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Principal Component Analysis (PCA)

Rationales, criteria upon choosing the axis numbers

« The main goal of PCA: to highlight the significant information regarding
the overall data set.

« Hence, the first component agglutinates the most important information
type because it contains the maximum variance.

« The question is: how many types of information deserve to be thoroughly,
exhaustively investigated?

« Geometrically, it is all about determining the number of axis to be chosen
for a multidimensional representation in order to obtain a satisfactory
informational coverage.
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Principal Component Analysis (PCA)

Observation driven approach: projection on D, axis
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

1. Coverage percentage criterion:

« Determining the variance quantity explained on each axis.

 Since the optimum criteria in choosing axis k Is to maximize the variance
on that axis, then:

1
H(ak)t thak = (ak)takak =

« Therefore, the explained variance on axis k is the eigenvalue a,,.
« Table X being standardized, the overall variance is m.
« Consequently, the explained variance percentage on k axis is este o, /m.

10/28/2019 Data Analysis 4
Lecture 5, Copyright © Claudiu Vinte



Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

« Hence, the variance percentage explained by the k axis is:
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

« Similarly, approaching the problem from the variable spaces, at the k step
(phase), the correlation between the new C, component and the initial,
causal variables is: Cov(C,, X )’

R*(C,, X ;) =
Var(C )Var(X)
m t t t
ZRZ(CK’Xj) :E(Ck) th C, _ (C) ?ka = a,.
=1 n (Ck) Ck (Ck) Ck
 The eigenvalue (characteristic value) ¢, Is the sum between the

determined coefficients of the new component and the previously determined
component coefficients.

« |If s is the number of significant axis then, according to the coverage
percentage criteria, s is the first value for which & > P,

where P is the chosen coverage percentage.
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

1. Kaiser criterion:

« The criterion is applicable only if the causal variables e cauzale X;, j=1, m
are standardized.

 In such a case it make sense that the new variables, the principal
components, to be considered important, significant, if they agglutinate more
variance than an initial variable X;.

« The Kaiser rule recommends to keep those principal components which
have a variance (eigenvalues) greater then 1.
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

2. Cattell criterion:
« The criterion may be applied in both graphical and analytical approaches.

« Graphically, beginning with the third principal component, is to detect the
first turn, an angle of less than 180°.

« Only the eigenvalues up to that point, inclusive, are to be retained.

« In the analytical approach, there are to be computed the second order
differences between the eigenvalues

€= O~ Oy, K=1, m-1
O, = € - €41 » K=1, M-2

« The value for s is determined such as 6, 6,, ..., 0., to be greater or equal
to O (zero).

« The following axis are retained: a;, a,, ..., 8.
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers
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Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers

3. Variance explained criteria:

« Some researchers simply use the rule of keeping enough factors to account
for 90% (sometimes 80%) of the variation.

« Where the researcher's goal emphasizes parsimony (explaining variance
with as few factors as possible), the criterion could be as low as 50%.
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https://en.wikipedia.org/wiki/Parsimony

Principal Component Analysis (PCA)

Criteria upon choosing the axis numbers
Scores

« Are standardized values of the principal components:
Cik
V &

«  Where,/¢, is the standard deviation of component C,.

Cii: ' |:ﬁ1k:]§
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Principal Component Analysis (PCA)

The quality of point representations

« The principals components represents a new space of the observations —
the principal space.

« The basis for this new space, the unit vector of its axis, it is constituted by
the eigenvectors a,, k =1,m.

« The coordinates of the observations within these new axis are given by the
vectors C,, k =1,m.

« As we mentioned earlier, an observation is geometrically represented by a
point in a m-dimensional space.

« The square distances from an index point i to the barycenter of the data
cloud is:

o 2
Zcik
k=1
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Principal Component Analysis (PCA)

The quality of point representations
o _ _ 2
* An observation is better represented on a given axis a; as Cij has a greater

m
_ _ 2
value in relation to Zcik

k=1
- The quality of representing the I observation on a; axis, Is determined by
2
: Ci
the ratio: —
2
Zcik
k=1

« The value of the ratio is equal with square cosine of the angle between the
vector associated to point i and cl vector.
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Principal Component Analysis (PCA)

The observation contributions to axis variances
1 n
. . . . 2
» The explained variance on a; axis Is: —Zcij =
1)

C
n

2
 The contribution of i observation to this variance is: —

« Therefore the contribution of i observation to the variance of a axis is:
2

J

n‘CZJ
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Principal Component Analysis (PCA)

Communalities in PCA

» The communality of an initial variable X; in relation to the first s principal
components is the sum of correlation coefficients between the causal
variable and the principal components.

