Data Analysis

Rationales, criteria upon choosing the axis numbers

- The main goal of PCA: to highlight the significant information regarding the overall data set.
- Hence, the first component agglutinates the most important information type because it contains the maximum variance.
- The question is: how many types of information deserve to be thoroughly, exhaustively investigated?
- Geometrically, it is all about determining the number of axis to be chosen for a multidimensional representation in order to obtain a satisfactory informational coverage.

*

Observation driven approach: projection on D₁ axis

Data Analysis Lecture 5, Copyright © Claudiu Vințe

Criteria upon choosing the axis numbers

1. <u>Coverage percentage criterion</u>:

- Determining the variance quantity explained on each axis.
- Since the optimum criteria in choosing axis *k* is to maximize the variance on that axis, then:

$$\frac{1}{n}(a_k)^t X^t X a_k = (a_k)^t \alpha_k a_k = \alpha_k$$

- Therefore, the explained variance on axis k is the eigenvalue α_k .
- Table *X* being standardized, the overall variance is *m*.
- Consequently, the explained variance percentage on k axis is este α_k/m .

Criteria upon choosing the axis numbers

• Hence, the variance percentage explained by the *k* axis is:

 $\frac{\displaystyle\sum_{j=1}^k \alpha_j}{\displaystyle\sum_{i=1}^m \alpha_i}$

• If the variables *X* are standardized then:

т

Criteria upon choosing the axis numbers

• Similarly, approaching the problem from the variable spaces, at the *k* step (phase), the correlation between the new C_k component and the initial, causal variables is: $R^2(C_1, X_j) = \frac{Cov(C_1, X_j)^2}{Var(C_1)Var(X_j)}$

$$\sum_{j=1}^{m} R^{2}(C_{k}, X_{j}) = \frac{1}{n} \frac{(C_{k})^{t} X X^{t} C_{k}}{(C_{k})^{t} C_{k}} = \frac{(C_{k})^{t} \alpha_{k} C_{k}}{(C_{k})^{t} C_{k}} = \alpha_{k}.$$

• The eigenvalue (characteristic value) α_k is the sum between the determined coefficients of the new component and the previously determined component coefficients.

• If s is the number of significant axis then, according to the coverage percentage criteria, s is the first value for which $\alpha_s > P$,

where P is the chosen coverage percentage.

Criteria upon choosing the axis numbers

1. <u>Kaiser criterion</u>:

• The criterion is applicable only if the causal variables e cauzale X_j , j = 1, m are standardized.

- In such a case it make sense that the new variables, the principal components, to be considered important, significant, if they agglutinate more variance than an initial variable X_i .
- The Kaiser rule recommends to keep those principal components which have a variance (eigenvalues) greater then 1.

Criteria upon choosing the axis numbers

2. <u>Cattell criterion</u>:

- The criterion may be applied in both graphical and analytical approaches.
- Graphically, beginning with the third principal component, is to detect the first turn, an angle of less than 180°.
- Only the eigenvalues up to that point, inclusive, are to be retained.
- In the analytical approach, there are to be computed the second order differences between the eigenvalues

$$\varepsilon_k = \alpha_k - \alpha_{k+1}, k = 1, m-1$$

 $\delta_k = \varepsilon_k - \varepsilon_{k+1}$, k=1, m-2

- The value for *s* is determined such as $\delta_1, \delta_2, ..., \delta_{s-1}$ to be greater or equal to 0 (zero).
- The following axis are retained: $a_1, a_2, ..., a_{s+2}$.

10/28/2019

Data Analysis Lecture 5, Copyright © Claudiu Vințe

Criteria upon choosing the axis numbers

10/28/2019

Data Analysis Lecture 5, Copyright © Claudiu Vințe

Criteria upon choosing the axis numbers

3. <u>Variance explained criteria:</u>

- Some researchers simply use the rule of keeping enough factors to account for 90% (sometimes 80%) of the variation.
- Where the researcher's goal emphasizes <u>parsimony</u> (explaining variance with as few factors as possible), the criterion could be as low as 50%.

Criteria upon choosing the axis numbers

<u>Scores</u>

• Are standardized values of the principal components:

$$C_{ik}^{s} = \frac{C_{ik}}{\sqrt{\alpha_{k}}}, \quad i = \overline{1, n}, k = \overline{1, s}$$

• Where $\sqrt{\alpha_k}$ is the standard deviation of component C_k .

The quality of point representations

- The principals components represents a new space of the observations *the principal space*.
- The basis for this new space, the unit vector of its axis, it is constituted by the eigenvectors a_k , k = 1, m.
- The coordinates of the observations within these new axis are given by the vectors C_k , k=1,m.
- As we mentioned earlier, an observation is geometrically represented by a point in *a m-dimensional* space.
- The square distances from an index point *i* to the barycenter of the data cloud is:

 $\sum c_{ik}^2$ k=1

The quality of point representations

• An observation is better represented on a given axis a_j as C_{ij}^2 has a greater

value in relation to $\sum_{k=1}^{m} c_{ik}^2$

- The quality of representing the *i* observation on a_j axis, is determined by the ratio: $\frac{c_{ij}^2}{\sum_{k=1}^m c_{ik}^2}$
- The value of the ratio is equal with square cosine of the angle between the vector associated to point i and a_i vector.

