues concerning the evolution
of the platform, it is impossible to ignore those issues now. For some time to come, there will be applications
and libraries that still comply with the older 1.3 version of the platform (as documented in the third edition of
this book), those that support the additional features introduced in the 1.4 release, and finally those moving

591

591

forward to take full advantage of the new features of the 5.0 release. The technical issues involved in
application evolution and migration can be complex, and many of the changes to the language and libraries for
the 5.0 release were designed with backward compatibility and migration in mind. A full coverage of the
technical issues, let alone the management and logistics issues involved, is beyond the scope of this book, but
we do want to highlight a couple of areas for your consideration.

The first section gives a brief overview of how the compiler and virtual machine can deal with different
versions of the language and runtime. Next, we look at some ways of dealing with the different dialects that
language changes produce, using assertions as an example. Finally, we look at some of the issues involving
the integration of generic and non-generic code.

A.1. Language, Library, and Virtual Machine Versions

Each new release of the Java platform potentially changes three things:

The language itself, through the addition of new keywords or extensions to the use of existing
keywords

•

The libraries: new types and/or new methods on existing types•
The virtual machine, and in particular the format of the compiled classes that the virtual machine
expects

•

Not every new platform release changes all threein particular, changes to the class format occur rarely because
of the major impact such changes can have.

The compiler that comes with the Java Development Kit (JDK) tracks changes to the language and virtual
machine through the use of "source" and "target" options that can be passed to it. By supplying an appropriate
source and target pair you can compile code that will run on current or older versions of the virtual
machineassuming the code is compatible with the source version of the language chosen.

The different source versions and their approximate meaning are as follows:

1.1 The oldest recognized definition of the language, which included the original language definition
together with nested types and blank final variables. This source version is no longer supported by the
compiler in the 5.0 release.

•

1.2 Introduced the strictfp modifier.•
1.3 Same as 1.2; this version number was added for consistency.•
1.4 Introduced assert.•
1.5 Introduced generics, enums, annotations, and extended for loop. Also uses StringBuilder
rather than StringBuffer for string concatenation.

•

Similarly, the target versions are

1.1 Compliant with the first edition of the Java Virtual Machine Specification (JVMS)•
1.2 Compliant with the second edition of the JVMS. The main change involved the way static member
accesses were encoded in the compiled class and resolved at runtime.

•

1.3 No known change•
1.4 No known change•
1.5 Compliant with the third edition of the JVMS. This enables support for enums, annotations, and
some aspects of generics. It also modifies the way class literals are implemented.

•

Because some language changes require new library classes, a change in the source version may imply a
minimum target value. For example, a source of 1.4 requires a target of 1.4 because an earlier version of the
virtual machine won't have the classes or methods that support assertions. Not surprisingly, a source of 1.5

592

592

requires a target of 1.5 as well. Naturally, source and target versions that came into existence after a given
compiler was released are not supported.

Each target version causes a change in the class file version number that is encoded in the compiled classes.
Each virtual machine knows what class versions it supports and will generally refuse to load any class files
that have a higher version number. This means, for example, that you can prevent a class from being loaded
on an older virtual machine even if there is no missing functionality in the version.

The default settings for the compiler in the 5.0 release are source 1.5 and target 1.5 to enable all the latest
features of the language. If you compile code to run on previous versions (which doesn't use the new features
of course) you'll need to explicitly set the target to a suitable earlier version.

A.2. Dealing with Multiple Dialects

Adding new keywords to the language runs the risk of breaking existing code, especially if the word is an
identifier as common as "assert" or "enum."[1] The choice to add a new keyword creates some interesting and
important compatibility issues. Taking assertions as an example, you can choose whether or not assert is
recognized in your code by selecting a source version of 1.4 or higher. This allows you to keep your old use of
"assert" in one class, while using the language assertions in anotherprovided the different uses are
independent. When asserts were introduced in the 1.4 release, the default source version was left at 1.3 so by
default nothing changed and you had to explicitly tell the compiler when you were ready to use the new
language feature. In the 5.0 release the presumption is that everyone will want to use at least some of the new
features, so they are enabled by defaultif you don't want them you must either specify the appropriate source
version or use an older version of the compiler.

[1] The keyword strictfp was added to the language in the 1.2 release but caused almost
no problems because nearly nobody had ever used it as an identifier.

These side-by-side dialects can create problems. With only one dialect you could use the same compiler, and
the same compiler options, on all your source code. With two or more dialects you might have some source
files that require assert or enum and others that reject it. You will have to compile your source carefully to
handle such a situation. At this point, there are three dialects: with assert and enum (5.0), with assert
but not enum (1.4), and without either (1.3 and earlier).

The obvious solution is to use a single dialect for all your source. But you will not always have that kind of
control. If you are using source produced by another group they may have moved on while you cannot, or vice
versa.

This is deeper than you might hope. Suppose you have two source files, Newer.java which uses the
assert keyword and Older.java which uses "assert" as a method name. If the newer class depends on
the older and neither has yet been compiled, compiling Newer.java will attempt to compile Older.java
as well. With only one dialect this is a feature. But with the incompatible dialects you will be unable to
compile Newer.java until you have already compiled Older.java under the non-assert dialect. This
complicates your build process because the order in which you compile things has now become significant.

Of course, the ultimate problem is if Newer.java and Older.java depend on each other. Now you have
a loop you cannot solve without modifying one source file. Presumably you would upgrade Older.java to
use the new dialect, but if you cannot do so you will have to regress Newer.java to the older dialect.

Woe betide if you can modify neither.

593

593

A.3. Generics: Reification, Erasure, and Raw Types

The generic type system was added to the Java programming language for the 5.0 release. The design was
strongly constrained by the need to maintain compatibility between independently developed code modules
that may or may not include the use of generics. The key design decision was that generic types could not be
reified at runtime. Rather, for each generic type declaration there would be a single type that was defined in
terms of the erasure of its type variables. As we discussed in Chapter 11, in simple terms the type is defined
such that each type variable is replaced by its boundcommonly Object. The reasoning behind this decision
is beyond the scope of this book, but to quote JLS 4.7 (The Java™ Language Specification, Third Edition,
Section 4.7):

…the design of the generic type system seeks to support migration compatibility. Migration
compatibility allows the evolution of existing code to take advantage of generics without
imposing dependencies between independently developed software modules. The price of
migration compatibility is that full reification of the generic type system is not possible, at
least while the migration is taking place.

Note that in the future, this design decision might be changed.

A.3.1. Raw Types, "Unchecked" Warnings, and Bridge Methods

A consequence of the reification design decision is the existence and use of raw types. Raw types represent
the erasure of a specific generic type. They exist so that code that was written to use a non-generic version of
a class or interface can execute in a virtual machine that uses a generic version of that class or interface. Some
of these uses may cause "unchecked" warnings to be issued by the compiler, but the uses are still permitted.
"Unchecked" warnings are emitted in the following circumstances:

Assignment from a raw type variable to a parameterized type variablethe raw type variable might not
refer to an instance of the expected parameterized type.

•

Casts involving type variablesthe cast cannot be checked at runtime because the erasure of the type
variable is used.

•

Invocation of a method or constructor of a raw type if erasure changes the type of a parameter.•
Access to a field of a raw type if erasure changes the type of the field.•

The conversion between a raw type and a parameterized type adds an additional conversion to those defined
in Section 9.4 on page 216: the unchecked conversion. These unchecked conversions can be applied as the
final step in most of the conversion contextsfor example, as part of an assignment. An unchecked conversion
is always accompanied by an "unchecked" warning, unless it has been suppressed by using the annotation
SuppressWarnings("unchecked")if your compiler supports this.

Use of raw types can also lead to other complications. Consider a variation of the passThrough example
from Chapter 11 repackaged as a generic interface:

interface PassThrough<T> {
 T passThrough(T t);
}

Now consider an implementation of that interface:

class PassThroughString implements PassThrough<String> {
 public String passThrough(String t) {
 return t;
 }

594

594

}

and the following incorrect use:

public static void main(String[] args) {
 PassThrough s = new PassThroughString();
 s.passThrough(args);
}

This results in an "unchecked" warning at compile time because the use of the raw type means that we don't
know what type passThrough should take or return. But we can see that s.passThrough should only be
accepting a String argument, and args is a String[] not a String. If the compiler rejected the above,
we could appease the compiler by casting args to String, and then we should expect, and would get, a
ClassCastException at runtime. However, the compiler doesn't reject this code, but in fact if we
execute this method a ClassCastException is still thrown. This behavior is specified as a special rule of
method invocation that deals with this situation in JLS 15.12.4.5:

If the erasure of the type of the method being invoked differs in its signature from the erasure
of the type of the compile-time declaration for the method invocation, then if any of the
argument values is an object which is not an instance of a subclass or subinterface of the
erasure of the corresponding formal parameter type in the compile-time declaration for the
method invocation, then a ClassCastException is thrown.

In simple terms, the compiler has to accept incorrect invocations like the above at compile time, but it has to
ensure that at runtime the bad argument is not actually passed to the method. The ClassCastException
must be thrown before invoking the method (as if we had put in the bad cast ourselves). One way a compiler
can ensure this is to introduce what is known as a bridge method. A suitable bridge method in this case would
be the following:

public Object passThrough(Object o) {
 return passThrough((String)o);
}

The compiler would insert calls to this bridge method, rather than calls to the actual method. Thus, the cast
will fail when it should and succeed otherwise. Because bridge methods are introduced by the compiler, they
will be marked as synthetic.

Bridge methods also fill another role in maintaining backward compatibility. For example, prior to generics
the Comparable interface's compareTo method took an Object argument, but now it takes a T,
whatever that may be. However, code compiled against non-generified Comparable implementations have
byte codes to invoke a version of the method that takes an Object. No such version is defined in the source
code, but the compiler generates a compareTo(Object) bridge method that casts the argument to the
expected type and invokes the new compareTo method.

The use of raw types in code written after generics was added is strongly discouraged, as they exist only for
backward compatibility and may be removed in a future version of the language.