« Represent the proportion of each variable's variance that can be explained
by the principal components (e.g., the underlying latent continua).

It can be defined as the sum of squared factor loadings:

hzzkzs;R(xj,c:k)2

10/28/2019 Data Analysis 15
Lecture 5, Copyright © Claudiu Vinte



Principal Component Analysis (PCA)

Communalities in PCA

- Principal component C, contains a variance quantity given by ay, and the
sum of the correlation coefficients between this component and the causal
variables is equal to oy, as well.

« Fors=m, h° ZKZS:R(XJ’CK)Z
=1

becomes equal to 1, meaning that those m principal components explain
entirely the information from the initial data table X.
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Principal Component Analysis (PCA)

Observation graphical representations

* In order to analyze the results obtained at 2 phases j and r, any given
observation I can be represented by projecting it on a plane created by a;

and a, axis.
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Principal Component Analysis (PCA)

Observation graphical representations

« Then the cloud of points can be represented by projecting it on the plane
created by by a; and a, vectors.
« The coordinates of given observation (point in the cloud) are:

CIJ and Clr ﬂi "

10/28/2019 Data Analysis 18
Lecture 5, Copyright © Claudiu Vinte



Principal Component Analysis (PCA)

Variable graphical representations

« Accomplished by using the correlation circle between the initial, causal
variables and the principal components.

 Those 2 axis correspond to the chosen principal components C; and in
relation to a given causal variable X;. B
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Principal Component Analysis (PCA)

Correlation coefficients

« The degree of determination between a causal variable XJ- and the principal
component C. are computed as Pearson correlation coefficient:

~ Cov(C,,X;)* Cov(C,,X;)
_Var(Cr)Var(Xj) - a

2
R?(C,, X )

r

since Var(C))=a,, and Var(X;) =1, being standardized unit vector.
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Principal Component Analysis (PCA)

Correlation coefficients

« |In terms of matrixes, the correlation coefficients vector between the initial
(causal) variables and the principal component C, is given by:

EXC 1X ‘Xa,

R R i

These correlations are labeled as factor loadings.
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Principal Component Analysis (PCA)

Non-standard PCA

« Having given the hypothesis that the initial variables are only centered, but
not normalized.

« The initial variables’ variance is no longer 1.

« The analysis is conducted on covariance matrix, since:
1 XX
n
IS the covariance matrix of the observation tables.
 In the observation space, the optimum criterion at any given phase remains
the same, but it applies to a different cloud of points.

« The vectors a,, k = 1—m , are eigenvectors of the covariance matrix.
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Principal Component Analysis (PCA)

Non-standard PCA

 In the variable spaces, the optimum criterion at a given phase Kk,

I\/IaximZRz(Ck’Xj)
Cy j=1

becomes:
4 2
Maxim>_Cov?(C,, X))
(o j=1
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Principal Component Analysis (PCA)

Weighted PCA

« The assumption is that the weight of each observation is different than E :

 Lets p;, be the weights associated to the i observation, 0< p;<1, N
4 1
Z pi=1—
i—1 n
Then there can be defined the weight matrixes P as being:
'p, 0 .. 0O
b O p, ... O
0 0 .. p,|
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Principal Component Analysis (PCA)

Weighted PCA

« The optimum criterion in the observation spaces becomes:

I\/Iaxilej p.Ca
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Principal Component Analysis (PCA)

Weighted PCA

« The optimum criterion remains unchanged in the variable spaces.

« The correlation between 2 variables is computed taking into account the
observation weights.

 The covariance between 2 centered variable X and Y is:

Cov(X,Y) = Z Pi%; i
And the variance OfXIS Var(X) = Z P X/

i=1
- The vectors a, are computed as successive eigenvectors of matrix X ‘P. X

« And the principal components as successive eigenvectors of matrix

X-X'P

10/28/2019 Data Analysis 26
Lecture 5, Copyright © Claudiu Vinte



