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Principal Component Analysis (PCA)

« A statistical procedure that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components.

« The analyzed data consist in a table of observations, having n rows and m

columns.
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, Where x;; Is the value taken by variable j for
the observation i.

« The variable described by table X are also known as initial or causal

variables.
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Principal Component Analysis (PCA)

« X: Is the column vector containing the values of variable j for n
observations;

« The goal of the procedure is to describe table X through a reduced number
of nonrelated variables: C4, Co, ..., C..

Phase 1

Determine a new variable C4, the first principal component, as linear

combination of variables Xj:

Ci=a Xi+..+a, X, +..+a, X,
The value taken by C, for a given observation i :

where a;;, J =1,m
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Principal Component Analysis (PCA)

Phase k

Determine a new variable C,, the k principal component, as linear
combination of variables X:
C=a, X, +...+q; X; +..+a, X,

where ay is the vector containing the multipliers a.,, j =1,m

The link between the causal variables (X) and the principal (C) is given by:

Cy =X-a, k=1,s , where s is the number of principal components.
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Principal Component Analysis (PCA)

Observation driven approach
« The cloud of observations has n points within a m-dimensional space;
« Those m variables determine the m axis of coordinates;

« |f the data is standardized, then the variables have the mean 0, and the
standard deviation 1;

« Consider a system orthonormal of axis is (orthogonal and having the norm
1) for those n points;

- Each axis corresponds to a principal component, and the vectors a are unit
vectors (in a normed vector space, it is a vector, often a spatial vector, of
length 1):

m .
Z aka =1 k =1 s , where s is the maximum number of axis
=1
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Principal Component Analysis (PCA)

Observation driven approach: projection on D, axis
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Principal Component Analysis (PCA)

Observation driven approach
Step 1

Determine first axis, corresponding to the first principal component, so the
component's variance is maxim;

O is the center of gravity for the cloud of points.

The distance from point (observation) X; to the D, axis, corresponding to
the first principal component is d(i,D,);

The distance from X to origin O is d(i,O);

Then we have the following relation between distances:

d(i,0)? =d(i,D,)? + ¢;;>, where c;, is the projection of X. on D, axis.
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Principal Component Analysis (PCA)

Observation driven approach
For all the points in the cloud we have:

1546,07 =13 d60D) + 1 e
Na N'ia N'ia
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Principal Component Analysis (PCA)

Observation driven approach

« The sum of the distances toward the center of gravity (barycenter) does not
depend on the chosen axis;

 The variance explained through axis 1 is —chl
=1

 Which in terms of matrixes is:
1 1
H (Cl)t C1 — H (al)t X' Xa1

The problem is to dually (complementary) reach the same goal:
1. Maximize the explained variance on axis 1;
2.  Minimize the sum point distances to axis 1.
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Principal Component Analysis (PCA)

Observation driven approach

( 1 T t
I\/Ilaxﬁ(al) X Xy
'subject of (a,)'a, =1

Lagrange function (or Lagrangian) associated to the problem is defined by:
1
L(a,,4) = (@) X "Xa, - A((@,) 2, ~1)

where A is a Lagrange multiplier.
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Principal Component Analysis (PCA)

Observation driven approach

Partial derivatives:

oL 1 oL ‘
——=2-X'Xa,-21a =0 —=(a)a-1=0
ca " 2 X X2, 5, @&)a
Having then 1 X'Xa, = A4, -
n
Therefore a; Is a eigenvector of the matrix 1Xt X , corresponding to the
eigenvalue (characteristic value) A. n

Multiplying on the left with (a4)" we have:

%(a1)txtxal =A

10/28/2019 Data Analysis 11
Lecture 4, Copyright © Claudiu Vinte



Principal Component Analysis (PCA)

Then
1 t t . . . .
H (31) X Xa, isthe quantity we need to maximize:

- therefore A Is the greatest characteristic value (eigenvalue), and aq Is the
corresponding characteristic vector (eigenvector);

« we shall assign o, to A.
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Principal Component Analysis (PCA)

Step 2
- Determine axis 2 described by vector a, so axis 2 is orthogonal with axis 1;

« Maximize the explained variance (the points are more scattered, disperse
on the axis);

« The applied optimization is:

( 1
|\/|a)(ﬁ(a2)tXtXa2
< | (a,)'a, =1
X (az)tal =0

L@y, 4y, ) :%(az)txtXaz A ((3,)'a, - 1)~ 4,(a,)'a,
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Principal Component Analysis (PCA)

Step 2

Set the partial derivative on a, to zero:

oL 1
— =2-X'Xa,-24a,-4,a, =0
oa, n , — 248, — A8

Multiplying on the left with (a4)" we obtain:

1 tyt t t
25(31) X Xa, -24(a) a, -4 (a) a =0
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Principal Component Analysis (PCA)

Step 2
Then we have: (a,)'a, =0 |, since:

Ly
- X Xa, =3, through transposition, it implies that

1
() =XX =ay (@)
since the matrix XX is symmetrical.