595

595

A.3.2. API Issues

A second compatibility issue concerns the changes to the APIs themselves, within the class libraries. Many, if
not all, the generic types in the class libraries would have been written slightly differently had they been
written from scratch to be generic types. For example, a number of methods in the collections classes that
define a collection of T still take parameters of type Object. That was what the old signature specified, and
changing it would break compatibility.

As another example, the reflection method in java.lang.reflect.Array to create a new array is still
defined as

public static Object newInstance(Class<?> type, int length)

which has the unfortunate consequence that use of this method always results in an "unchecked" warning by
the compiler. A generic version might be specified as

public static <T> T[] newInstance(Class<T> type, int length)

but not only is that not backward compatible, it precludes creating arrays where the component type is a
primitive type. So even with a type-safe generic method, you'd still need a second method to allow primitive
array creation.

There is a similar problem with implementing the clone method: You cannot define a clone method for a
parameterized type without getting an "unchecked" warning when you cast the Object result of
Object.clone to the correct type. This is one of those rare occasions in which a cast using the expected
parameterized type is the right thing to do. For example, given a generic class Cell<E>, the clone method
should be declared to return an instance of Cell<E> because that will permit the caller of clone to use the
returned object without the need for any casts. To declare clone in that way requires that the result of
super.clone be cast to Cell<E>, which incurs the "unchecked" warning. But be warned, an erroneous or
malicious clone implementation could still return an object of the wrong type.

As you generify you own applications and libraries you must be aware of these issues in order to maintain the
right level of compatibility with users of your code.

Things will get better despite our efforts to improve them.

Will Rogers

Appendix B. Useful Tables

How many seconds are there in a
year? If I tell you there are
3.155x107 you won't even try to
remember it. On the other hand,
who could forget that, to within
half a percent, π seconds is a
nanocentury?

596

596

Tom Duff, Bell Labs

Table 1. Keywords
abstract continuefor new switch
assert default goto package synchronized
boolean do if private this
break double implementsprotectedtHRow
byte else import public throws
case enum instanceofreturn transient
catch extends int short TRy
char final interface static void
class finally long strictfp volatile
const float native super while
NOTE: Keywords marked with are unused

Table 2. Operator Precedence

Operator Type

Operator

Postfix operators

[] . (params) expr++ expr--

Unary operators

++expr --expr +expr -expr ~ !

Creation or cast

new (type)expr

Multiplicative

* / %

Additive

+ -

Shift

<< >> >>>

Relational

< > >= <= instanceof

Equality

== !=

597

597

AND

&

Exclusive OR

^

Inclusive OR

|

Conditional AND

&&

Conditional OR

||

Conditional

?:

Assignment

= += -= *= /= %= >>= <<= >>>= &= ^= |=

Table 3. Special Characters Using \

Sequence

Meaning

\n

Newline (\u000A)

\t

Tab (\u0009)

\b

Backspace (\u0008)

\r

Return (\u000D)

\f

598

598

Form feed (\u000C)

\\

Backslash itself (\u005C)

\'

Single quote (\u0027)

\"

Double quote (\u0022)

\ddd

An octal char, with each d being an octal digit (07)

\uxxxx

A Unicode char, with each x being a hex digit (09, af, AF)

Table 4. Regular Expression Special Characters

Construct

Matches

CHARACTERS

x

The character x

\\

backslash

\0n

character with octal value 0n

\0nn

character with octal value 0nn

\0nnn

character with octal value 0nnn (nnn 377)

\xhh

599

599

character with hexadecimal 0xhh

\uhhhh

character with hexadecimal value 0xhhhh

\t

tab character ('\u0009')

\n

newline character ('\u000A')

\r

carriage-return character ('\u000D')

\f

form-feed character ('\u000C')

\a

alert (bell) character ('\u0007')

\e

escape character ('\u001B')

\cx

control character corresponding to x

CHARACTER CLASSES

[abc] a, b, or c (simple class)

[^abc] any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d or m through p; [a-dm-p] (union)

[a-z&[def]] d, e, or f; [def] (intersection)

[a-z&[^bc]] a through z, except b or c; [ad-z] (subtraction)

[a-z&[^m-p]] a through z, except m through p; [a-lq-z]

PREDEFINED CHARACTER CLASSES

. any character (might match line terminators)

600

600

\d digit; [0-9]

\D non-digit; [^0-9]

\s whitespace character; [\t\n\x0B\f\r]

\S non-whitespace character; [^\s]

\w word character; [a-zA-Z_0-9]

\W non-word character; [^\w]

JAVA CHARACTER CLASSES

\p{javaLowerCase} as defined by Character.isLowerCase

\p{javaUpperCase} as defined by Character.isUpperCase

\p{javaWhitespace} as defined by Character.isWhitespace

\p{javaMirrored} as defined by Character.isMirrored

POSIX CHARACTER CLASSES (US-ASCII ONLY)

\p{Lower} lowercase alphabetic character; [a-z]

\p{Upper} uppercase alphabetic character; [A-Z]

\p{ASCII} ASCII character; [\x00-\x7F]

\p{Alpha} alphabetic character; [\p{Lower}\p{Upper}]

\p{Digit} decimal digit; [0-9]

\p{Alnum} alphanumeric character; [\p{Alpha}\p{Digit}]

\p{Punct} punctuation; one of !"#$%&'()*+,-./:;<=>?@[\]^_'{|}~

\p{Graph} visible character; [\p{Alnum}\p{Punct}]

\p{Print} printable character; [\p{Graph}]

\p{Blank} space or a tab; [\t]

\p{Cntrl} control character; [\x00-\x1F\x7F]

\p{XDigit} hexadecimal digit; [0-9a-fA-F]

\p{Space} whitespace character; [\t\n\x0B\f\r]

CLASSES FOR UNICODE BLOCKS AND CATEGORIES

\p{InGreek} character in the Greek block (simple block)

\p{Lu} uppercase letter (simple category)

\p{Sc} currency symbol ($, ¥, £, etc.)

601

601

\P{InGreek} character except one in the Greek block (negation)

[\p{L}&[^\p{Lu}]] any letter except an uppercase letter (subtraction)

BOUNDARY MATCHERS

^ beginning of a line (if in multiline mode)

$ end of a line (if in multiline mode)

\b word boundary

\B non-word boundary

\A beginning of input

\G end of previous match

\Z end of input except any final terminator

\z end of input

GREEDY QUANTIFIERS

X? X once or not at all

X* X zero or more times

X+ X one or more times

X{n} X exactly n times

X(n,} X at least n times

X{n,m} X at least n but not more than m times

RELUCTANT QUANTIFIERS

X?? X once or not at all

X*? X zero or more times

X+? X one or more times

X{n}? X exactly n times

X(n,}? X at least n times

X{n,m}? X at least n but not more than m time

POSSESSIVE QUANTIFIERS

X?+ X once or not at all

X*+ X zero or more times

602

602

X++ X one or more times

X{n}+ X exactly n times

X(n,}+ X at least n times

X{n,m}+ X at least n but not more than m times

LOGICAL OPERATORS

XY X followed by Y

X|Y either X or Y

(X) X as a capturing group

BACK REFERENCES

\n what the nth capturing group matched

QUOTATION

\ nothing, but quotes the following character

\Q nothing, but quotes all characters until \E

\E nothing, but ends quoting started by \Q

SPECIAL CONSTRUCTS (NON-CAPTURING)

(?:X) X as a non-capturing group

(?idmsux-idmsux) nothing, but turns match flags on/off

(?idmsux-idmsux:X) X as a non-capturing group with the given flags on/off

(?=X) X via zero-width positive lookahead

(?!X) X via zero-width negative lookahead

(?<;=X) X via zero-width positive lookbehind

(?<;!X) X via zero-width negative lookbehind

(?>;X) X as an independent, non-capturing group

Table 5. Documentation Comment Tags

Tag

Description

603

603

@see

Cross reference to another doc comment or URL

{@link}

In-line cross reference to another doc comment or URL

{@linkPlain}

Similar to {@link} but uses regular font not code font

@param p

Description of the single parameter p

@return

Description of the return value of a method

@throws E

Description of an exception E that the method may throw

@exception E

Older form of @throws E

@deprecated

Deprecate, describing any replacement; the compiler generates warnings on use of deprecated entities

@author

An author of the code

@version

A version string for the entity

@since

The version string for when this entity first appeared

{@literal text}

Includes the given text as-is without treating it as HTML

{@code text}

Similar to {@literal} but uses code font

{@value field}

604

604

The value of the named static constant field

@serial

Identifies a field serialized using default serialization

@serialField

A field created by GetField or PutField objects

@serialData

Documents additional data written during serialization

{@inheritDoc}

Copies document comments from the supertype

{@docRoot}

Expands to a relative path to the root of the documentation tree; for use within links

Table 6. Required Character Sets

Charset

Description

US-ASCII

7-bit ASCII, also known as ISO-646-US and as the Basic Latin block of the Unicode character set

ISO-8859-1

ISO Latin Alphabet No. 1, also known as ISO-LATIN-1

UTF-8

8-bit Unicode Transformation Format

UTF-16BE

16-bit Unicode Transformation Format, big-endian order

UTF-16LE

16-bit Unicode Transformation Format, little-endian order

UTF-16

16-bit Unicode Transformation Format, byte order specified by a mandatory initial byte-order mark (either
order accepted on input, big-endian used on output)

605

605

Comparing information and knowledge is like asking whether the fatness of a pig is more or
less green than the designated hitter rule.

David Guaspari

Further Reading

The best book on programming for the layman is Alice in Wonderland, but that's because it's
the best book on anything for the layman.

Alan J. Perlis

We offer this list of works for further reading on related topics. The list is necessarily duosyncraticother
excellent works exist on many of these topics. Of course, all the books in this series are recommended for
their respective topics.

Java Platform Topics

http://java.sun.com/, Sun Microsystems, Inc.
Current information on the Java programming language and related topics, including releases, security
issues, and online documentation.

http://java.sun.com/Series/, Sun Microsystems, Inc.
Current information about books in this series, including errata and updates. Of special interest will be
those errata and updates for this book.

