Data Analysis

Principal Component Analysis (PCA)

Rationales, criteria upon choosing the axis numbers

- The main goal of PCA: to highlight the significant information regarding the overall data set.
- Hence, the first component agglutinates the most important information type because it contains the maximum variance.
- The question is: how many types of information deserve to be thoroughly, exhaustively investigated?
- Geometrically, it is all about determining the number of axis to be chosen for a multidimensional representation in order to obtain a satisfactory informational coverage.

Principal Component Analysis (PCA)

Observation driven approach: projection on D_{1} axis

Lecture 5, Copyright © Claudiu Vințe

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

1. Coverage percentage criterion:

- Determining the variance quantity explained on each axis.
- Since the optimum criteria in choosing axis \boldsymbol{k} is to maximize the variance on that axis, then:

$$
\frac{1}{n}\left(a_{k}\right)^{t} X^{t} X a_{k}=\left(a_{k}\right)^{t} \alpha_{k} a_{k}=\alpha_{k}
$$

- Therefore, the explained variance on axis \boldsymbol{k} is the eigenvalue $\boldsymbol{\alpha}_{\mathbf{k}}$.
- Table X being standardized, the overall variance is \boldsymbol{m}.
- Consequently, the explained variance percentage on \boldsymbol{k} axis is este $\boldsymbol{\alpha}_{\boldsymbol{k}} / \boldsymbol{m}$.

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

- Hence, the variance percentage explained by the k axis is:
$\frac{\sum_{j=1}^{k} \alpha_{j}}{\sum_{i=1}^{m} \alpha_{i}}$
- If the variables \boldsymbol{X} are standardized then:
$\sum_{j=1}^{k-1} \alpha_{j}$
m

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

- Similarly, approaching the problem from the variable spaces, at the \boldsymbol{k} step (phase), the correlation between the new $\boldsymbol{C}_{\boldsymbol{k}}$ component and the initial, causal variables is:

$$
R^{2}\left(C_{1}, X_{j}\right)=\frac{\operatorname{Cov}\left(C_{1}, X_{j}\right)^{2}}{\operatorname{Var}\left(C_{1}\right) \operatorname{Var}\left(X_{j}\right)}
$$

$\sum_{j=1}^{m} R^{2}\left(C_{k}, X_{j}\right)=\frac{1}{n} \frac{\left(C_{k}\right)^{t} X X^{t} C_{k}}{\left(C_{k}\right)^{t} C_{k}}=\frac{\left(C_{k}\right)^{t} \alpha_{k} C_{k}}{\left(C_{k}\right)^{t} C_{k}}=\alpha_{k}$.

- The eigenvalue (characteristic value) α_{k} is the sum between the determined coefficients of the new component and the previously determined component coefficients.
- If s is the number of significant axis then, according to the coverage percentage criteria, s is the first value for which $\alpha_{s}>P$, where \boldsymbol{P} is the chosen coverage percentage.

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

1. Kaiser criterion:

- The criterion is applicable only if the causal variables e cauzale $X_{j}, j=1, m$ are standardized.
- In such a case it make sense that the new variables, the principal components, to be considered important, significant, if they agglutinate more variance than an initial variable X_{j}.
- The Kaiser rule recommends to keep those principal components which have a variance (eigenvalues) greater then 1.

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

2. Cattell criterion:

- The criterion may be applied in both graphical and analytical approaches.
- Graphically, beginning with the third principal component, is to detect the first turn, an angle of less than 180°.
- Only the eigenvalues up to that point, inclusive, are to be retained.
- In the analytical approach, there are to be computed the second order differences between the eigenvalues
$\varepsilon_{\mathrm{k}}=\alpha_{\mathrm{k}}-\alpha_{k+1}, k=1, m-1$
$\delta_{\mathrm{k}}=\varepsilon_{\mathrm{k}}-\varepsilon_{\mathrm{k}+1}, k=1, m-2$
- The value for s is determined such as $\delta_{1}, \delta_{2}, \ldots, \delta_{s-1}$ to be greater or equal to 0 (zero).
- The following axis are retained: $a_{1}, a_{2}, \ldots, a_{s+2}$.

