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Canonical Correlation Analysis (CCA) 
 

• Describes the linear relations between 2 sets of initial or causal 

variables, concerning the same group of individuals 

(observations). 

• It was first introduced and formalized by Harold Hotelling in 

1936. 

• In statistics, canonical analysis (from Ancient Greek: κανων 

bar, measuring rod, ruler) belongs to the family of regression 

methods employed in data analysis. It is a generalization of 

multiple linear regression analysis. 
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Canonical Correlation Analysis (CCA) 
 

• In linear regression, there is a dependent (explained) variable 

and a set of independent (explanatory) variables. 

• Contrary to linear regression, in canonical correlation analysis 

both set of variables play the same role. 

• Canonical correlation analysis determines to what degree, 2 

sets of variables reflect or not the same reality. 
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CCA data 
 

• The data could be presented in 2 matrices X and Y, with n 

rows, p and q columns, respectively, having the following 

format: 

 

 

                                                    , 
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CCA data 
 

• The data can be centered or standardized. We will discussed 

the centered data variant of analysis. 

• The columns of table X define p quantitative variables, while 

the columns of table Y define q quantitative variables. The 

assumption is that the matrix X is a p rank one, and matrix Y is 

a q rank one. 

• CA is a iterative process, in k steps, having as result the 

extractions of k pairs of new variables, named canonical 

variables, (zi,ui), i =1,k.  
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CCA data 
 

• The zi variables belong to W1 space, generated by the columns 

of matrix X, while the ui variables belong to W2 space, 

generated by the columns of matrix Y. 

• The variables making up a canonical pair are maximum 

correlated between each other, and completely uncorrelated 

toward all the other canonical variable belonging to the same 

space. 
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CCA phases (steps) 
 

1. Determine a pair of canonical variables (z1,u1) as a linear 

combination of causal variables:  

• z1 is a linear combination or variables X1,...,Xp  

• while u1 is linear combination of variables Y1,...,Yq.  
 

 z1 = Xa1 
 

 u1 = Yb1 
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CCA phases (steps) 
 

z1 = a11‧X1+a21‧X2+...+ap1‧Xp = Xa1 

 

where a1=          , 
 

 

 

u1 = b11‧Y1+b21‧Y2+...+bq1‧Yq = Yb1 

 

where b1=  
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CCA phases (steps) 
 

• The canonical variables are maximum correlated between each 

other. 

• Therefore, multiplying them with scalars, the correlation is 

maintained: R(z1,u1) = R(z1,u1). 

• To ensure their unicity, the restriction of normality has to be 

imposed: (z1)
tz1 = 1 and (u1)

tu1 = 1. 
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CCA phases (steps) 
 

• At the first step, the solution of the problem is the following: 

z1 is the first eigenvector of the P1P2 matrix, corresponding to the 

greatest eigenvalue, 

while u1 is the first eigenvector of P2P1 matrix, corresponding to 

the same eigenvalue. 

• P1 and P2 are the linear orthogonal  projectors on W1 and W2 

spaces, generated by the columns of the matrices X and Y. 

• The eigenvalue 1 is the correlation coefficient between the  

canonical variables z1 and u1.  
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CCA phases (steps) 
 

• For a given vector z1, z1Rn, the vector belonging to W2 space 

which makes the smallest angle with z1 is the orthogonal 

projection of z1 on W2 space. 

• Hence, R2(z1,u1) is maximal if u1 is collinear with the 

orthogonal projection of z1 on W2 space. 

• The projection of z1 vector on W2 space is, at the same time, 

the projection on the u1 vector axis. 

• Since the vectors are normalized, and their correlation is given 

by the cosine of the angle between them, we have: 

P2z1 = R(z1, u1)u1 , see the following figure. 

 
 

 

                            

 

 

 

11/12/2018 Data Analysis 

Lecture 7, Copyright © Claudiu Vințe 

11 

Canonical Correlation Analysis 



CCA phases (steps) – a graphical perspective   
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CCA phases (steps) 
 

• Symmetrically, for a given vector u1 in in the space W2,   
R2(z1,u1) is maximal if the vector z1 is collinear with the 

orthogonal projection of u1 on W1 space. Therefore:  

P1u1=R(z1, u1)z1. 

P1P2z1 = P1R(z1, u1)u1 = R(z1, u1)P1u1 = R2(z1, u1)z1 

 P1P2z1=R2(z1,u1)z1, where  R2(z1,u1) is maximal.  

• z1 is the eigenvector of the matrix P1P2, corresponding to the 

greatest eigenvalue 1 = R2(z1, u1) 

P2P1u1 = P2R(z1, u1)z1 = R(z1, u1)P2z1 = R2(z1, u1)u1 

 u1 is the eigenvector of the matrix P2P1, corresponding to 

the greatest eigenvalue 1 = R2(z1,u1) 
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CCA phases (steps) 
 

2. Determine the second pair of canonical variables, z2 and u2 

such that to obtain the maximum correlation coefficient R2(z2, 

u2), along with the following restrictions: 
 

 

 

 

 

• Similarly to the first step, the problem solutions are the 

eigenvectors of the matrices P1P2 and P2P1, corresponding to 

the second biggest eigenvalue. 