 The Unicode Standard 4.0, Addison-Wesley, 2003, ISBN 0321185781.
More data on Unicode is available at http://www.unicode.org.

 IEEE/ANSI Standard for Binary Floating-Point Arithmetic. Institute of Electrical and Electronics
Engineers, 1985, IEEE Std 754-1985.

http://www.unicode.org/unicode/onlinedat/languagetemp0294.html
One site where you can find two-letter ISO 639 codes for languages.

http://www.unicode.org/unicode/onlinedat/countrietemp0294.html
One site where you can find two-letter ISO 3166 codes for countries.

 "Uniprocessor Garbage Collection Techniques," by Paul R. Wilson, University of Texas, in
revision for ACM Computing Surveysalso available from http://www.cs.utexas.edu/users/oops/

606

606

http://java.sun.com/
http://java.sun.com/Series/
http://www.unicode.org
http://www.unicode.org/unicode/onlinedat/languagetemp0294.html
http://www.unicode.org/unicode/onlinedat/countrietemp0294.html
http://www.cs.utexas.edu/users/oops/

Although dated, this is a good survey of uniprocessor garbage collection techniques that may or may
not be used by your particular virtual-machine implementations.

 Garbage Collection: Algorithms for Automatic Dynamic Memory Management, by Richard Jones,
John Wiley, and Sons , 1999, ISBN 0-471-94148-4
An extensive coverage of many different forms of garbage collection and their respective trade-offs.
Information about the book is available from
http://www.cs.kent.ac.uk/people/staff/rej/gtemp0280.html, including an extensive online bibliography
of over 1800 papers.

http://www.w3.org/
Main site for the World Wide Web Consortium, where you can find documentation for HTML tags,
which are usable in doc comments.

http://tycho.usno.navy.mil/systimtemp0282.html
U.S. Naval Observatory data on the time paradigms used in the Date class.

Object-Oriented Design

 An Introduction to Object-Oriented Programming, 3rd Edition, by Timothy Budd. Addison-Wesley,
2001, ISBN 0201760312
An introduction to object-oriented programming as well as a comparison of Java, C++, Objective C,
Smalltalk, and Delphi.

 Pitfalls of Object-Oriented Development, by Bruce F. Webster. M&T Books, 1995, ISBN
1-55851-397-3.
A collection of traps to avoid in object technology. Alerts you to problems you're likely to encounter
and presents some solutions for them.

 Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Addison-Wesley, 1995, ISBN 0-201-63361-2.

 Object-Oriented Analysis and Design with Applications, 2nd Edition, by Grady Booch.
Benjamin/Cummings, 1994, ISBN 0-805-35340-2.

 Structured Programming, by Ole-Johan Dahl, Edsger Wybe Dijkstra, and C. A.R. Hoare.
Academic Press, 1972, ISBN 0-12-200550-3.

 Object-Oriented Programming: An Evolutionary Approach, 2nd Edition, by Brad J. Cox and
Andrew Novobilski. Addison-Wesley, 1991, ISBN 0-201-54834-8.

607

607

http://www.cs.kent.ac.uk/people/staff/rej/gtemp0280.html
http://www.w3.org/
http://tycho.usno.navy.mil/systimtemp0282.html

Multithreaded Programming

 Concurrent Programming in Java™: Design Principles and Patterns, 2nd Edition, by Doug Lea.
Addison-Wesley, 1999, ISBN 0-201-31009-0.

 Programming with Threads, by Steve Kleiman, Devang Shah, and Bart Smaalders. Prentice Hall,
1996, ISBN 0-13-172389-8.

 Programming with POSIX Threads, by David R. Butenhof. Addison-Wesley, 1997, ISBN
0-201-63392-2.

 The Architecture of Concurrent Programs, by Per Brinch Hansen. Prentice Hall, 1977, ISBN
0-13-044628-9.

 "Monitors: An Operating System Structuring Concept," by C. A.R. Hoare. Communications of the
ACM, Volume 17, number 10, 1974, pp. 549557.
The seminal paper on using monitors to synchronize concurrent tasks.

Generics

 "Making the Future Safe for the Past: Adding Genericity to the Java™ Programming Language," by
Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. In Proceedings of the ACM
Conf. on Object-Oriented Programming, Systems, Languages and Applications, October 1998
The original proposal for adding generic types to the Java programming language. The ideas
expressed here underwent significant revision before generic types actually appeared in the language.

 "Adding Wildcards to the Java™ Programming Language," by Mads Torgersen, Erik Ernst,
Christian Plesner Hansen, Peter von der Ahé, Gilad Bracha, and Neal Gafter. Journal of Object
Technology, Volume 3, number 11, December 2004, Special issue: OOPS track at SAC 2004,
Nicosia/Cyprus, pp. 97116; http://www.jot.fm/issues/issue_2004_12/article5
A good overview of how wildcards came about and their implications in the type system.

Regular Expressions

 Mastering Regular Expressions; Powerful Techniques for Perl and Other Tools, Jeffrey E. F.
Friedl, O'Reilly, 1997, ISBN 1-56592-257-3
An entire book devoted to regular expressions and their use. (You can easily know what is specific to
the Perl programming language and what is more general.)

 "Unicode Technical Report #18: Unicode Regular Expression Guidelines,"
http://www.unicode.org/unicode/reports/tr18
Covers how Unicode characters fit into a regular expression language. The simple answer is "about
the same as you'd guess," but this has the formal details.

608

608

http://www.jot.fm/issues/issue_2004_12/article5
http://www.unicode.org/unicode/reports/tr18

General Programming Techniques

 Hacker's Delight, by Henry S. Warren, Jr. Addison-Wesley, 2002, ISBN 0-201-91465-4.

Related Languages

 The C Programming Language, 2nd Edition, by Brian W. Kernighan and Dennis M. Ritchie.
Prentice Hall, 1988, ISBN 0-13-110362-8 and ISBN 0-13-110370-9 (hardcover).

 The C++ Programming Language, 3rd Edition, by Bjarne Stroustrup. Addison-Wesley, 1997, ISBN
0-201-88954-4.

 The Evolution of C++, edited by Jim Waldo. A USENIX Association book from MIT Press, ISBN
0-262-73107-X.
A history of C++ as told by many of the people who contributed.

 Eiffel: The Language, by Bertrand Meyer. Prentice Hall, 1992, ISBN 0-13-247925-7.

 "A Structural View of the Cedar Programming Environment," by Daniel Swinehart, Polle
Zellweger, Richard Beach, and Robert Hagmann. ACM Transactions on Programming Languages and
Systems, Volume 8, number 4, Oct. 1986.

 Mesa Language Manual, version 5.0, by James G. Mitchell, William Maybury, and Richard Sweet.
Xerox Palo Alto Research Center Report CSL-79-3, April 1979.

 Systems Programming with Modula-3, edited by Greg Nelson. Prentice Hall, 1991,
ISBN-0-13-590464-1.
Introduces Modula-3. Chapter 4 is an excellent discussion of thread programming. Chapter 8 is a
fascinating case history of language design.

 Programming in OberonSteps Beyond Pascal and Modula, by Martin Reiser and Niklaus Wirth.
Addison-Wesley, 1992, ISBN 0-201-56543-9.

 Objective C: Object-Oriented Programming Techniques, by Lewis J. Pinson and Richard S.
Wiener. Addison-Wesley, 1991, ISBN 0-201-50828-1.

 "Self: The Power of Simplicity," by David Ungar and Randall B. Smith. Sun Microsystems
Laboratories Technical Report SMLI-TR-94-30, 1994.

609

609

 Data ProcessingProgramming LanguagesSIMULA. Swedish standard SS 636114, SIS, 1987, ISBN
91-7162-234-9.

 Smalltalk-80: The Language, by Adele Goldberg and Dave Robson. Addison-Wesley, 1989, ISBN
0-201-13688-0.

Software Engineering

 The Decline and Fall of the American Programmer, by Ed Yourdon. Yourdon Press, 1993, ISBN
0-13-203670-3.
Analysis of the revolution taking place in programming. Several chapters discuss object-oriented
design. Two chapters of particular interest are "The Lure of the Silver Bullet" and "Programming
Methodologies."

 The Mythical Man-Month, Anniversary Edition, by Frederick P. Brooks, Jr. Addison-Wesley,
1995, ISBN 0-201-83595-9.
Essays describing how software projects are really managed and how they should be managed.
Especially read Chapter 16, "No Silver Bullet: Essence and Accidents of Software Engineering." You
cannot design good classes without understanding how they will be used and changed over time.

 Peopleware, by Tom DeMarco and Timothy Lister. Dorset House, 1987, ISBN 0-932633-05-6.

Visual Design & GUI Design

 Designing Visual Interfaces, by Kevin Mullet and Darrel Sano. Prentice Hall, 1995, ISBN
0-13-303389-9.
This book describes fundamental techniques that can be used to enhance the visual quality of
graphical user interfaces.

 About Face, by Alan Cooper. Hungry Minds Inc., 1995, ISBN 1568843224.
Basics of good GUI design in a straightforward presentation.

 Usability Engineering, by Jakob Nielsen. Academic Press, 1993, ISBN 0-12-518405-0.
A direct how-to guide on testing your interfaces to make sure they are usable by actual human beings.

 The Visual Display of Quantitative Information, by Edward R. Tufte. Graphics Press, 1983.
You shouldn't communicate using graphical media without reading this.

 The Non-Designer's Design Book, by Robin Williams. Peachpit Press, 1994, ISBN 1-56609-159-4.
How to use type, space, alignment, and other basic techniques to make your designs visually
appealing and user-friendly. Applicable to paper documents, HTML documents, displaying data, and
user interfaces.

610

610

 The Design of Everyday Things, by Donald A. Norman. Doubleday/Currency, 1988, ISBN
0-385-26774-6.
Discusses usability design for everyday items (doors, typewriters, and so on) with lessons applicable
to any design that humans are meant to use.

The cure for boredom is curiosity.
There is no cure for curiosity.
Dorothy Parker

Colophon

A vacuum is a hell of a lot better than some of the stuff that nature replaces it with.

