Data Analysis

Canonical Correlation Analysis (CCA)

- Describes the linear relations between 2 sets of initial or causal variables, concerning the same group of individuals (observations).
- It was first introduced and formalized by Harold Hotelling in 1936.
- In statistics, canonical analysis (from Ancient Greek: κανων bar, measuring rod, ruler) belongs to the family of regression methods employed in data analysis. It is a generalization of multiple linear regression analysis.

Canonical Correlation Analysis (CCA)

- In linear regression, there is a dependent (explained) variable and a set of independent (explanatory) variables.
- Contrary to linear regression, in canonical correlation analysis both set of variables play the same role.
- Canonical correlation analysis determines to what degree, 2 sets of variables reflect or not the same reality.

CCA data

• The data could be presented in 2 matrices X and Y, with n rows, p and q columns, respectively, having the following format:

$$X_{n \times p} = \begin{pmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ & \vdots & & & \\ x_{i1} & \dots & x_{ij} & \dots & x_{ip} \\ & \vdots & & & \\ x_{n1} & \dots & x_{nj} & \dots & x_{np} \end{pmatrix} \quad Y_{n \times q} = \begin{pmatrix} y_{11} & \dots & y_{1j} & \dots & y_{1q} \\ & \vdots & & & \\ y_{i1} & \dots & y_{ij} & \dots & y_{iq} \\ & & \vdots & & \\ y_{n1} & \dots & y_{nj} & \dots & y_{nq} \end{pmatrix}$$

CCA data

- The data can be centered or standardized. We will discussed the centered data variant of analysis.
- The columns of table *X* define *p* quantitative variables, while the columns of table *Y* define *q* quantitative variables. The assumption is that the matrix *X* is a *p* rank one, and matrix *Y* is a *q* rank one.
- CA is a iterative process, in k steps, having as result the extractions of k pairs of new variables, named canonical variables, (z_i, u_i) , i = 1, k.

CCA data

- The z_i variables belong to W_1 space, generated by the columns of matrix *X*, while the u_i variables belong to W_2 space, generated by the columns of matrix *Y*.
- The variables making up a canonical pair are maximum correlated between each other, and completely uncorrelated toward all the other canonical variable belonging to the same space.

CCA phases (steps)

1. Determine a pair of canonical variables (z_1, u_1) as a linear combination of causal variables:

- z_1 is a linear combination or variables X_1, \dots, X_p
- while u_1 is linear combination of variables Y_1, \dots, Y_q .

$$z_1 = X \cdot a_1$$

$$u_1 = Y \cdot b_1$$

CCA phases (steps)

$$z_1 = a_{11} \cdot X_1 + a_{21} \cdot X_2 + \dots + a_{p1} \cdot X_p = X \cdot a_1$$

where $a_1 = \begin{bmatrix} a_{11} \\ \dots \\ a_{p1} \end{bmatrix}$,

$$u_{1} = b_{11} \cdot Y_{1} + b_{21} \cdot Y_{2} + \dots + b_{q1} \cdot Y_{q} = Y \cdot b_{1}$$

where $b_{1} = \begin{bmatrix} b_{11} \\ \dots \\ b_{q1} \end{bmatrix}$

11/12/2018

CCA phases (steps)

- The canonical variables are maximum correlated between each other.
- Therefore, multiplying them with scalars, the correlation is maintained: $R(z_1, u_1) = R(\alpha \cdot z_1, \beta \cdot u_1)$.
- To ensure their unicity, the restriction of normality has to be imposed: $(z_1)^t z_1 = 1$ and $(u_1)^t u_1 = 1$.

CCA phases (steps)

• At the first step, the solution of the problem is the following:

 z_1 is the first eigenvector of the P_1P_2 matrix, corresponding to the greatest eigenvalue,

while u_1 is the first eigenvector of P_2P_1 matrix, corresponding to the same eigenvalue.

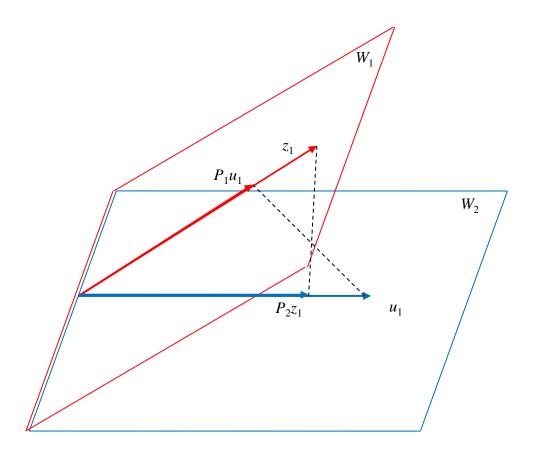
- P_1 and P_2 are the linear orthogonal projectors on W_1 and W_2 spaces, generated by the columns of the matrices *X* and *Y*.
- The eigenvalue α_1 is the correlation coefficient between the canonical variables z_1 and u_1 .

