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Linear Discriminant Analysis (LDA). Fisher functions.

• The original dichotomous discriminant analysis was developed

by Sir Ronald Fisher in 1936.

• It is different from an ANOVA or MANOVA, which is used

to predict one (ANOVA) or multiple (MANOVA) continuous

dependent variables by one or more independent

categorical variables.

• Discriminant function analysis is useful in determining

whether a set of variables is effective in predicting category

membership.
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Linear Discriminant Analysis (LDA). Fisher functions.

• LDA works when the measurements made on independent

variables for each observation are continuous quantities.

When dealing with categorical independent variables, the

equivalent technique is discriminant correspondence analysis.

• LDA is also closely related to principal component analysis

(PCA) and exploratory factor analysis (EFA) in that they both

look for linear combinations of variables which best explain

the data.

• LDA explicitly attempts to model the difference between the

classes of data. PCA does not take into account any difference

in class, and EFA builds the feature combinations based on

differences rather than similarities.
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Linear Discriminant Analysis (LDA). Fisher functions.

• It is also known as factorial discriminant analysis (FDA) or

canonical discriminant analysis (CDA).

• The analysis perspective is similar to that of principal

component analysis (PCA).

• Factorial discriminant analysis aims to determine 2 new

predictive variables, named discriminant variables, such that

the individual observations to be separated as clear as possible,

based on these variables.

• The discriminant variables are, as in PCA, linear combinations

of initial variables (from matrix X), and uncorrelated to each

other.
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Linear Discriminant Analysis (LDA). Fisher functions.

• A natural criterion for determining discriminant variables is to

maximize class or group cohesion, based on the intra-class and

inter-class variance, i.e. the ratio between the inter-class

variance of a variable and the total variance (or the intra-class

variance) to be as great as possible.

• Let’s assume that the observation matrix, X, is centered.

• Then the first discriminant variable is determined as follows:

z1 = =Xu1 , where u1 is the first discriminant factor.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The u1 coefficients of the linear combination are:

u1 = .

• Group centers for variable z1 are: = Gu1 ,

where G = ,

gkj representing the mean of predictor variable j for the k group.
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Linear Discriminant Analysis (LDA). Fisher functions.

• If X is not a centered matrix, then z1 = u01 + Xu1.

• The discriminant variables can be viewed as discriminant

functions (Figure 1), also named Fisher functions, whereby a

good separation among instances (observations) can be made.

• z1 is a hyperplane with of equation u01 + Xu1 , which split the

instances (continuous red line).

• u1 is the perpendicular line on the hyperplane, or the

discriminant axis (dashed red line) which goes through the

origin, if the data is centered, or through the center of gravity

(the black dot), if the data is not centered.
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Linear Discriminant Analysis (LDA). Fisher functions.

Figure 1. Fisher discriminant functions. Bi-dimensional case, with two

classes.
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Linear Discriminant Analysis (LDA). Fisher functions.

• If the data is centered, the free term u01 is 0 (zero).

• u1 axis is chosen such that to separate the groups as clear

(decisive) as possible, i.e. the distances between the group

centers to the axis is to be as great as possible (the group

centers are the red dots).

• Total variance of variable z1, in terms of matrices is:

VT1 = = ,

where (u1)
t is a row vector, the transposed of column vector u1.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The inter-class variance of variable z1 is:

, where is the mean of the variable for

class k, and nk is the no. of observations belonging to class k.

• In terms of matrices, the inter-class variance can be written as:

VB1 = = ,

where DG is diagonal

matrix of group frequencies: DG = .
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Linear Discriminant Analysis (LDA). Fisher functions.

• The intra-class variance is given by:

.

• Where nk is the number of observations belonging to class

(group) k,

• and the relation between variances is: VT1 = VB1 + VW1.
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Linear Discriminant Analysis (LDA). Fisher functions.

• Having a given value for the total variance, a variable

discriminates better the classes (groups) if the following

conditions were better satisfied:

- the instances belonging to a class have as close as possible

values, i.e. the intra-class variance is minimal;

- the mean of the classes are as far apart from each other as

possible, i.e. the inter-class variance is maximal;

- the discrimination power of a variable is the ratio between

inter-class variance and total variance.
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Linear Discriminant Analysis (LDA). Fisher functions.

• Maximizing the distance between the center projections on the

discriminant axis u1 is equivalent with maximizing the ratio:

for the discriminant variable z1.

• If we label this ratio with α1, then we have:

.
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Linear Discriminant Analysis (LDA). Fisher functions.