Tennessee Williams

This book is primarily 11-point Times. Code text is LucidaSans Typewriter at 85% of the size of the
surrounding text. A few decorations are Zapf Dingbats.

The text was written in FrameMaker on several Sun Solaris systems, Macintosh computers, and PC's running
various versions of Windows, including, for a mercifully brief while, a 486i laptop running Windows 3.1.

The non-ISO Latin-1 text on pages 162, 165, and 550 were created on Macintosh computers using Adobe
Illustrator to make PostScript drawings of the letters included as pictures in the text. The fonts used are
Kourier for Cyrillic, ParsZiba for Persian, Palladam for Tamil, Ryumin for Kanji, and Sambhota for Tibetan.

Code examples were written, compiled, and tested, then broken into fragments by a Perl script looking for
specially formatted comments. Source fragments and generated output were inserted in the book by another
Perl script.

Note to Translators

These fonts have been chosen carefully. The code font, when mixed with body text, has the same "x" height
and roughly the same weight and "color." Code in text looks evenif you read quickly it can seem like body
text, yet it is easy to tell that code text is different. Please use the fonts we have used (we would be happy to
help you locate any) or choose other fonts that are balanced together.

Someday, Weederman, we'll look back on all this and laugh… It will probably be one of
those deep, eerie ones that slowly builds to a blood-curdling maniacal scream, but still it will
be a laugh.

Joe Martin, Mister Boffo

A child can go only so far in life without potty training. It is not mere coincidence that six of
the last seven presidents were potty trained, not to mention nearly half of the nation's state
legislators.

Dave Barry

611

611

Article

Zapf Dingbats: Unshifted

Zapf Dingbats: Option Unshifted

Zapf Dingbats: Shifted

612

612

Zapf Dingbats: Option Shifted

Symbol: Unshifted

613

613

Symbol: Option Unshifted

Symbol: Shifted

614

614

Symbol: Option Shifted

Eaglerock Extras: Unshifted

615

615

Arts & Crafts Ornaments: Unshifted

Eaglerock Extras: Shifted

616

616

Arts & Crafts Ornaments: Shifted

Kells Extras: Unshifted

617

617

Kells Extras: Shifted

Exercises

Exercise 1.1: Enter, compile, and run HelloWorld on your system. 3

Exercise 1.2: Try changing parts of HelloWorld and see what errors you might get. 3

Exercise 1.3: Add a title to the printed list of the Fibonacci program. 6

Exercise 1.4: Write a program that generates a different sequence, such as a table of squares. 6

618

618

Exercise 1.5: Change the HelloWorld application to use a named string constant as the string to print. (A
string constant can be initialized with a string literal.) 8

Exercise 1.6: Change your program from Exercise 1.3 to use a named string constant for the title. 8

Exercise 1.7: Change the loop in ImprovedFibonacci so that i counts backward instead of forward. 12

Exercise 1.8: Add a method to the Point class that sets the current object's coordinates to those of a passed
in Point object. 17

Exercise 1.9: Modify the Fibonacci application to store the sequence into an array and print the list of
values at the end. 20

Exercise 1.10: Modify the ImprovedFibonacci application to store its sequence in an array. Do this by
creating a new class to hold both the value and a boolean value that says whether the value is even, and
then having an array of object references to objects of that class. 20

Exercise 1.11: Modify the StringsDemo application to use different strings. 23

Exercise 1.12: Modify ImprovedFibonacci to store the String objects it creates into an array instead
of invoking println with them directly. 23

Exercise 1.13: Rewrite the ImprovedFibonacci program using printf instead of println. 24

Exercise 1.14: Sketch out a set of classes that reflects the class structure of the Sony Walkman product family
we have described. Use methods to hide the data, making all the data private and the methods public.
What methods would belong in the Walkman class? Which methods would be added for which extended
classes? 27

Exercise 1.15: Write an interface that extends Lookup to declare add and remove methods. Implement the
extended interface in a new class. 29

Exercise 1.16: Add fields to BadDataSetException to hold the set name and the I/O exception that
signaled the problem so that whoever catches the exception will know details about the error. 35

Exercise 2.1: Write a simple Vehicle class that has fields for (at least) current speed, current direction in
degrees, and owner name. 44

Exercise 2.2: Write a LinkedList class that has a field of type Object and a reference to the next
LinkedList element in the list. 44

Exercise 2.3: Add a static field to your Vehicle class to hold the next vehicle identification number, and a
non-static field to the Vehicle class to hold each car's ID number. 46

Exercise 2.4: Consider your solution to Exercise 2.3. Do you think the identification number field should be
final? 47

Exercise 2.5: Write a main method for your Vehicle class that creates a few vehicles and prints their field
values. 50

Exercise 2.6: Write a main method for your LinkedList class that creates a few objects of type Vehicle
and places them into successive nodes in the list. 50

Exercise 2.7: Add two constructors to Vehicle: a no-arg constructor and one that takes an initial owner's

619

619

name. Modify the main program so that it generates the same output it did before. 54

Exercise 2.8: What constructors should you add to LinkedList? 54

Exercise 2.9: Add a static method to Vehicle that returns the highest identification number used thus far. 58

Exercise 2.10: Add a toString method to Vehicle. 60

Exercise 2.11: Add a toString method to LinkedList. 60

Exercise 2.12: Considering your Vehicle and LinkedList classes, can you think of a need for any
methods that take a variable number of arguments? 61

Exercise 2.13: Make the fields in your Vehicle class private, and add accessor methods for the fields.
Which fields should have methods to change them, and which should not? 68

Exercise 2.14: Make the fields in your LinkedList class private, and add accessor methods for the
fields. Which fields should have methods to change them, and which should not? 68

Exercise 2.15: Add a changeSpeed method that changes the current speed of the vehicle to a passed-in
value and add a stop method that sets the speed to zero. 68

Exercise 2.16: Add a method to LinkedList to return the number of elements in a list. 68

Exercise 2.17: Add two turn methods to Vehicle: one that takes a number of degrees to turn and one that
takes either of the constants Vehicle.TURN_LEFT or Vehicle.TURN_RIGHT. 71

Exercise 2.18: Change Vehicle.main to create cars with owners whose names are specified on the
command line, and then print them. 74

Exercise 3.1: Starting with the Vehicle class from the exercises in Chapter 2, create an extended class
called PassengerVehicle to add a capability for counting the number of seats available in the car and the
number currently occupied. Provide a new main method in PassengerVehicle to create a few of these
objects and print them out. 79

Exercise 3.2: Type in the classes X and Y as shown previously, and add print statements to trace the values of
the masks. Add a main method and run it to see the results. (Hint: Use the printf methodshown in Chapter
1with a format specifier of %x to print integers in hexadecimal format.) 83

Exercise 3.3: If it were critical to set up these masks using the values from the extended class during
construction, how could you work around these problems? 83

Exercise 3.4: Which methods (if any) of Vehicle and PassengerVehicle might reasonably be made
final? 97

Exercise 3.5: Write a new extended class that benchmarks something else, such as how long it takes to run a
loop from zero to some passed-in parameter. 99

Exercise 3.6: Change Vehicle so that it has an EnergySource object reference, which is associated with
the Vehicle in its constructor. EnergySource must be an abstract class, because a GasTank object's
measure of fullness will differ from that of a Battery object. Put an abstractempty method in
EnergySource and implement it in GasTank and Battery classes. Add a start method to Vehicle
that ensures that the energy source isn't empty. 99

620

620

Exercise 3.7: Override equals and hashCode for ColorAttr. 101

Exercise 3.8: Make Vehicle and PassengerVehicle into Cloneable types.

Which of the four described attitudes should each class take toward cloning? Is the simple copying done by
Object.clone correct for the clone methods of these classes? 107

Exercise 3.9: Write a Garage class whose objects can hold up to some number of Vehicle objects in an
array. Make Garage a Cloneable type, and write a proper clone method for it. Write a Garage.main
method to test it. 107

Exercise 3.10: Make your LinkedList class (from the exercises in Chapter 2) Cloneable, with clone
returning a new list that refers to the same values as the original list, not clones of the values. In other words,
changes to one list should not affect the other list, but changes to the objects referenced by the list would be
visible in both lists. 107

Exercise 3.11: Find at least one security hole in SortDouble that would let a sorting algorithm cheat on its
metrics without getting caught. Fix the security hole. Assume that the sorting algorithm author doesn't get to
write main. 114

Exercise 3.12: Write a general-purpose SortHarness class that can sort any object type. How would you
provide a way to represent ordering for the objects in a general way, given that you cannot use < to compare
them? 114

Exercise 4.1: Rewrite your solution to Exercise 3.6 on page 99 using an interface for EnergySource
instead of an abstract class. 131

Exercise 4.2: Rewrite your solution to Exercise 3.12 on page 114 using an interface if you didn't write it that
way in the first place. 132

Exercise 4.3: Should the LinkedList class from previous exercises be an interface? Rewrite it that way
with an implementation class before you decide. 132

Exercise 4.4: Design a collection class hierarchy using only interfaces. 132

Exercise 4.5: Think about whether the following types should be represented as interfaces, abstract classes, or
concrete classes: (a) TReeNode to represent nodes in an N-ary tree; (b) treeWalker to walk the tree in a
particular order (such as depth-first or breadth-first); (c) Drawable for objects that can be drawn by a
graphics system; (d) Application for programs that can be run from a graphical desktop. 132

Exercise 4.6: What changes in your assumptions about each of the problems in Exercise 4.5 would make you
change your answers? 132

Exercise 5.1: Consider the Attr class and Attributed interface from Chapter 4. Should one of these be a
nested type of the other? If so, which way makes the most sense? 136

Exercise 5.2: Create a version of BankAccount that records the last ten actions on the account. Add a
history method that returns a History object that will return Action objects one at a time via a next
method, returning null at the end of the list. Should History be a nested class? If so, should it be static or
not? 138

Exercise 6.1: Define simple enums for the days of the week and traffic light colors. 152