CCA phases (steps)

- For a given vector $z_1, z_1 \in \mathbb{R}^n$, the vector belonging to W_2 space which makes the smallest angle with z_1 is the orthogonal projection of z_1 on W_2 space.
- Hence, $R^2(z_1,u_1)$ is maximal if u_1 is collinear with the orthogonal projection of z_1 on W_2 space.
- The projection of z_1 vector on W_2 space is, at the same time, the projection on the u_1 vector axis.
- Since the vectors are normalized, and their correlation is given by the cosine of the angle between them, we have:

 $P_2 z_1 = \mathbf{R}(z_1, u_1)u_1$, see the following figure.

CCA phases (steps) – a graphical perspective



CCA phases (steps)

• Symmetrically, for a given vector u_1 in in the space W_2 , $R^2(z_1,u_1)$ is maximal if the vector z_1 is collinear with the orthogonal projection of u_1 on W_1 space. Therefore:

$$P_1u_1 = \mathbf{R}(z_1, u_1)z_1.$$

$$P_1P_2z_1 = P_1R(z_1, u_1)u_1 = R(z_1, u_1)P_1u_1 = R^2(z_1, u_1)z_1$$

$$\Rightarrow P_1P_2z_1 = R^2(z_1, u_1)z_1, \text{ where } R^2(z_1, u_1) \text{ is maximal.}$$

• z_1 is the eigenvector of the matrix P_1P_2 , corresponding to the greatest eigenvalue $\alpha_1 = R^2(z_1, u_1)$

$$P_2P_1u_1 = P_2R(z_1, u_1)z_1 = R(z_1, u_1)P_2z_1 = \mathbf{R}^2(z_1, u_1)u_1$$

 \Rightarrow u_1 is the eigenvector of the matrix P_2P_1 , corresponding to the greatest eigenvalue $\alpha_1 = \mathbb{R}^2(z_1, u_1)$

11/12/2018

CCA phases (steps)

2. Determine the second pair of canonical variables, z_2 and u_2 such that to obtain the maximum correlation coefficient $R^2(z_2, u_2)$, along with the following restrictions:

$$\begin{cases} (z_2)^t z_2 = 1, & (u_2)^t u_2 = 1 \\ (z_2)^t z_1 = 0, & (u_2)^t u_1 = 0 \end{cases}$$

- Similarly to the first step, the problem solutions are the eigenvectors of the matrices P_1P_2 and P_2P_1 , corresponding to the second biggest eigenvalue.
- The eigenvalue α_2 is $R^2(z_2, u_2)$, the correlation coefficient between the canonical variables z_2 and u_2 :

$$P_1P_2z_2 = \alpha_2z_2, P_2P_1u_2 = \alpha_2u_2.$$

11/12/2018

CCA phases (steps)

- In addition to the first step, there has to be proved that z_2 and z_1 , u_2 and u_1 respectively, are not correlated at all, meaning that: $(z_2)^t z_1 = 0$ and $(u_2)^t u_1 = 0$
- Developing $\alpha_2(z_2)^t z_1$, we have: $\alpha_2(z_2)^t z_1 = (z_2)^t P_2 P_1 z_1$, and because $(P_1 P_2 z_2)^t = (\alpha_2 \cdot z_2)^t$
- Then $\alpha_2(z_2)^t z_1 = (z_2)^t P_1 P_2 P_1 z_1$, since the projection of vector on its own space is the vector itself, $P_1 \cdot z_2 = z_2$, or $(z_2)^t \cdot P_1 = (z_2)^t$.
- Therefore:

$$\alpha_2(z_2)^t z_1 = (z_2)^t P_1 P_2 P_1 z_1$$
, but $P_1 \cdot z_1 = z_1$

11/12/2018

CCA phases (steps)

• Consequently:

 $\alpha_{2}(z_{2})^{t} z_{1} = \alpha_{1}(z_{2})^{t} z_{1}$, because $P_{1}P_{2}z_{1} = \alpha_{1} \cdot z_{1}$

But $\alpha_1 \neq \alpha_2$, implying that $(z_2)^t z_1 = 0$

• Similarly:

$$\alpha_2(u_2)^t u_1 = (u_2)^t P_1 P_2 u_1 = (u_2)^t P_2 P_1 P_2 u_1 = (u_2)^t P_2 P_1 u_1 =$$

= $\alpha_1(u_2)^t u_1$

• Therefore: $(u_2)^t u_1 = 0$

CCA phases (steps)

k. Determine the pair k of canonical variables (z_k, u_k) such that they are maximally correlated, their variance to be 1, and the correlation coefficient against the canonical variables determined at the previous steps to be 0 (zero).