1 1
2-(2,)' X'Xa, =20y (a)'a, =0

Therefore A, =0.
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Principal Component Analysis (PCA)

Step 2

Making the substitution in the derivative
IS

— X Xa, = 44,

n

and therefore a, Is eigenvector corresponding to eigenvalue 2, , and this
eigenvalue is maximal having given the equality:

%(az)t thaz =4

Since = X! Xa, = A,a, itis maximized at this step, we shall assign a, to A,
n
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Principal Component Analysis (PCA)

Step k

- Determine k axis of a, vector, orthogonal on the previous axis and to

maximize the explained variance;
» The optimum problem is as follows:

( 1 t gt
ng;(ak) X Xak
(@) 'a =1

(a)'a;=0,j=1k-1
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Principal Component Analysis (PCA)

Step k
The associated Lagrange function L(ay,A, Ay,..., &) is as follows:

L(ak’ﬂ'l’ﬂ’ ””'Zk) :%(ak)xtxak _ﬂ'l((ak)tak _1)_/12(ak)taﬂ__---_/1k (ak)tak—l

Setting the derivative on zero:

oL 1
— =2-"X'Xa, -21a -Aa —..—Aa_, =0
aak N k ﬂ’l K 2a1 k~"k—1
Then multiply the first relation successively with (a4)’, (as)...., (a_1)’, and
obtain A, =0, A; =0, ..., A, = 0. Returning with these results to the first partial

derivative we have:

EXtXak = Aa,
N
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Principal Component Analysis (PCA)

Step k

. 1 :
Therefore ay Is eigenvector of matrix — X*'X , corresponding to
eigenvalue A, and since the quantity n

%(ak)txtxak

It Is the one maximized at this step then, A, is eigenvalue of k order.

We shall assign o to A;.
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Principal Component Analysis (PCA)

PCA in variable spaces
Phase 1

Determine the first principal component C4 so it is maximally correlated with
Initial, causal variables:

D> R*(C,, X;) tobe maxim

Cov(C,, X, )? 1 (C)'X. i (X )'C,
Var(C)Var (X, ) n (C,)'C,

n 1 @)X (X)'C 1(CY'XX'C,
ER(C“X") Z (C)'C, ~ n (C)cC

N3

R*(C,, X)) =

10/28/2019 Data Analysis 20
Lecture 4, Copyright © Claudiu Vinte



Principal Component Analysis (PCA)

PCA in variable spaces
Phase 1
Solve the following problem:

. 1(C)XX'C,
Maxim, ~cye,

. . 1 :
The solution is the eigenvector of matrix = XX' , corresponding to the greatest

eigenvalue B, 4
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Principal Component Analysis (PCA)

PCA in variable spaces
Phase 2

Determine the second principal component C,, maximally correlated with
initial variables and not correlated at all with the first principal component C;.

” . 1 (C,)'XX'C,
Maxim:, ¢y,
R(C,,C,)=0

. : 1 .
The solution is the eigenvector of the matrix = XX' , corresponding to the
second eigenvalue B, 4

1
182 :HXXt 'Cz =,32-C2

N
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Principal Component Analysis (PCA)

PCA in variable spaces
Phase k

Determine the principal component Cy, maximally correlated with initial
variables and not correlated at all with the components previously determined,
C;, i=1,k-1.

I’ ]

‘ . 1(C,)'XX'C,
Maxim, ~c,ye,

' R(C,.C,)=0,i=1k—1

J\

The solution is the eigenvector of the matrix iXXt , corresponding to the

second eigenvalue By n

1
IBK :Exxt'ck :,Bk 'Ck
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Principal Component Analysis (PCA)

The link between the two approaches

In the observation spaces, at step k it is determined the eigenvector ay, which is
the unit vector of k axis, corresponding to C, component:

1
n
Multiplying this equation on the left with X we obtain:
1 t 1 t
n n
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Principal Component Analysis (PCA)

The link between the two approaches

It is the same equality obtained in the variable spaces approach, if considered
Bi=0L
1

— XX tCk = pCy
N

The maximum number of steps in the observation spaces may be m (the rank
1
of matrix — XXy, while in the variable spaces, the maximum number of
1
steps may be n (the rank of matrix — XX ).

n
The number of non-zero eigenvalues is min(m, n).
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