Exercise 6.2: Redo your solution to Exercise 2.17 to use an enum to represent the TURN_LEFT and

621

621

TURN_RIGHT constants. What advantage is there to using the enum? 152

Exercise 6.3: Redefine the Verbose interface from Section 4.2.1 on page 121 to use an enum for the
verbosity level instead of integer constants. 152

Exercise 6.4: Expand your traffic light color enum from Exercise 6.1 on page 152 so that each enum constant
has a suitable Color object that can be retrieved with getColor. 156

Exercise 6.5: Redo Exercise 6.4 making getColor an abstract method and defining constant-specific
methods for each enum constant to return the correct Color object. Would you recommend using
constant-specific methods to do this? 159

Exercise 7.1: Just for fun, write a "Hello, World" program entirely using Unicode escape sequences. 163

Exercise 7.2: Write a class that declares a field for each of the primitive numeric types, and try to assign
values using the different literal formsfor example, try to assign 3.5f to an int field. Which literals can be
used with which type of field? Try changing the magnitude of the values used to see if that affects things. 169

Exercise 7.3: Write a program that calculates Pascal's triangle to a depth of 12, storing each row of the triangle
in an array of the appropriate length and putting each of the row arrays into an array of 12 int arrays. Design
your solution so that the results are printed by a method that prints the array of arrays using the lengths of
each array, not a constant 12. Now change the code to use a constant other than 12 without modifying your
printing method. 178

Exercise 9.1: Write a program that uses the operators +, , *, and /, on two infinite operands and show the
result. Ensure that you try both same signed and opposite-signed infinity values. 203

Exercise 9.2: Write a method that determines the number of 1 bits in a passed-in int, by using just the bit
manipulation operators (that is, don't use Integer.bitCount). Compare your solution with published
algorithms for doing thissee the related reading for "General Programming Techniques" on page 758 for one
source. 210

Exercise 9.3: Review your solution to Exercise 7.3 to see if it can be written more clearly or succinctly with
the operators you've learned about in this chapter. 213

Exercise 9.4: Using what you've learned in this chapter but without writing code, figure out which of the
following expressions are invalid and what the type and values are of the valid expressions: 223

Exercise 10.1: Using ifelse in a loop, write a method that takes a string parameter and returns a string with
all the special characters in the original string replaced by their language equivalents. For example, a string
with a " in the middle of it should create a return value with that " replaced by \". (Section 7.2.3 on page 167
lists all special characters). 232

Exercise 10.2: Rewrite your method from Exercise 10.1 to use a switch. 235

Exercise 10.3: Using your "days of the week" enum from Exercise 6.1 write a method that takes a day of the
week and returns true if it is a working day, and false otherwise. First use nested ifelse statements and
then a switch statement. Which do you think results in clearer code? 235

Exercise 10.4: Select a few previous exercise solutions for which you have used a for loop and rewrite it
using a while loop. Can you also rewrite it using a dowhile loop? Would you do so? If not, why not? 236

Exercise 10.5: Write a method that takes two char parameters and prints the characters between those two
values, including the endpoints. 239

622

622

Exercise 11.1: Revisit the LinkedList class that you started back in Exercise 2.2 and rewrite it as a generic
class. 252

Exercise 11.2: Rewrite the Attr class from Chapter 3 as a generic class. 252

Exercise 11.3: Was Exercise 11.2 a good idea? How does Attr being generic affect the Attributed
interface defined in Chapter 4? What does it mean for Attributed objects? 252

Exercise 12.1: Create an ObjectNotFoundException class for the LinkedList class you built in
previous exercises. Add a find method that looks for an object in the list and either returns the
LinkedList object that contains the desired object or throws the exception if the object isn't found in the
list. Why is this preferable to returning null if the object isn't found? What additional data if any should
ObjectNotFoundException contain? 286

Exercise 12.2: Decide which way the following conditions should be communicated to the programmer: 295

Exercise 13.1: Write a method that counts the number of occurrences of a given character in a string. 308

Exercise 13.2: Write a method that counts the number of occurrences of a particular string in another string.
308

Exercise 13.3: As shown, the delimitedString method assumes only one such string per input string.
Write a version that will pull out all the delimited strings and return an array. 316

Exercise 13.4: Write a program to read an input string with lines of the form "type value", where type is
one of the wrapper class names (Boolean, Character, and so on) and value is a string that the type's
constructor can decode. For each such entry, create an object of that type with that value and add it to an
ArrayListsee "ArrayList" on page 582. Display the final result when all the lines have been read. Assume
a line is ended simply by the newline character '\n'. 316

Exercise 13.5: Write a method to convert strings containing decimal numbers into comma-punctuated
numbers, with a comma every third digit from the right. For example, given the string "1543729", the
method should return the string "1,543,729". 335

Exercise 13.6: Modify the method to accept parameters specifying the separator character to use and the
number of digits between separator characters. 336

Exercise 14.1: Write a program that displays the name of the thread that executes main. 341

Exercise 14.2: Modify the first version of PrintServer so that only the thread created in the constructor
can successfully execute run, using the identity of the thread as suggested. 345

Exercise 14.3: Write a class whose objects hold a current value and have a method that will add to that value,
printing the new value. Write a program that creates such an object, creates multiple threads, and invokes the
adding method repeatedly from each thread. Write the class so that no addition can be lost. 354

Exercise 14.4: Modify your code from Exercise 14.3 to use static data and methods. 354

Exercise 14.5: Modify your code from Exercise 14.4 so that threads can safely decrement the value without
using a static synchronized method. 354

Exercise 14.6: Write a program that prints the elapsed time each second from the start of execution, with
another thread that prints a message every fifteen seconds. Have the message-printing thread be notified by
the time-printing thread as each second passes by. Add another thread that prints a different message every

623

623

seven seconds without modifying the time-printing thread. 358

Exercise 14.7: Run Babble multiple times and examine the output: Is it always the same? If possible, run it
on different systems and compare. 362

Exercise 14.8: Experiment with the Friendly program. How often does the deadlock actually happen on
your system? If you add yield calls, can you change the likelihood of deadlock? If you can, try this exercise
on more than one kind of system. Remove the deadlock potential without getting rid of the synchronization.
364

Exercise 14.9: Write a method that takes a thread group and starts a thread that periodically prints the
hierarchy of threads and thread groups within that group, using the methods just described. Test it with a
program that creates several short-lived threads in various groups. 379

Exercise 16.1: Modify TypeDesc to skip printing anything for the Object class. It is redundant because
everything ultimately extends it. Use the reference for the Class object for the Object type. 407

Exercise 16.2: Modify TypeDesc to show whether the named type is a nested type, and if so, what other
type it is nested within. 408

Exercise 16.3: Modify ClassContents to show information for all declared and all public inherited
members. Make sure you don't list anything twice. 411

Exercise 16.4: Write a program that prints all the available annotations applied to a given type. (Only
annotations with a retention policy of RUNTIME will be available.) 415

Exercise 16.5: Expand ClassContents to include the available annotation information for each member.
416

Exercise 16.6: Create an Interpret program that creates an object of a requested type and allows the user
to examine and modify fields of that object. 420

Exercise 16.7: Modify your Interpret program to invoke methods on the object. You should properly
display any values returned or exceptions thrown. 422

Exercise 16.8: Modify your Interpret program further to let users invoke constructors of an arbitrary
class, displaying any exceptions. If a construction is successful, let users invoke methods on the returned
object. 425

Exercise 16.9: Use reflection to write a program that will print a full declaration of a named class, including
everything except the import statements, comments, and code for initializers, constructors, and methods. The
member declarations should appear just as you would write them. You will need to use all the reflection
classes you have seen. Also note that the toString methods of many of the reflection objects will not
provide the information you want in the correct format, so you will need to piece together the individual
pieces of information. 429

Exercise 16.10: Modify Interpret further to allow users to specify a type and size of array to create; set
and get the elements of that array; and access fields and invoke methods on specific elements of the array. 432

Exercise 16.11: Expand on Game and Player to implement a simple game, such as tic-tac-toe. Score some
Player implementations over several runs each. 441

Exercise 16.12: Modify your results for Exercise 16.11 to allow player strategies to use attached resources by
implementing findResource and findResources. 444

624

624

Exercise 17.1: Write a program to examine the amount of memory available on start up and after allocation of
a number of objects. Try invoking the garbage collector explicitly to see how the amount of free memory
changesmake sure you don't hold references to the newly allocated objects of course. 454

Exercise 17.2: Modify DataHandler so that lastFile is also stored weakly. 458

Exercise 17.3: Rework the resource implementation class so that it uses a reference object to keep track of the
key instead of using the hash code. 464

Exercise 17.4: Modify the reaper thread so that it stays alive after shutdown until all the allocated resources
can be released. 464

Exercise 17.5: Redesign the resource manager to not use a reaper thread. Be clear on what semantics the
resource manager has and on when resources will be released. 464

Exercise 19.1: Add doc comments to your LinkedList class from Exercise 2.16. Generate the javadoc and
ask someone else to write a simple program using your class. Repeat, improving your doc comments if
needed, until someone can do so. 496

Exercise 19.2: Expand on Exercise 19.1 by including the private members. Generate the full (private members
included) javadoc and ask someone else to explain the class to you. Repeat, improving your comments if
needed, until someone can do so. 496

Exercise 20.1: Rewrite the translateByte program as a method that translates the contents of an
InputStream onto an OutputStream, in which the mapping and the streams are parameters. For each
type of InputStream and OutputStream you read about in this chapter, write a new main method that
uses the translation method to operate on a stream of that type. If you have paired input and output streams,
you can cover both in one main method. 506

Exercise 20.2: Rewrite the TRanslateByte class as a filter. 518

Exercise 20.3: Create a pair of Filter stream classes that encrypt bytes using any algorithm you choosesuch
as XORing the bytes with some valuewith your DecryptInputStream able to decrypt the bytes that your
EncryptOutputStream class creates. 518

Exercise 20.4: Create a subclass of FilterReader that will return one line of input at a time via a method
that blocks until a full line of input is available. 518