The observation contributions to axis variances

- The explained variance on a_j axis is: $\frac{1}{n} \sum_{i=1}^n c_{ij}^2 = \alpha_j$
- The contribution of *i* observation to this variance is: $\frac{c_{ij}^2}{n}$
- Therefore the contribution of *i* observation to the variance of a_j axis is: c_{ij}^2

 $n \cdot \alpha_j$

Communalities in PCA

- The communality of an initial variable X_j in relation to the first *s* principal components is the sum of correlation coefficients between the causal variable and the principal components.
- Represent the proportion of each variable's variance that can be explained by the principal components (e.g., the underlying latent continua).
- It can be defined as the sum of squared factor loadings:

$$h^2 = \sum_{k=1}^{s} R(X_j, C_k)^2$$

Communalities in PCA

• Principal component C_k contains a variance quantity given by α_k , and the sum of the correlation coefficients between this component and the causal variables is equal to α_k as well.

• For
$$s = m$$
, $h^2 = \sum_{k=1}^{s} R(X_j, C_k)^2$

becomes equal to 1, meaning that those m principal components explain entirely the information from the initial data table X.

Observation graphical representations

• In order to analyze the results obtained at 2 phases j and r, any given observation i can be represented by projecting it on a plane created by a_j and a_r axis.

Observation graphical representations

- Then the cloud of points can be represented by projecting it on the plane created by by a_j and a_r vectors.
- The coordinates of given observation (point in the cloud) are:

Variable graphical representations

- Accomplished by using the correlation circle between the initial, causal variables and the principal components.
- Those 2 axis correspond to the chosen principal components C_j and in relation to a given causal variable X_i .

Data Analysis Lecture 5, Copyright © Claudiu Vințe

Correlation coefficients

• The degree of determination between a causal variable X_j and the principal component C_r are computed as Pearson correlation coefficient:

$$R^{2}(C_{r}, X_{j}) = \frac{\operatorname{Cov}(C_{r}, X_{j})^{2}}{\operatorname{Var}(C_{r})\operatorname{Var}(X_{j})} = \frac{\operatorname{Cov}(C_{r}, X_{j})^{2}}{\alpha_{r}}$$

since $Var(C_r) = \alpha_r$, and $Var(X_j) = 1$, being standardized unit vector.

Correlation coefficients

• In terms of matrixes, the correlation coefficients vector between the initial (causal) variables and the principal component C_r is given by:

$$R_r = \frac{\frac{1}{n} X^t C_r}{\sqrt{\alpha_r}} = \frac{\frac{1}{n} X^t X a_r}{\sqrt{\alpha_r}} = \frac{\alpha_r a_r}{\sqrt{\alpha_r}} = a_r \sqrt{\alpha_r}$$

These correlations are labeled as *factor loadings*.

Non-standard PCA

- Having given the hypothesis that the initial variables are only centered, but not normalized.
- The initial variables' variance is no longer 1.
- The analysis is conducted on covariance matrix, since: $\frac{1}{n}X^{t}X$

is the covariance matrix of the observation tables.

- In the observation space, the optimum criterion at any given phase remains the same, but it applies to a different cloud of points.
- The vectors a_k , k = 1, m, are eigenvectors of the covariance matrix.

Non-standard PCA

• In the variable spaces, the optimum criterion at a given phase *k*,

$$Maxim_{C_k}^{2m} \sum_{j=1}^m R^2(C_k, X_j)$$

becomes:

 $Max_{C_k} im \sum_{j=1}^{m} Cov^2(C_k, X_j)$

Weighted PCA

- The assumption is that the weight of each observation is different than $\frac{1}{2}$.
- Lets p_i , be the weights associated to the *i* observation, $0 < p_i < 1$, n $\sum_{i=1}^{n} p_i = 1 \frac{1}{n}$

Then there can be defined the weight matrixes *P* as being:

$$P = \begin{bmatrix} p_1 & 0 & \dots & 0 \\ 0 & p_2 & \dots & 0 \\ \dots & & & & \\ 0 & 0 & \dots & p_n \end{bmatrix}$$

10/28/2019

Weighted PCA

• The optimum criterion in the observation spaces becomes:

$$Maxim\sum_{i=1}^{n}p_{i}c_{ik}^{2}$$

Weighted PCA

- The optimum criterion remains unchanged in the variable spaces.
- The correlation between 2 variables is computed taking into account the observation weights.
- The covariance between 2 centered variable *X* and *Y* is:

$$Cov(X,Y) = \sum_{i=1}^{n} p_i x_i y_i$$

And the variance of X is: $Var(X) = \sum_{i=1}^{n} p_i x_i^2$

- The vectors a_k are computed as successive eigenvectors of matrix $X^t P \cdot X$
- And the principal components as successive eigenvectors of matrix $X \cdot X^{t} P$

Data Analysis Lecture 5, Copyright © Claudiu Vințe