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• A statistical procedure that uses an orthogonal transformation to convert a 

set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components. 

• The analyzed data consist in a table of observations, having n rows and m 

columns. 

 

 

          , where xij is the value taken by variable j for 

          the observation i.  

 

• The variable described by table X are also known as initial or causal 

variables. 
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Principal Component Analysis (PCA) 
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• Xj is the column vector containing the values of variable j for n 

observations; 

• The goal of the procedure is to describe table  X through a reduced number 

of nonrelated variables: C1, C2, ..., Cs. 

Phase 1 

Determine a new variable C1, the first principal component, as linear 

combination of variables Xj: 

 

 

The value taken by C1 for a given observation i : 

 

 

where  
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Phase k 

Determine a new variable Ck, the k principal component, as linear 

combination of variables X: 
 

     , 
 

where ak is the vector containing the multipliers  

 

The link between the causal variables (X) and the principal (C) is given by: 
 

Ck = X∙ak,  k=1,s  , where s is the number of principal components. 
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Observation driven approach 

• The cloud of observations has n points within a m-dimensional space; 

• Those m variables determine the m axis of coordinates; 

• If the data is standardized, then the variables have the mean 0, and the 

standard deviation 1;  

• Consider a system orthonormal of axis is (orthogonal and having the norm  

1) for those n points; 

• Each axis corresponds to a principal component, and the vectors ak are unit 

vectors (in a normed vector space, it is a vector, often a spatial vector, of 

length 1): 

    

           , where s is the maximum number of axis 
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Observation driven approach: projection on D1 axis 
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Observation driven approach 

Step 1 

• Determine first axis, corresponding to the first principal component, so the 

component's variance is maxim; 

• O is the center of gravity for the cloud of points. 

• The distance from point (observation) Xi to the D1 axis, corresponding to 

the first principal component is d(i,D1); 

• The distance from Xi to origin O is d(i,O); 
 

Then we have the following relation between distances:  
 

d(i,O)2 = d(i,D1)
2 + ci1

2,   where ci1 is the projection of Xi on D1 axis. 

 

 

    
10/28/2019 Data Analysis 

Lecture 4, Copyright © Claudiu Vințe 

7 

Principal Component Analysis (PCA) 



Observation driven approach 

• For all the points in the cloud we have: 
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Observation driven approach 

• The sum of the distances toward the center of gravity (barycenter) does not 

depend on the chosen axis; 

• The variance explained through axis 1 is   

 

• Which in terms of matrixes is: 

 

 

 

The problem is to dually (complementary) reach the same goal: 

1. Maximize the explained variance on axis 1; 

2. Minimize the sum point distances to axis 1. 
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Observation driven approach 

 

 

 

 

 

Lagrange function (or Lagrangian) associated to the problem is defined by: 

 

 

 

where λ is a Lagrange multiplier. 
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Observation driven approach 
 

Partial derivatives:  

     

 
 

Having then       . 
 

Therefore a1 is a eigenvector of the matrix        , corresponding to the 

eigenvalue (characteristic value) . 

Multiplying on the left with (a1)t we have: 
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Then 

 

             is the quantity we need to maximize: 

 

• therefore  is the greatest characteristic value (eigenvalue), and  a1
 is the 

corresponding characteristic vector (eigenvector); 

•  we shall assign 1 to  . 
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Step 2  

• Determine axis 2 described by vector a2 so axis 2 is orthogonal with axis 1; 

• Maximize the explained variance (the points are more scattered, disperse 

on the  axis); 

• The applied optimization is: 
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Step 2  
 

Set the partial derivative on a2 to zero: 

 

 

 

Multiplying on the left with (a1)t we obtain: 
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Step 2  

Then we have:        , since: 

 

    through transposition, it implies that  

 

 

 

since the matrix XtX is symmetrical. 
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Step 2  

Making the substitution in the derivative 

 

 
 

and therefore a2 is eigenvector corresponding to eigenvalue 1 , and this 

eigenvalue is maximal having given the equality: 

 

 

 

Since    it is maximized at this step, we shall assign 2 to 1 
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Step k 

• Determine k axis of ak vector, orthogonal on the previous axis and to 

maximize the explained variance; 

• The optimum problem is as follows: 

 

 

 

 

 

 

















1,1,0)(

1)(

)(
1

kjaa

aa

XaXa
n

j

t

k

k

t

k

k

tt

k

a

Max
k



10/28/2019 Data Analysis 

Lecture 4, Copyright © Claudiu Vințe 

18 

Principal Component Analysis (PCA) 

Step k 

The associated Lagrange function L(ak,1, 2,..., k) is as follows: 

 

 

Setting the derivative on zero: 

 

 

Then multiply the first relation successively with (a1)t, (a2)t,..., (ak-1)t, and 

obtain 2 = 0 , 3 = 0, ..., k = 0. Returning with these results to the first partial 

derivative we have: 
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Step k 

Therefore ak is eigenvector of matrix               , corresponding to 

eigenvalue 1, and since the quantity 

 

 

it is the one maximized at this step then, 1 is eigenvalue of k order. 

 

We shall assign  k to  1. 
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Principal Component Analysis (PCA) 

PCA in variable spaces 

Phase 1 

Determine the first principal component C1 so it is maximally correlated with 

initial, causal variables:  

   

  to be maxim 
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Principal Component Analysis (PCA) 

PCA in variable spaces 

Phase 1 

Solve the following problem: 

 

 

 

The solution is the eigenvector of matrix        , corresponding to the greatest 

eigenvalue 1. 
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Principal Component Analysis (PCA) 

PCA in variable spaces 

Phase 2 

Determine the second principal component C2, maximally correlated with 

initial variables and not correlated at all with the first principal component C1.  

 

 

 
 

The solution is the eigenvector of the matrix          , corresponding to the 

second eigenvalue 2:  
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Principal Component Analysis (PCA) 

PCA in variable spaces 

Phase k 

Determine the principal component Ck, maximally correlated with initial 

variables and not correlated at all with the components previously determined, 

Ci, i=1,k-1. 

 

 

 
 

 

The solution is the eigenvector of the matrix         , corresponding to the 

second eigenvalue k: 
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Principal Component Analysis (PCA) 

The link between the two approaches 
 

In the observation spaces, at step k it is determined the eigenvector ak, which is 

the unit vector of k axis, corresponding to Ck component: 

 

 
 

Multiplying this equation on the left with X we obtain: 
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The link between the two approaches 
 

It is the same equality obtained in the variable spaces approach, if considered  

k=αk 

 

 
 

The maximum number of steps in the observation spaces may be m (the rank 
 

of matrix              ), while in the variable spaces, the maximum number of 
 

steps may be n (the rank of matrix               ).  
 

The number of non-zero eigenvalues is min(m, n). 
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