Exercise 20.5: Write a program that reads a specified file and searches for a specified word, printing each line
number and line in which the word is found. 528

Exercise 20.6: Write a program that takes input of the form name op value, where name is one of three
words of your choosing, op is +, -, or =, and value is a number. Apply each operator to the named value.
When input is exhausted, print the three values. For extra credit, use the HashMap class that was used for
AttributedImpl so that you can use an arbitrary number of named values. 536

Exercise 20.7: Add a method to the Attr class of Chapter 3 that writes the contents of an object to a
DataOutputStream and add a constructor that will read the state from a DataInputStream. 539

Exercise 20.8: Write a program that reads a file with entries separated by lines starting with %% and creates a
table file with the starting position of each such entry. Then write a program that uses that table to print a
random entry (see the Math.random method described in "Math and StrictMath" on page 657). 543

Exercise 20.9: Write a method that, given one or more pathnames, will print all the information available

625

625

about the file it represents (if any). 548

Exercise 20.10: Write a program that uses a StreamTokenizer object to break an input file into words and
counts the number of times each word occurs in the file, printing the result. Use a HashMap to keep track of
the words and counts. 548

Exercise 20.11: Using FilenameFilter or FileFilter, write a program that takes a directory and a
suffix as parameters and prints all files it can find that have that suffix. 549

Exercise 21.1: Write a program that opens a file and reads its lines one at a time, storing each line in a List
sorted by String.compareTo. The line-reading class you created for Exercise 20.4 should prove helpful.
584

Exercise 21.2: Rewrite the DataHandler class on page 457 to use a WeakHashMap to store the returned
data instead of a single WeakReference. 593

Exercise 21.3: A WeakHashMap has weak keys and strong values. A WeakValueMap would have strong
keys and weak values. Design a WeakValueMap. Be cautioned that this is not as simple as it might seem, in
fact it is extremely complicated and requires a number of design choices to be made. For example, should
iteration of values be allowed to yield null after hasNext has returned true, or should iteration keep the
values alive while they are being iterated? Hint: Don't try to extend AbstractMap, delegate to a HashMap
instead. 593

Exercise 21.4: Write a version of ShortStrings that implements ListIterator to filter a
ListIterator object. Should your class extend ShortStrings? 611

Exercise 21.5: Implement a more efficient ListIterator for ArrayBunchList. Be careful of the
specific contracts of ListIterator methods, such as set not being valid until either next or previous
is invoked. 616

Exercise 21.6: Rewrite the example program Concat on page 528 so that it uses an implementation of
Enumeration that has only one FileInputStream object open at a time. 617

Exercise 21.7: Implement a stack using ArrayList. Should your stack class be a subclass of ArrayList
or use an ArrayList internally, providing different stack-specific methods? 619

Exercise 22.1: Write a method that takes an array of floating-point values and a number indicating how many
columns to use, and prints the array contents. Try to ensure that the entries in each column line up neatly.
Assume a line is 80 characters wide. 632

Exercise 22.2: The WhichChars class has a problem marking characters near the top of the Unicode range
because the high character values will leave many unused bits in the lower ranges. Use a HashSet to solve
this problem by storing Character objects for each character seen. 635

Exercise 22.3: Now use a HashMap to store a BitSet object for each different top byte (high 8 bits)
encountered in the input string, with each BitSet storing the low bytes that have been seen with the
particular high byte. 635

Exercise 22.4: Provide an implementation of the Attributed interface that uses
Observer/Observable to notify observers of changes. 639

Exercise 22.5: Given a certain number of six-sided dice, you can calculate the theoretical probability of each
possible total. For example, with two six-sided dice, the probability of a total of seven is one in six. Write a
program that compares the theoretical distribution of sums for a given number of six-sided dice with the

626

626

actual results over a large number of "rolls" using Random to generate numbers between one and six. Does it
matter which of the number-generating methods you use? 641

Exercise 22.6: Write a program that tests nextGaussian, displaying the results of a large number of runs
as a graph (a bar chart of * characters will do). 641

Exercise 22.7: Rewrite readCSVTable so that the number of cells of data expected is passed as an
argument. 646

Exercise 22.8: As it stands, readCSVTable is both too strict and too lenient on the input format it expects.
It is too strict because an empty line at the end of the input will cause the IOException to be thrown. It is
too lenient because a line of input with more than three commas will not cause an exception. Rectify both of
these problems. 646

Exercise 22.9: Referring back to the discussion of efficiency of regular expressions on page 329, devise at
least four patterns that will parse a line of comma-separated-values. (Hint: In addition to the suggestion on
page 329 also consider the use of greedy versus non-greedy quantifiers.) Write a benchmark program that
compares the efficiency of each pattern, and be sure that you test with both short strings between commas and
very long strings. 647

Exercise 22.10: Write a method to tokenize input that ignores comments, using the comment pattern as part of
the scanner's delimiter. 650

Exercise 22.11: Write a version of readCSV that uses a StreamTokenizer rather than a Scanner. 650

Exercise 22.12: Write a version of the attribute reading method from page 533 that uses a Scanner. For this
exercise it is only necessary that both versions accept the same correctly formatted input. 650

Exercise 22.13: Extend your solution to Exercise 22.12 so that misplaced = characters are detected, as in the
StreamTokenizer version. (Hint: You might want to try to dynamically change the delimiter pattern
between certain tokens.) 650

Exercise 22.14: Write a method that will take a string containing floating-point numbers, break it up using
whitespace as the delimiter, and return the sum of the numbers. 653

Exercise 22.15: Write a calculator that has all Math or StrictMath functions, as well as (at least) the basic
operators +, -, *, /, and %. (The simplest form is probably a reverse Polish stack calculator because operator
precedence is not an issue.) 659

Exercise 23.1: Write the plugTogether method. You will need threads. 669

Exercise 23.2: Write a program that runs exec on its command-line arguments and prints the output from the
command, preceding each line of output by its line number. 672

Exercise 23.3: Write a program that runs exec on command-line arguments and prints the output from the
command, killing the command when a particular string appears in the output. 672

Exercise 24.1: Get GlobalHello to work with the example locales. Add some more locales, using
ListResourceBundle, .properties files, and your own specific subclass of ResourceBundle.
693

Exercise 24.2: Select six different locales and six different currencies, and print a table showing the currency
symbol for each currency in each locale. 694

627

627

Exercise 24.3: Write a program that takes a string argument that is parsed into the date to print, and print that
date in all possible styles. How lenient will the date parsing be? 706

Quotes

Contents vii

Preface xxi

Beautiful buildings are more than scientific. They are true organisms, spiritually conceived;
works of art, using the best technology by inspiration rather than the idiosyncrasies of mere
taste or any averaging by the committee mind.

Frank Lloyd Wright

Results! Why, man, I have gotten a lot of results. I know several thousand things that won't
work.

Thomas Edison

1 A Quick Tour 1

See Europe! Ten Countries in Seventeen Days!

Sign in a travel agent's window

Carefulwe don't want to learn from this!

Calvin and Hobbes

2 Classes and Objects 41

First things first, but not necessarily in that order.

Dr. Who, Meglos

The significant problems we face cannot be solved by the same level of thinking that created
them.

Albert Einstein

3 Extending Classes 75

I am, in point of fact, a particularly haughty and exclusive person, of pre-Adamite ancestral
descent. You will understand this when I tell you that I can trace my ancestry back to a
protoplasmal primordial atomic globule.

Gilbert and Sullivan, The Mikado

When we are planning for posterity, we ought to remember that virtue is not hereditary.

Thomas Paine

628

628

4 Interfaces 117

"Conducting" is when you draw "designs" in the nowherewith your stick, or with your
handswhich are interpreted as "instructional messages" by guys wearing bow ties who wish
they were fishing.

Frank Zappa

There are two ways of constructing a software design: one way is to make it so simple that
there are obviously no deficiencies; the other is to make it so complicated that there are no
obvious deficiencies.

C.A.R. Hoare

5 Nested Classes and Interfaces 133

Every nonzero finite-dimensional inner product space has an orthonormal basis. It makes
sense when you don't think about it.

Math Professor, U.C. Berkeley

"A power so great, it can only be used for Good or Evil!"

Firesign Theatre, "The Giant Rat of Summatra"

6 Enumeration Types 151

Four be the things I am wiser to know: Idleness, sorrow, a friend, and a foe. Four be the
things I'd been better without: Love, curiosity, freckles, and doubt. Three be the things I shall
never attain: Envy, content, and sufficient champagne. Three be the things I shall have till I
die: Laughter and hope and a sock in the eye.

Dorothy Parker, "Inventory"

Census Taker to Housewife: Did you ever have the measles, and, if so, how many?

7 Tokens, Values, and Variables 161

There's nothing remarkable about it. All one has to do is hit the right keys at the right time
and the instrument plays itself.

Johann Sebastian Bach

In order to make an apple pie from scratch, you must first create the universe.

Carl Sagan, Cosmos

8 Primitives as Types 183

I'm gonna wrap myself in paper, I'm gonna dab myself with glue, Stick some stamps on top of
my head! I'm gonna mail myself to you.

Woody Guthrie, Mail Myself to You

629

629

Dare to be naïve.

R. Buckminster Fuller

9 Operators and Expressions 201

Work is of two kinds: first, altering the position of matter at or near the earth's surface relative
to other matter; second, telling other people to do so.

Bertrand Russell

Math was always my bad subject. I couldn't convince my teachers that many of my answers
were meant ironically.

Calvin Trillin

10 Control Flow 229

"Would you tell me, please, which way I ought to go from here?" "That depends a good deal
on where you want to get to."

Lewis Carroll, Alice in Wonderland

Furious activity is no substitute for understanding.

H.H. Williams

11 Generic Types 247

The problem with people who have no vices is that generally you can be pretty sure they're
going to have some pretty annoying virtues.

Elizabeth Taylor

Nearly all men can stand adversity, but if you want to test a man's character, give him power.

Abraham Lincoln

12 Exceptions and Assertions 279

A slipping gear could let your M203 grenade launcher fire when you least expect it. That
would make you quite unpopular in what's left of your unit.