• Then the optimum problem is:

, where:

u1 is the discriminant factor,

B = GtDGG is the inter-class covariance matrix, and

T = is the total covariance matrix.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The solution u1, obtained by solving the optimum problem, is

the eigenvector of T-1B matrix, corresponding to the greatest

eigenvalue.

• This eigenvalue is actually α1, the discrimination power of

variable z1.

• The next discrimination variables are determined in the same

manner, having the following additional conditions of not

being correlated at all to the previously determined

discriminant variables:

, j = 1,k-1.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The optimum problem becomes:

• The solution of the problem, uk factor, is the eigenvector of

T-1B matrix, corresponding to the eigenvalue of order k (in the

descending order of the eigenvalues) αk.

• αk is the discrimination power of variablei zk.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The number of the discriminant variables is given by the

number of not null eigenvalues of T-1B matrix (see the

canonical discriminant analysis below), and this number is:

r = minim (m, q-1).

• The solutions of the model are:

, k =1, r

, k =1, r
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Linear Discriminant Analysis (LDA). Fisher functions.

• The discrimination power of discriminant variables can be also

computed as ratio between inter-class and intra-class variance.

• Consequently, the optimum criterion to obtain the discriminant

variables is maximize the ratio .

• Computed in this manner, the discrimination power of the

variable is greater, since:
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Linear Discriminant Analysis (LDA). Fisher functions.

• Labeling = λk, the discrimination power of discriminant

variable zk, there is:

• The values λk, k = 1,r are not null eigenvalues of W-1B matrix,

corresponding to the same eigenvectors, uk.
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Linear Discriminant Analysis (LDA). Fisher functions.

• The solutions of the modified model are:

, k =1, r

, k =1, r.
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Result graphical representations.

• Observation representations. A synthetic image of those n

instances (individuals) distributed in q groups can be obtained

employing a 2D or a 3D plot, both for the observations and the

group centers.

• If there are chosen the first two discriminant axes, then a 2D

graphic is to be plotted, see Figure 2.

• Numerical example. The following table contains data

regarding 11 individuals (i1,..., i11), 2 predictor variables and

3 groups (a, b, c).
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Result graphical representations.

• The observation table:
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Id G x1 x2

i1 a 2 2

i2 a 3 1

i3 a 4 2

i4 b 6 4

i5 b 7 5

i6 c 8 1

i7 b 8 4

i8 b 9 5

i9 c 10 2

i10 c 11 1

i11 c 12 1



Result graphical representations.

Figure 2. Observations and group centers (n = 11, q=3)

12/16/2019 Data Analysis

Lecture 10, Copyright © Claudiu Vințe

23

Discriminant Analysis



Result graphical representations.

• The discriminant variables are:
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Z1 Z2

i1 -0.17581 4.81766

i2 1.04474 4.465

i3 0.11348 3.09546

i4 -1.74904 0.35639

i5 -2.68031 -1.01315

i6 1.76796 0.15952

i7 -1.45976 -1.3658

i8 -2.39102 -2.73534

i9 0.98134 -2.07111

i10 2.20189 -2.42376

i11 2.34653 -3.28486



Result graphical representations.

• The discrimination power:

• Discrimination factors, and discrimination function

coefficients:
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Nr. λk αk

1 10.6361 0.91406

2 5.49765 0.8461

u1 u2

x1 0.14464 -0.8611

x2 -1.07591 -0.50844



Result graphical representations.

• The free terms are:

• Variable representation. The discriminant variables are not

correlated to each other.
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Result graphical representations.

• Using the correlation circle, the correlation between the

predictor and discriminant variables can be represented.
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Discriminant analysis as a particular case of canonical analysis.

• Since the first set of predictor variables contained in the

observation table is represented by matrix X, and the second

set of variables is given by the columns of the complete

disjunctive matrix Y, built based on the discriminant variable.

• The canonic factor of order k from the first set is the

eigenvector corresponding to order k eigenvalue of matrix

(V11)
-1V12(V22)

-1V21 , i.e.:

,

,
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Discriminant analysis as a particular case of canonical analysis.

• Resulting that:

= T-1B

• i.e. it is the matrix with the eigenvalues representing the

discrimination power of discriminant variables, and having the

eigenvectors the discrimination factors or the coefficients of

the discrimination functions.

• Therefore, the canonical factors of the first set of variables (the

set of predictor variables, X) are actually the discriminant

factors.
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Discriminant analysis as a particular case of canonical analysis.

• Canonical analysis allows for applying significance tests for

each discriminant variable.

• The significance test for a canonical root shows in this context

whether a discriminant variable is a good predictor.
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