Data Analysis

Bibliography:

- 1. Benzecri J. P., L'analyse des données, Dunod, Paris, 1979, Franța
- Harman, H.H., Modern Factor Analysis, University of Chicago Press, Chicago, Ill., 1967
- **3. Gelman A., Hill J.**, *Data Analysis Using Regression and Multilevel/Hierarchical Models*, Cambridge University Press, 2007
- 4. Cherkassky V., Mulier F., *Learning from Data: Concepts, Theory and Methods*, John Wiley & Sons, Inc., New York, 1998
- **5. Benzecri J. P.**, *L'analyse des donnees. L'analyse des correspondances*, Dunod, Paris, 1979
- 6. Murtagh, F., Heck, A., Multivariate data analysis, Dordrecht, 1987, Olanda
- 7. Ruxanda G., Analiza datelor, București, Editura ASE, București 2001
- 8. Ruxanda G., Analiza multidimensională a datelor, Editura ASE, București 2009

What is Data Analysis?

Is a process of:

- inspecting,
- cleaning,
- transforming,
- and modeling data

having the goal of:

- discovering (new) useful information,
- suggesting conclusions,
- and supporting decision-making.

What is Data Analysis?

Data Analysis:

- has multiple facets and approaches,
- encompassing diverse techniques,
- under a variety of names,
- in different business, science, and social science domains.

Data Mining is a particular data analysis technique that focuses on modeling and knowledge discovery for predictive rather than purely descriptive purposes.

Business Intelligence covers data analysis that relies heavily on aggregation, focusing on business information.

What is Data Analysis?

Pattern Recognition

- are data analysis systems that in many cases are trained from labeled "training" data (<u>supervised learning</u>)
- when no labeled data are available other algorithms can be used to discover previously unknown patterns (unsupervised learning).

<u>Machine Learning</u> is the common term for supervised learning methods and originates from <u>artificial intelligence</u>, whereas knowledge discovery in databases (KDD) and data mining have a larger focus on unsupervised methods and stronger connection to business use.

Population and sample

• Population or general collectivity, represents the set of all the measurements with relevance for researcher or experiment. A sample is a subset of a population.

Attribute or characteristic

• The properties, features of each entity within the observed population.

Variable

• An abstract concept which allows for assigning numerical or non-numerical values to an attribute or characteristic. It must have an univocal syntax and a precise semantic.

Qualitative variables

• differ by type, and refer to non-numerical properties, characteristics of the elementary units belonging to a population, modalities.

Quantitative variables

• differ by size, and refer to numerical properties of the elementary units belonging to a population.

Qualitative variables

- Nominal
- Ordinal

Quantitative variables

- Continue
- Discrete

Qualitative variables

- Nominal or Categorical nominal, categorical scale
- Ordinal ordinal scale, order matters

Quantitative variables

- Continuous range, interval
- Discrete finite set of values

Probability density function (PDF)

• Measures the possibility for a variable to take a certain value. It is a function defined on the set of all possible values of the variable, with values within the interval [0,1]:

 $\mathbf{f}(x) = \mathbf{P}(X=x),$

where *X* is the variable, and *x* is one of the values that *X* may take.

Cumulative distribution function (CDF)

• Measures the possibility for continuous random variable X to take values within a certain interval.

$$F(\mathbf{x}) = P(\mathbf{X} \le \mathbf{x}) = \int_{-\infty}^{x} f_X(t) dt$$

• If X is a purely discrete random variable, then it attains values x1, x2, ... with probability pi = P(xi).

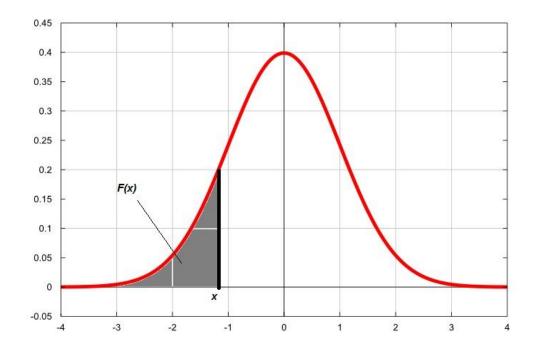
$$F(\mathbf{x}) = P(\mathbf{X} \le \mathbf{x}) = \sum_{x_i \le x} P(\mathbf{X} = x_i) = \sum_{x_i \le x} p(x_i)$$

10/28/2019

Data Analysis Lecture 1, © Claudiu Vințe

Cumulative distribution function

• Geometrically, F(x) represents the area below the probability density curve.



Data Analysis Lecture 1, © Claudiu Vințe

Position (where?)

- Mean (average, typical, central tendency)
- Moments (the *k*-th moment)
- Median (middle)
- Percentile
- Quartiles
- Mode (the most probable value, the value that appears most often in a set of data)

Spread - dispersion, variability, scatter (how?)

- Amplitude
- Variance
- Mean Absolute Deviation (MAD)
- Standard Deviation (SD)
- Coefficient of Variance

Shape of the distribution (why?)

- Symmetry
- Skew

<u>Mean (average, typical, central tendency)</u>

Discrete case:

$$E(X) = \mu = \sum_{x \in R} x \cdot f(x) \qquad E(X) = \mu = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

where f(x) is the probability for variable X to attain value x, (probability density); for a normal distribution of *n* subjects.