The U.S. Army's PS magazine, August 1993

The greatest of all faults is to be conscious of none.

-Thomas Carlyle

13 Strings and Regular Expressions 305

What's the use of a good quotation if you can't change it?

Dr. Who, The Two Doctors

630

630

When ideas fail, words come in very handy.

Johann Wolfgang von Goethe

14 Threads 337

At some point, you have to jump out of the plane under the assumption that you can get the
parachute sewn together in time to deploy it.

Jack Rickard

I'll play it first and tell you what it is later.

Miles Davis

15 Annotations 387

I don't like spinach, and I'm glad I don't, because if I liked it I'd eat it, and I just hate it.

Clarence Darrow

I don't care who does the electin' as long as I get to do the nominatin'.

Boss Tweed

16 Reflection 397

A sense of humor keen enough to show a man his own absurdities will keep him from the
commission of all sins, or nearly all, save those that are worth committing.

Samuel Butler

Be and not seem.

Ralph Waldo Emerson

17 Garbage Collection and Memory 447

Civilization is a limitless multiplication of unnecessary necessaries.

Mark Twain

Don't ever take a fence down until you know the reason why it was put up.

G.K. Chesterton

18 Packages 467

For some reason a glaze passes over people's faces when you say "Canada". Maybe we should
invade South Dakota or something.

Sandra Gotlieb, wife of Canadian ambassador to U.S. (19811989)

When a shepherd goes to kill a wolf, and takes his dog along to see the sport, he should take

631

631

care to avoid mistakes. The dog has certain relationships to the wolf the shepherd may have
forgotten.

Robert Prisig, Zen and the Art of Motorcycle Maintenance

19 Documentation Comments 481

Any member introducing a dog into the Society's premises shall be liable to a fine of £10.
Any animal leading a blind person shall be deemed to be a cat.

Rule 46, Oxford Union Society (circa 1997)

The universe is made of stories, not atoms.

Muriel Rukeyser

20 The I/O Package 499

From a programmer's point of view, the user is a peripheral that types when you issue a read
request.

Peter Williams

Nothing has really happened until it has been recorded.

Virginia Woolf

21 Collections 567

Andrea: Unhappy the land that has no heroes.

Galileo: No, unhappy the land that needs heroes.

Bertolt Brecht, Life of Galileo

Science is facts; just as houses are made of stones, so is science made of facts; but a pile of
stones is not a house and a collection of facts is not necessarily science.

Henri Poincaré

22 Miscellaneous Utilities 623

The best way to make a fire with two sticks is to make sure one of them is a match.

Will Rogers

Computers are uselessthey can only give you answers.

Pablo Picasso

23 System Programming 661

Glendower: I can call spirits from the vasty deep. Hotspur: Why, so can I, or so can any man;
But will they come when you do call for them?

632

632

William Shakespeare, King Henry IV, Part 1

Power corrupts. Absolute power is kind of neat.

John Lehman, U.S. Secretary of the Navy, 19811987

24 Internationalization and Localization 685

Nobody can be exactly like me. Sometimes even I have trouble doing it.

Tallulah Bankhead

Never speak more clearly than you think

Jeremey Bernstein

25 Standard Packages 715

No unmet needs exist, and current unmet needs that are being met will continue to be met.

Transportation Commission on Unmet Needs, California

Programming today is a race between software engineers striving to build bigger and better
idiot-proof programs, and the universe trying to produce bigger and better idiots. So far the
universe is winning.

Rich Cook

A Application Evolution 741

With every passing hour our solar system comes 43,000 miles closer to globular cluster M13
in the constellation Hercules, and still there are some misfits who continue to insist that there
is no such thing as progress.

Ransom K. Ferm

Things will get better despite our efforts to improve them.

Will Rogers

B Useful Tables 749

How many seconds are there in a year? If I tell you there are 3.155π107 you won't even try to
remember it. On the other hand, who could forget that, to within half a percent, π seconds is a
nanocentury?

-Tom Duff, Bell Labs

Comparing information and knowledge is like asking whether the fatness of a pig is more or
less green than the designated hitter rule.

David Guaspari

Further Reading 755

633

633

The best book on programming for the layman is Alice in Wonderland, but that's because it's
the best book on anything for the layman.

Alan J. Perlis

The cure for boredom is curiosity. There is no cure for curiosity.

Dorothy Parker

Index 761

It's a dmn poor mind that can only think of one way to spell a word!

Andrew Jackson

Then the bowsprit got mixed with the rudder sometimes…

Lewis Carroll, The Hunting of the Snark (an Agony in Eight Fits)

Colophon 892

A vacuum is a hell of a lot better than some of the stuff that nature replaces it with.

Tennessee Williams

Someday, Weederman, we'll look back on all this and laugh… It will probably be one of
those deep, eerie ones that slowly builds to a blood-curdling maniacal scream, but still it will
be a laugh.

Joe Martin, Mister Boffo

A child can go only so far in life without potty training. It is not mere coincidence that six of
the last seven presidents were potty trained, not to mention nearly half of the nation's state
legislators.

Dave Barry

Exercises 893

Quotes 907

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

634

634

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Account
add_this
anonymous walkThrough
anonymousArray
appendable
array_decl
array_loop
arraycopy
ArrayOfObject
arrayStoreException
assertLockHeld
Attr 2nd
availableProcessors
average-example

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Babble
bad_comment
bad_strcmp
BankAccountPermissions
Benchmark
BetterStringsDemo
BinarySearch
Body with private idNum field
body_c_alloc_arg
body_c_alloc_noarg
body_c_ctor
body_constructor_example
body_m
body_orbits
body_s
body_s_allocate
body_s_declare
body_strexpr
body_toString
bugsfixed
bytesForClass

635

635

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 c_array_decl
charCount
ClassContents
classLiterals
ColorAttr
comparable
compileAndMatch
Concat program
concat_str
constant-variable
copyValueOf
countBetween
ctor_order

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 data initialization
DataHandler
Date
Date1
Date2 2nd
DateBuffer
DebugProxy
deck_array
deprecatedDwim
Designing a Class to be Extended
directInvoke
directMultiNewArray
directSingleNewArray
distance
docCommentAttr
dwim

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Echo
enableOrder
equals

636

636

extend_array
ExtendShow

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Factor
final_class
final_constructor
final_deferred
final_initialized
finalize
finalize_signature
FindChar
FindChar program
findResource
First unicode text
Float-comparison
formatter-locale
full_gc

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Game
game-example
getBook
getBookFromClass
getDebugHistory
getField
gmt_example
good_strcmp
guillemeting
guillemeting_String
guillemeting_StringBuffer

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 hard_tokens
HashMap constructors

637

637

HelloWorld

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 if_false
incrementAll
indirectInvoke
inheritDocComment
initialized_array 2nd
initialized_array_code
initialized_matrix
int_or_long
IntegerStack
IntegerStack_clone
IntegerStack_setup
intern
InterruptedIOException
invokeIsPrivate
iplus1
iplusequals1
iplusplus
Iterator use 2nd
iterator-mention

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 legal_tokens
llqueue
local-variable-decl
Lookup

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 MapInteger
maskIsPrivate
maxThread
method-invocation-conversion
MethodBenchmark

638

638

More
multi_array
multi_array_long
multiNewArray
MyClassClone

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 nanoTime
new_thread

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Operations
out/Babble
out/BabbleFalse
out/BetterStringsDemo
out/Body
out/ClassContents
out/Echo
out/ExtendShow
out/Fibonacci
out/fmtPingPong
out/HelloWorld
out/ImprovedFibonacci
out/More
out/PassByValue
out/PassRef
out/QuotedString
out/RegionMatch
out/SplitUp
out/StringsDemo
out/TestSort
out/TypeDesc
out/useSwapWords
Outer

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

639

639

 package
PassByValue
PassRef
Permissions
Permissions class
PingPong
Pixel
pixel_clear
PlayerLoader
point_clear
point_move
point_s
point_s_declare
point_static
point_this
printserver
proxyFor
publicStaticFinal
publicStaticFinalModifiers

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Queue

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 readAttrs
RegionMatch
reinterrupt
remove
replace
Reuse
Rose diagram
RunPingPong

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

640

640

 setArray
setArrayInt
setField
shorterGetField
shorterSetField
showFinal
ShowJoin
ShowObject
simpleCatch
SimpleLookup
SimpleSortDouble
singleNewArray
SortDouble
SortDoubleMain
sorted-collection
sortedcollection-fixed
SortMetrics
sqrtInt 2nd
sqrtIntFaster
squeezeOut 2nd
static_primes
string-split
StringAssign
StringEquals
StringObjectExample
StringsDemo
subclass [See Extending class(es)]
Sum
sumStream
sunWithMoon
sunWithMoonReplaceAll
swapFirstWords
swapWords
synchronized_abs

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 TestSort
threadgroup-in-constructor
toUpperLower
type search order
TypeDesc

Index

641

641

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Unicode Case Issues
UnicodeBlockDemo
unnamed-package
Upper Unicode Text
URL coverage
use_distance
useGetProxyClass
UseLookup
useSwapWords