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

3. Variance explained criteria:

- Some researchers simply use the rule of keeping enough factors to account for 90% (sometimes 80%) of the variation.
- Where the researcher's goal emphasizes parsimony (explaining variance with as few factors as possible), the criterion could be as low as 50%.

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

$\underline{\text { Scores }}$

- Are standardized values of the principal components:

$$
C_{i k}^{s}=\frac{C_{i k}}{\sqrt{\alpha_{k}}}, \quad i=\overline{1, n}, k=\overline{1, s}
$$

- Where $\sqrt{\alpha_{k}}$ is the standard deviation of component C_{k}.

Principal Component Analysis (PCA)

The quality of point representations

- The principals components represents a new space of the observations the principal space.
- The basis for this new space, the unit vector of its axis, it is constituted by the eigenvectors $a_{k}, k=1, m$.
- The coordinates of the observations within these new axis are given by the vectors $C_{k}, k=1, m$.
- As we mentioned earlier, an observation is geometrically represented by a point in a m-dimensional space.
- The square distances from an index point \boldsymbol{i} to the barycenter of the data cloud is:
$\sum_{k=1}^{m} c_{i k}^{2}$

Principal Component Analysis (PCA)

The quality of point representations

- An observation is better represented on a given axis \boldsymbol{a}_{j} as $c_{i j}^{2}$ has a greater value in relation to $\sum_{k=1}^{m} c_{i k}^{2}$
- The quality of representing the i observation on a_{j} axis, is determined by the ratio: $\frac{c_{i j}^{2}}{\sum_{k=1}^{m} c_{i k}^{2}}$
- The value of the ratio is equal with square cosine of the angle between the vector associated to point \boldsymbol{i} and $\boldsymbol{a}_{\boldsymbol{j}}$ vector.

Principal Component Analysis (PCA)

The observation contributions to axis variances

- The explained variance on \boldsymbol{a}_{j} axis is: $\frac{1}{n} \sum_{i=1}^{n} c_{i j}^{2}=\alpha_{j}$
- The contribution of \boldsymbol{i} observation to this variance is: $\frac{c_{i j}^{2}}{n}$
- Therefore the contribution of \boldsymbol{i} observation to the variance of $\boldsymbol{a}_{\boldsymbol{j}}$ axis is: $c_{i j}^{2}$
$n \cdot \alpha_{j}$

Principal Component Analysis (PCA)

Communalities in PCA

- The communality of an initial variable $\boldsymbol{X}_{\boldsymbol{j}}$ in relation to the first \boldsymbol{s} principal components is the sum of correlation coefficients between the causal variable and the principal components.
- Represent the proportion of each variable's variance that can be explained by the principal components (e.g., the underlying latent continua).
- It can be defined as the sum of squared factor loadings:

$$
h^{2}=\sum_{k=1}^{s} R\left(X_{j}, C_{k}\right)^{2}
$$

Principal Component Analysis (PCA)

Communalities in PCA

- Principal component C_{k} contains a variance quantity given by α_{k}, and the sum of the correlation coefficients between this component and the causal variables is equal to α_{k} as well.
- For $s=m, h^{2}=\sum_{k=1}^{s} R\left(X_{j}, C_{k}\right)^{2}$
becomes equal to 1 , meaning that those m principal components explain entirely the information from the initial data table X.

Principal Component Analysis (PCA)

Observation graphical representations

- In order to analyze the results obtained at 2 phases \boldsymbol{j} and \boldsymbol{r}, any given observation \boldsymbol{i} can be represented by projecting it on a plane created by $\boldsymbol{a}_{\boldsymbol{j}}$ and \boldsymbol{a}_{r} axis.

Principal Component Analysis (PCA)

Observation graphical representations

- Then the cloud of points can be represented by projecting it on the plane created by by a_{j} and \boldsymbol{a}_{r} vectors.
- The coordinates of given observation (point in the cloud) are:
$c_{i j}$ and $C_{i r}$

Principal Component Analysis (PCA)

Variable graphical representations

- Accomplished by using the correlation circle between the initial, causal variables and the principal components.
- Those 2 axis correspond to the chosen principal components $\boldsymbol{C}_{\boldsymbol{j}}$ and in relation to a given causal variable X_{i}.