Continuous case:

$$E(X) = \mu = \int_{R} x \cdot f(x) dx$$

10/28/2019

<u>Moment</u> (the *k*-th moment of a variable)

If the points represent <u>probability density</u>, then:

- the zeroth moment is the total probability (i.e. <u>one</u>),
- the first moment is the <u>mean</u>,
- the second <u>central moment</u> is the <u>variance</u>,
- the third central moment is the <u>skewness</u>,
- and the fourth central moment (with normalization and shift) is the <u>kurtosis</u>.

<u>Moment</u> (the *k*-th moment of a variable)

Discrete case:

$$M_k(X) = M_k = \sum_{x \in R} x^k \cdot f(x) \qquad M_k = \frac{1}{n} \sum_{x \in R} x^k$$

The first (raw, or crude) moment is the mean; for a uniform distribution of n.

Continuous case:

$$M_{k}(X) = M_{k} = \int_{-\infty}^{\infty} (x-c)^{k} f(x) dx = \int_{R} x^{k} \cdot f(x) dx$$

The *k*-th moment of a real-valued continuous function f(x) of a real variable about a value *c* (*c*=0, moment about zero; *c*=*mean*, moment about mean).

10/28/2019

Data Analysis Lecture 1, © Claudiu Vințe

<u>Median</u>

Splits the set of possible values in 2 subsets: 50% less than it, and 50% higher.

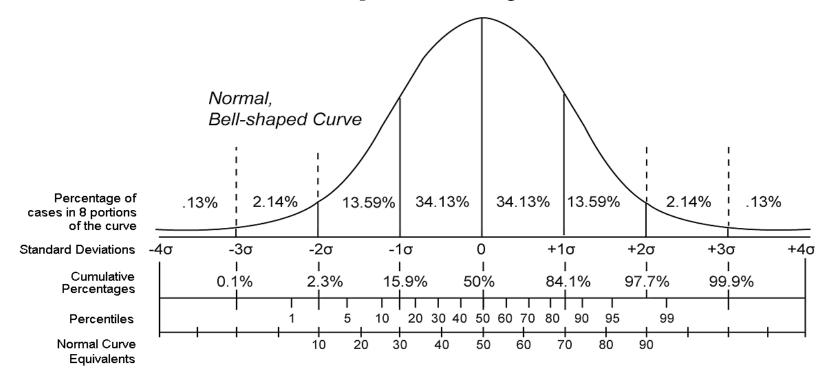
 $P(X \le x_{me}) = 0.5;$ where x_{me} is the median value.

<u>Percentile</u> (centile)

- The value below which a given percentage of observations in a group of observations fall.
- The 25th percentile is also known as the first quartile (Q1), the 50th percentile as the median or second quartile (Q2), and the 75th percentile as the third quartile (Q3).

Percentile rank

Percentile rank is the value p having the property that up to p% of the set values are less than it, and (100-p)% values a greater.



10/28/2019

Data Analysis Lecture 1, © Claudiu Vințe

Percentile rank

Having given a sample set Yi, i=1,n

Y[k] is the rank *k* element, i.e. there are *k*-1 values less than it.

If y(p) is percentile rank p, then its value is determined as follows:

$$y(p) = Y[k] + d \cdot (Y[k+1]-Y[k]),$$

where:

- k is the integer part of p·(n+1)/100, representing the number of values less than p;
- d is $p \cdot (n+1)/100$ -k, representing the decimal part $p \cdot (n+1)/100$, representing the percentage distance of *p* from Y[k] to Y[k-1].

Amplitude

The magnitude of the difference between the random variable's extreme values: maximum and minimum;

 $A = X_{max} - X_{min}$

Mean Absolute Deviation (MAD)

Characterizes the spread, dispersion, of a random variable:

• Discrete case:
$$d = \sum_{x \in R} |x - \overline{x}| \cdot f(x)$$

• Continuous case: $d = \int_{R} |x - \overline{x}| \cdot f(x) dx$

Mean Absolute Deviation (MAD)

• For a uniform distribution, cu f(x) = 1/n, where *n* is the number of possible values:

$$d = \frac{1}{n} \sum_{i=1}^{n} \left| x_i - \overline{x} \right|$$

Variance

Is the expectation of the squared deviation of a random variable from its mean. Measures how far a set of (random) numbers are spread out from their mean.

- Discrete case: $\sigma^2 = \sum_{n=1}^{\infty} (x x)^2 \cdot f(x)$
- Continuous case: $\sigma^2 = \int_{R} (x \overline{x})^2 \cdot f(x) dx$
- For a uniform distribution, cu f(x) = 1/n, where *n* is the number of possible values:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

10/28/2019

Data Analysis Lecture 1, © Claudiu Vințe

Standard deviation (SD)

It is preferred for compatibility with the values of the random variable, from the perspective of units of measure:

 $\sigma = \sqrt{\sigma^2}$

Coefficient of variance (CV)

Also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as a percentage, and is defined as the ratio of the standard deviation to the mean.

$$C_v = \frac{\sigma}{x}$$

Moments

• Discrete case:
$$MC_k(X) = MC_k = \sum_{x \in R} (x - \mu)^k \cdot f(x)$$

- Continuous case: $MC_k(X) = MC_k = \int_R (x \mu)^k \cdot f(x) dx$
- The 2-nd central moment about the mean is the variance:

$$\sigma^2 = \sum_{x \in R} \left(x - \overline{x} \right)^2 \cdot f(x)$$