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

 Verbose
volatile

642

642

	THE Java™ Programming Language, Fourth Edition
	Table of Contents
	Copyright
	The Java™ Series
	Preface
	About This Book
	Examples and Documentation
	Acknowledgments (Fourth Edition)
	Acknowledgments (Third Edition)
	Acknowledgments (Second Edition)
	Acknowledgments (First Edition)
	Chapter 1. A Quick Tour
	Section 1.1. Getting Started
	Section 1.2. Variables
	Section 1.3. Comments in Code
	Section 1.4. Named Constants
	Section 1.5. Unicode Characters
	Section 1.6. Flow of Control
	Section 1.7. Classes and Objects
	Section 1.8. Methods and Parameters
	Section 1.9. Arrays
	Section 1.10. String Objects
	Section 1.11. Extending a Class
	Section 1.12. Interfaces
	Section 1.13. Generic Types
	Section 1.14. Exceptions
	Section 1.15. Annotations
	Section 1.16. Packages
	Section 1.17. The Java Platform
	Section 1.18. Other Topics Briefly Noted
	Chapter 2. Classes and Objects
	Section 2.1. A Simple Class
	Section 2.2. Fields
	Section 2.3. Access Control
	Section 2.4. Creating Objects
	Section 2.5. Construction and Initialization
	Section 2.6. Methods
	Section 2.7. this
	Section 2.8. Overloading Methods
	Section 2.9. Importing Static Member Names
	Section 2.10. The main Method
	Section 2.11. Native Methods
	Chapter 3. Extending Classes
	Section 3.1. An Extended Class
	Section 3.2. Constructors in Extended Classes
	Section 3.3. Inheriting and Redefining Members
	Section 3.4. Type Compatibility and Conversion
	Section 3.5. What protected Really Means
	Section 3.6. Marking Methods and Classes final
	Section 3.7. Abstract Classes and Methods
	Section 3.8. The Object Class
	Section 3.9. Cloning Objects
	Section 3.10. Extending Classes: How and When
	Section 3.11. Designing a Class to Be Extended
	Section 3.12. Single Inheritance versus Multiple Inheritance
	Chapter 4. Interfaces
	Section 4.1. A Simple Interface Example
	Section 4.2. Interface Declarations
	Section 4.3. Extending Interfaces
	Section 4.4. Working with Interfaces
	Section 4.5. Marker Interfaces
	Section 4.6. When to Use Interfaces
	Chapter 5. Nested Classes and Interfaces
	Section 5.1. Static Nested Types
	Section 5.2. Inner Classes
	Section 5.3. Local Inner Classes
	Section 5.4. Anonymous Inner Classes
	Section 5.5. Inheriting Nested Types
	Section 5.6. Nesting in Interfaces
	Section 5.7. Implementation of Nested Types
	Chapter 6. Enumeration Types
	Section 6.1. A Simple Enum Example
	Section 6.2. Enum Declarations
	Section 6.3. Enum Constant Declarations
	Section 6.4. java.lang.Enum
	Section 6.5. To Enum or Not
	Chapter 7. Tokens, Values, and Variables
	Section 7.1. Lexical Elements
	Section 7.2. Types and Literals
	Section 7.3. Variables
	Section 7.4. Array Variables
	Section 7.5. The Meanings of Names
	Chapter 8. Primitives as Types
	Section 8.1. Common Fields and Methods
	Section 8.2. Void
	Section 8.3. Boolean
	Section 8.4. Number
	Section 8.5. Character
	Section 8.6. Boxing Conversions
	Chapter 9. Operators and Expressions
	Section 9.1. Arithmetic Operations
	Section 9.2. General Operators
	Section 9.3. Expressions
	Section 9.4. Type Conversions
	Section 9.5. Operator Precedence and Associativity
	Section 9.6. Member Access
	Chapter 10. Control Flow
	Section 10.1. Statements and Blocks
	Section 10.2. ifelse
	Section 10.3. switch
	Section 10.4. while and dowhile
	Section 10.5. for
	Section 10.6. Labels
	Section 10.7. break
	Section 10.8. continue
	Section 10.9. return
	Section 10.10. What, No goto?
	Chapter 11. Generic Types
	Section 11.1. Generic Type Declarations
	Section 11.2. Working with Generic Types
	Section 11.3. Generic Methods and Constructors
	Section 11.4. Wildcard Capture
	Section 11.5. Under the Hood: Erasure and Raw Types
	Section 11.6. Finding the Right MethodRevisited
	Section 11.7. Class Extension and Generic Types
	Chapter 12. Exceptions and Assertions
	Section 12.1. Creating Exception Types
	Section 12.2. throw
	Section 12.3. The throws Clause
	Section 12.4. try, catch, and finally
	Section 12.5. Exception Chaining
	Section 12.6. Stack Traces
	Section 12.7. When to Use Exceptions
	Section 12.8. Assertions
	Section 12.9. When to Use Assertions
	Section 12.10. Turning Assertions On and Off
	Chapter 13. Strings and Regular Expressions
	Section 13.1. Character Sequences
	Section 13.2. The String Class
	Section 13.3. Regular Expression Matching
	Section 13.4. The StringBuilder Class
	Section 13.5. Working with UTF-16
	Chapter 14. Threads
	Section 14.1. Creating Threads
	Section 14.2. Using Runnable
	Section 14.3. Synchronization
	Section 14.4. wait, notifyAll, and notify
	Section 14.5. Details of Waiting and Notification
	Section 14.6. Thread Scheduling
	Section 14.7. Deadlocks
	Section 14.8. Ending Thread Execution
	Section 14.9. Ending Application Execution
	Section 14.10. The Memory Model: Synchronization and volatile
	Section 14.11. Thread Management, Security, and ThreadGroup
	Section 14.12. Threads and Exceptions
	Section 14.13. ThreadLocal Variables
	Section 14.14. Debugging Threads
	Chapter 15. Annotations
	Section 15.1. A Simple Annotation Example
	Section 15.2. Annotation Types
	Section 15.3. Annotating Elements
	Section 15.4. Restricting Annotation Applicability
	Section 15.5. Retention Policies
	Section 15.6. Working with Annotations
	Chapter 16. Reflection
	Section 16.1. The Class Class
	Section 16.2. Annotation Queries
	Section 16.3. The Modifier Class
	Section 16.4. The Member classes
	Section 16.5. Access Checking and AccessibleObject
	Section 16.6. The Field Class
	Section 16.7. The Method Class
	Section 16.8. Creating New Objects and the Constructor Class
	Section 16.9. Generic Type Inspection
	Section 16.10. Arrays
	Section 16.11. Packages
	Section 16.12. The Proxy Class
	Section 16.13. Loading Classes
	Section 16.14. Controlling Assertions at Runtime
	Chapter 17. Garbage Collection and Memory
	Section 17.1. Garbage Collection
	Section 17.2. A Simple Model
	Section 17.3. Finalization
	Section 17.4. Interacting with the Garbage Collector
	Section 17.5. Reachability States and Reference Objects
	Chapter 18. Packages
	Section 18.1. Package Naming
	Section 18.2. Type Imports
	Section 18.3. Package Access
	Section 18.4. Package Contents
	Section 18.5. Package Annotations
	Section 18.6. Package Objects and Specifications
	Chapter 19. Documentation Comments
	Section 19.1. The Anatomy of a Doc Comment
	Section 19.2. Tags
	Section 19.3. Inheriting Method Documentation Comments
	Section 19.4. A Simple Example
	Section 19.5. External Conventions
	Section 19.6. Notes on Usage
	Chapter 20. The I/O Package
	Section 20.1. Streams Overview
	Section 20.2. Byte Streams
	Section 20.3. Character Streams
	Section 20.4. InputStreamReader and OutputStreamWriter
	Section 20.5. A Quick Tour of the Stream Classes
	Section 20.6. The Data Byte Streams
	Section 20.7. Working with Files
	Section 20.8. Object Serialization
	Section 20.9. The IOException Classes
	Section 20.10. A Taste of New I/O
	Chapter 21. Collections
	Section 21.1. Collections
	Section 21.2. Iteration
	Section 21.3. Ordering with Comparable and Comparator
	Section 21.4. The Collection Interface
	Section 21.5. Set and SortedSet
	Section 21.6. List
	Section 21.7. Queue
	Section 21.8. Map and SortedMap
	Section 21.9. enum Collections
	Section 21.10. Wrapped Collections and the Collections Class
	Section 21.11. Synchronized Wrappers and Concurrent Collections
	Section 21.12. The Arrays Utility Class
	Section 21.13. Writing Iterator Implementations
	Section 21.14. Writing Collection Implementations
	Section 21.15. The Legacy Collection Types
	Section 21.16. Properties
	Chapter 22. Miscellaneous Utilities
	Section 22.1. Formatter
	Section 22.2. BitSet
	Section 22.3. Observer/Observable
	Section 22.4. Random
	Section 22.5. Scanner
	Section 22.6. StringTokenizer
	Section 22.7. Timer and TimerTask
	Section 22.8. UUID
	Section 22.9. Math and StrictMath
	Chapter 23. System Programming
	Section 23.1. The System Class
	Section 23.2. Creating Processes
	Section 23.3. Shutdown
	Section 23.4. The Rest of Runtime
	Section 23.5. Security
	Chapter 24. Internationalization and Localization
	Section 24.1. Locale
	Section 24.2. Resource Bundles
	Section 24.3. Currency
	Section 24.4. Time, Dates, and Calendars
	Section 24.5. Formatting and Parsing Dates and Times
	Section 24.6. Internationalization and Localization for Text
	Chapter 25. Standard Packages
	Section 25.1. java.awtThe Abstract Window Toolkit
	Section 25.2. java.appletApplets
	Section 25.3. java.beansComponents
	Section 25.4. java.mathMathematics
	Section 25.5. java.netThe Network
	Section 25.6. java.rmiRemote Method Invocation
	Section 25.7. java.security and Related PackagesSecurity Tools
	Section 25.8. java.sqlRelational Database Access
	Section 25.9. Utility Subpackages
	Section 25.10. javax.*Standard Extensions
	Section 25.11. javax.accessibilityAccessibility for GUIs
	Section 25.12. javax.namingDirectory and Naming Services
	Section 25.13. javax.soundSound Manipulation
	Section 25.14. javax.swingSwing GUI Components
	Section 25.15. org.omg.CORBACORBA APIs
	Appendix A. Application Evolution
	Section A.1. Language, Library, and Virtual Machine Versions
	Section A.2. Dealing with Multiple Dialects
	Section A.3. Generics: Reification, Erasure, and Raw Types
	Appendix B. Useful Tables
	Further Reading
	Java Platform Topics
	Object-Oriented Design
	Multithreaded Programming
	Generics
	Regular Expressions
	General Programming Techniques
	Related Languages
	Software Engineering
	Visual Design & GUI Design
	Colophon
	Note to Translators
	Article
	Exercises
	Quotes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	temp0298.html