Principal Component Analysis (PCA)

Correlation coefficients

- The degree of determination between a causal variable $\boldsymbol{X}_{\boldsymbol{j}}$ and the principal component $\boldsymbol{C}_{\boldsymbol{r}}$ are computed as Pearson correlation coefficient:

$$
R^{2}\left(C_{r}, X_{j}\right)=\frac{\operatorname{Cov}\left(C_{r}, X_{j}\right)^{2}}{\operatorname{Var}\left(C_{r}\right) \operatorname{Var}\left(X_{j}\right)}=\frac{\operatorname{Cov}\left(C_{r}, X_{j}\right)^{2}}{\alpha_{r}}
$$

since $\operatorname{Var}\left(C_{r}\right)=\alpha_{\mathrm{r}}$, and $\operatorname{Var}\left(X_{j}\right)=1$, being standardized unit vector.

Principal Component Analysis (PCA)

Correlation coefficients

- In terms of matrixes, the correlation coefficients vector between the initial (causal) variables and the principal component \mathbf{C}_{r} is given by:

$$
R_{r}=\frac{\frac{1}{n} X^{t} C_{r}}{\sqrt{\alpha_{r}}}=\frac{\frac{1}{n} X^{t} X a_{r}}{\sqrt{\alpha_{r}}}=\frac{\alpha_{r} a_{r}}{\sqrt{\alpha_{r}}}=a_{r} \sqrt{\alpha_{r}}
$$

These correlations are labeled as factor loadings.

Principal Component Analysis (PCA)

Non-standard PCA

- Having given the hypothesis that the initial variables are only centered, but not normalized.
- The initial variables' variance is no longer 1.
- The analysis is conducted on covariance matrix, since:
${ }^{1} X^{t} X$
n
is the covariance matrix of the observation tables.
- In the observation space, the optimum criterion at any given phase remains the same, but it applies to a different cloud of points.
- The vectors $a_{k}, k=1, m$, are eigenvectors of the covariance matrix.

Principal Component Analysis (PCA)

Non-standard PCA

- In the variable spaces, the optimum criterion at a given phase k,
$\operatorname{Maxim}_{\mathrm{C}_{\mathrm{k}}} \sum_{j=1}^{m} R^{2}\left(C_{k}, X_{j}\right)$
becomes:
$\operatorname{Maxim}_{\mathrm{C}_{\mathrm{k}}} \operatorname{im} \sum_{j=1}^{m} \operatorname{Cov}^{2}\left(C_{k}, X_{j}\right)$

Principal Component Analysis (PCA)

Weighted PCA

- The assumption is that the weight of each observation is different than $\frac{1}{n}$.
- Lets p_{i}, be the weights associated to the i observation, $0<p_{i}<1$,

$$
\sum_{i=1}^{n} p_{i}=1 \frac{1}{n}
$$

Then there can be defined the weight matrixes P as being:

$$
P=\left[\begin{array}{cccc}
p_{1} & 0 & \ldots & 0 \\
0 & p_{2} & \ldots & 0 \\
\ldots & & & \\
0 & 0 & \ldots & p_{n}
\end{array}\right]
$$

Principal Component Analysis (PCA)

Weighted PCA

- The optimum criterion in the observation spaces becomes:
$\operatorname{Maxim} \sum_{i=1}^{n} p_{i} c_{i k}^{2}$

Principal Component Analysis (PCA)

Weighted PCA

- The optimum criterion remains unchanged in the variable spaces.
- The correlation between 2 variables is computed taking into account the observation weights.
- The covariance between 2 centered variable X and Y is:

$$
\operatorname{Cov}(X, Y)=\sum_{i=1}^{n} p_{i} x_{i} y_{i}
$$

And the variance of X is: $\operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}$

- The vectors a_{k} are computed as successive eigenvectors of matrix $X^{t} P \cdot X$
- And the principal components as successive eigenvectors of matrix $X \cdot X^{t} P$