$$\begin{cases} M_{ax}(R^{2}(z_{k}, u_{k})) \\ (z_{k})^{t} z_{k} = 1, \quad (u_{k})^{t} u_{k} = 1 \\ (z_{k})^{t} z_{i} = 0, \quad (u_{k})^{t} u_{i} = 0, \quad i = \overline{1, k - 1} \end{cases}$$

CCA phases (steps)

- The problem solutions are the eigenvectors of the matrices P_1P_2 and P_2P_1 , corresponding to the eigenvalue of rank *k*.
- Such a pair it is called *canonical root*.
- The canonical variables of the same set are not correlated to each other.
- It can be proved that canonical variables of different ranks are uncorrelated as well:

 $(\mathbf{z}_{\mathbf{r}})^{\mathsf{t}}\boldsymbol{u}_{\mathbf{k}} =$

$$= (P_1 z_r)^t u_k = (z_r)^t P_1 u_k = (z_r)^t R(z_k, u_k) z_k = R(z_k, u_k) (z_r)^t z_k = 0$$

11/12/2018

Canonical factors

• Canonical variables are linear combinations of the initial variables from those 2 sets, so:

 $z_i = X \cdot a_i, \ u_i = Y \cdot b_i, \ i=1,k$

where unde a_i and b_i are the corresponding canonical factors.

- It has to be notice that the matrices P₁P₂ and P₂P₁ are of rank *n*.
- In most of the cases the number of individuals (observations) is greater than the number of variables.
- Consequently, determining the eigenvectors and the eigenvalues are intensively resource consuming operations on such a matrix.

Canonical factors

• At the step k we determine the eigenvector z_k of the matrix P_1P_2 . Therefore:

 $\mathbf{P}_1\mathbf{P}_2z_k = \mathbf{R}^2(z_k, u_k)z_k.$

- Since $P_1 = X(X^tX)^{-1}X^t$ and $P_2 = Y(Y^tY)^{-1}Y^t$ (see the multivariable regression), and $z_k = Xa_k$, we obtain that: $X(X^tX)^{-1}X^tY(Y^tY)^{-1}Y^tXa_k = R^2(z_k, u_k)Xa_k$.
- Multiplying this relation at the left with $(X^{t}X)^{-1}X^{t}$, then: $(X^{t}X)^{-1}X^{t}Y(Y^{t}Y)^{-1}Y^{t}Xa_{k} = R^{2}(z_{k}, u_{k}) a_{k}.$

Canonical factors

- We make the following notations: $V_{11} = \frac{1}{n} X^{t} X, V_{22} = \frac{1}{n} Y^{t} Y, V_{12} = \frac{1}{n} X^{t} Y, V_{21} = \frac{1}{n} Y^{t} X,$
- Then we have:

$$V_{11}^{-1}V_{12}V_{22}^{-1}V_{21} a_{k} = R^{2}(z_{k}, u_{k}) a_{k}.$$

- Similarly, for the factors corresponding to the second data set: $V_{22}^{-1}V_{21}V_{11}^{-1}V_{12} b_k = R^2(z_k, u_k) b_k.$
- Should be noticed that V_{11} is the covariance matrix between the variables from X set and V_{22} is the covariance matrix between the variables from Y set, while V_{12} is the covariance matrix between the variables from X and Y sets, and V_{21} is the covariance matrix between the variables frome Y and X sets.

Canonical factors

- Therefore a_k is the eigenvector of rank k of the matrix $V_{11}^{-1}V_{12}V_{22}^{-1}V_{21}$, corresponding to the eigenvalue $\alpha_k = R^2(z_k, u_k)$,
- And b_k is the eigenvector of rank k of the matrix $V_{22}^{-1}V_{21}V_{11}^{-1}V_{12}$, corresponding to the same eigenvalue.
- Since these 2 matrices have *p* and *q* columns respectively, it is much more convenient to determine the canonical variables in this manner.
- The number of steps is given by $m = \min(p,q)$.

The connection between the canonical factors

- We have the following relation: $P_2 z_k = R(z_k, u_k)u_k$
- Making in the above relation the following substitutions: $P_2 = Y(Y^tY)Y^t$

$$z_k = Xa_k, \quad u_k = Yb_k$$

- Then we obtain that: $Y(Y^{t}Y)^{-1}Y^{t}Xa_{k} = R(z_{k}, u_{k})Yb_{k}$
- Multiplying it at the left with $(Y^{t}Y)^{-1}Y^{t}$ then:

 $V_{22}^{-1}V_{21}a_{k}=R(z_{k},u_{k})b_{k}.$

11/12/2018

The connection between the canonical factors

• Therefore, the connection between the canonical factors are given by the followings relations:

$$b_k = \frac{1}{R(z_k, u_k)} V_{22}^{-1} V_{21} a_k$$

$$a_{k} = \frac{1}{R(z_{k}, u_{k})} V_{11}^{-1} V_{12} b_{k}$$