• The eigenvalue 2 is R2(z2,u2), the correlation coefficient 

between the canonical variables z2 and u2: 

P1P2z2
 = α2z2,  P2P1u2

 = α2 u2. 
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CCA phases (steps) 
 

• In addition to the first step, there has to be proved that z2 and 

z1, u2 and u1 respectively, are not correlated at all, meaning 

that:          and  

• Developing                  , we have: 

                    =                      ,  and because (P1P2z2
 )t = (α2·z2)

t 

• Then          =                       , since the projection of 

vector on its own space is the vector itself, P1·z2 = z2, or  

(z2)
t·P1 = (z2)

t. 

• Therefore: 

                       =                           , but P1·z1 = z1 
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CCA phases (steps) 
 

• Consequently:  

                  =                   , because P1P2z1
 = α1·z1  

But              , implying that  

• Similarly: 

        =          =                        =                     =  
 

=              

• Therefore:  
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CCA phases (steps) 
 

k. Determine the pair k of canonical variables (zk, uk) such that 

they are maximally correlated, their variance to be 1, and the 

correlation coefficient against the canonical variables determined 

at the previous steps to be 0 (zero). 

 

 

11/12/2018 Data Analysis 

Lecture 7, Copyright © Claudiu Vințe 

17 

Canonical Correlation Analysis 

















1,1,0)(,0)(

1)(,1)(

)),(( 2

,

kiuuzz

uuzz

uzR

i

t

ki

t

k

k

t

kk

t

k

kk

uz

Max
kk



CCA phases (steps) 
 

• The problem solutions are the eigenvectors of the matrices 

P1P2 and P2P1 , corresponding to the eigenvalue of rank k. 

• Such a pair it is called canonical root. 

• The canonical variables of the same set are not correlated to 

each other.  

• It can be proved that canonical variables of different ranks are 

uncorrelated as well: 

(zr )
tuk = 

 

=  
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Canonical factors 
 

• Canonical variables are linear combinations of the initial 

variables from those 2 sets, so: 

zi = Xai,  ui = Ybi,  i=1,k 

where unde ai and bi are the corresponding canonical factors. 

• It has to be notice that the matrices P1P2 and P2P1 are of rank 

n.  

• In most of the cases the number of individuals (observations) 

is greater than the number of variables. 

• Consequently, determining the eigenvectors and the 

eigenvalues are intensively resource consuming operations on 

such a matrix. 
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Canonical factors 
 

• At the step k we determine the eigenvector zk of the matrix 

P1P2.  Therefore: 

P1P2zk = R2(zk, uk)zk. 

• Since P1= X(XtX)-1Xt  and P2 = Y(YtY)-1Yt  (see the 

multivariable regression), and zk = Xak, we obtain that: 

    X(XtX)-1XtY(YtY)-1Yt Xak = R2(zk, uk) Xak. 

• Multiplying this relation at the left with (XtX)-1Xt , then: 

(XtX)-1XtY(YtY)-1Yt Xak = R2(zk, uk) ak. 
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Canonical factors 
 

• We make the following notations:  

V11 =    XtX, V22 =    YtY, V12 =    XtY , V21 =    Yt X ,  

• Then we have: 

V11
-1V12V22

-1V21 ak = R2(zk,uk) ak. 

• Similarly, for the factors corresponding to the second data set: 

V22
-1V21V11

-1V12 bk = R2(zk,uk) bk. 

• Should be noticed that V11 is the covariance matrix between 

the variables from X set and V22 is the covariance matrix 

between the variables from Y set, while V12 is the covariance 

matrix between the variables from X and Y sets, and V21 is the 

covariance matrix between the variables frome Y and X sets. 
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Canonical factors 
 

• Therefore ak is the eigenvector of rank k of the matrix  

V11
-1V12V22

-1V21, corresponding to the eigenvalue k = R2(zk, 

uk), 

• And bk is the eigenvector of rank k of the matrix  

V22
-1V21V11

-1V12, corresponding to the same eigenvalue. 

• Since these 2 matrices have p and q columns respectively, it is 

much more convenient to determine the canonical variables in 

this manner. 

• The number of steps is given by m = min (p,q).  
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The connection between the canonical factors 
 

• We have the following relation: 

 

• Making in the above relation the following substitutions: 

  

                     , 
 

• Then we obtain that: 

 

• Multiplying it at the left with                 then: 
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The connection between the canonical factors 
 

• Therefore, the connection between the canonical factors are 

given by the followings relations: 
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