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Rationales, criteria upon choosing the axis numbers 
 

• The main goal of PCA: to highlight the significant information regarding 

the overall data set. 

• Hence, the first component agglutinates the most important information 

type because it contains the maximum variance. 

• The question is: how many types of information deserve to be thoroughly, 

exhaustively investigated? 

• Geometrically, it is all about determining the number of axis to be chosen 

for a multidimensional representation in order to obtain a satisfactory 

informational coverage. 
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Observation driven approach: projection on D1 axis 
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Criteria upon choosing the axis numbers 
 

1. Coverage percentage criterion: 
 

• Determining the variance quantity explained on each axis. 

• Since the optimum criteria in choosing axis k  is to maximize the variance  

on that axis, then:  

 

 

• Therefore, the explained variance on axis k is the eigenvalue k. 

• Table X being standardized, the overall variance is m.  

• Consequently, the explained variance percentage on k axis is este k/m. 
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Criteria upon choosing the axis numbers 
 

•  Hence, the variance percentage explained by the k axis is: 

 

 

 

 

• If the variables X are standardized then: 
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Criteria upon choosing the axis numbers 
 

• Similarly, approaching the problem from the variable spaces, at the k step 

(phase), the correlation between the new Ck component and the initial, 

causal variables is: 

 

 

 

• The eigenvalue (characteristic value)       is the sum between the 

determined coefficients of the new component and the previously determined 

component coefficients. 

• If s is the number of significant axis then, according to the coverage 

percentage criteria, s is the first value for which         > P,  

where P is the chosen coverage percentage.  
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Criteria upon choosing the axis numbers 
 

1. Kaiser criterion: 
 

• The criterion is applicable only if the causal variables e cauzale Xj, j = 1, m 

are standardized.  

• In such a case it make sense that the new variables, the principal 

components, to be considered important, significant, if they agglutinate more 

variance than an initial variable Xj. 

• The Kaiser rule recommends to keep those principal components which 

have a variance (eigenvalues) greater then 1. 
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Criteria upon choosing the axis numbers 
 

2. Cattell criterion: 

• The criterion may be applied in both graphical and analytical approaches. 

• Graphically, beginning with the third principal component, is to detect the 

first turn, an angle of less than 180°.  

• Only the eigenvalues up to that point, inclusive, are to be retained. 

• In the analytical approach, there are to be computed the second order 

differences between the eigenvalues 

εk = αk- αk+1, k = 1, m-1  

δk= εk - εk+1 , k=1, m-2 

• The value for s is determined such as δ1, δ2, …, δs-1 to be  greater or equal 

to 0 (zero). 

• The following axis are retained: a1, a2, ..., as+2.  
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Criteria upon choosing the axis numbers 
 

10/28/2019 Data Analysis 

Lecture 5, Copyright © Claudiu Vințe 

9 

Principal Component Analysis (PCA) 



Criteria upon choosing the axis numbers 
 

3. Variance explained criteria: 
 

• Some researchers simply use the rule of keeping enough factors to account 

for 90% (sometimes 80%) of the variation.  

• Where the researcher's goal emphasizes parsimony (explaining variance 

with as few factors as possible), the criterion could be as low as 50%. 
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Criteria upon choosing the axis numbers 
 

Scores 
 

• Are standardized values of the principal components: 

 

 

 

• Where      ,    is the standard deviation of component Ck. 
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The quality of point representations 
 

• The principals components represents a new space of the  observations – 

the principal space. 

• The basis for this new space, the unit vector of its axis, it is constituted by 

the eigenvectors  ak, k = 1,m. 

• The coordinates of the observations within these new axis are given by the 

vectors Ck, k =1,m.  

• As we mentioned earlier, an observation is geometrically represented by a 

point in a m-dimensional space. 

• The square distances from an index point i to the barycenter of the data 

cloud is: 
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The quality of point representations 
 

• An observation is better represented on a given axis aj as        has a greater  
 

value in relation to  
 

• The quality of representing the i observation on aj axis, is determined by  
 

the ratio: 

 

 

• The value of the ratio is equal with square cosine of the angle between the 

vector associated to point i and aj vector. 
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The observation contributions to axis variances 
 

• The explained variance on aj axis is: 

 

• The contribution of i observation to this variance is:  

 

• Therefore the contribution of i observation to the variance of aj axis is: 
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Communalities in PCA 
 

• The communality of an initial variable Xj in relation to the first s principal 

components is the sum of correlation coefficients between the causal 

variable and the principal components. 

• Represent the proportion of each variable's variance that can be explained 

by the principal components (e.g., the underlying latent continua).  

• It can be defined as the sum of squared factor loadings: 
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Communalities in PCA 
 

• Principal component Ck contains a variance quantity given by αk, and the 

sum of the correlation coefficients between this component and the causal 

variables is equal to αk as well. 
 

• For s = m,  
 

becomes equal to 1, meaning that those m principal components explain 

entirely the information from the initial data table X.  

 

10/28/2019 Data Analysis 

Lecture 5, Copyright © Claudiu Vințe 

16 

Principal Component Analysis (PCA) 

 



s

k

kj CXRh
1

22 ,



Observation graphical representations 
 

• In order to analyze the results obtained at 2 phases j and r, any given 

observation i can be represented by projecting it on a plane created by aj 

and ar axis. 
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Observation graphical representations 
 

• Then the cloud of points can be represented by projecting it on the plane 

created by by aj and ar vectors. 

• The coordinates of given observation (point in the cloud) are: 

   and  
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Variable graphical representations 
 

• Accomplished by using the correlation circle between the initial, causal 

variables and the principal components. 

• Those 2 axis correspond to the chosen principal components Cj and in 

relation to a given causal variable Xi. 
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Correlation coefficients 
 

• The degree of determination between a causal variable Xj and the principal 

component Cr are computed as Pearson correlation coefficient: 

 

 
 

 

since Var(Cr)=r, and Var(Xj ) =1, being standardized unit vector. 
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Correlation coefficients 
 

• In terms of matrixes, the correlation coefficients vector between the initial 

(causal) variables and the principal component Cr is given by: 

 

 

 

 

These correlations are labeled as factor loadings. 
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Non-standard PCA 
  

• Having given the hypothesis that the initial variables are only centered, but 

not normalized. 

• The initial variables’ variance is no longer 1. 

• The analysis is conducted on covariance matrix, since:  

 

 

is the covariance matrix of the observation tables. 

• In the observation space, the optimum criterion at any given phase remains 

the same, but it applies to a different cloud of points.  

• The vectors          , are eigenvectors of the covariance matrix. 
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Non-standard PCA 
  

• In the variable spaces, the optimum criterion at a given phase k,  

 

 
 

becomes: 
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Weighted PCA 
  

• The assumption is that the weight of each observation is different than      . 

• Lets pi, be the weights associated to the i observation,  0< pi<1,  

 
 

 

Then there can be defined the weight matrixes P as being: 
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Weighted PCA 
 

• The optimum criterion in the observation spaces becomes: 

 

 

 

10/28/2019 Data Analysis 

Lecture 5, Copyright © Claudiu Vințe 

25 

Principal Component Analysis (PCA) 




n

i

ikicpMaxim
1

2



Weighted PCA 
 

• The optimum criterion remains unchanged in the variable spaces.  

• The correlation between 2 variables is computed taking into account the 

observation weights. 

• The covariance between 2 centered variable X and Y is: 

 

 

And the variance of X is:  
 

• The vectors ak are computed as successive eigenvectors of matrix  

• And the principal components as successive eigenvectors of matrix 
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