
MongoDB Atlas Best Practices
April 2017

A MongoDB White Paper

Table of Contents
1Introduction

2Preparing for a MongoDB Deployment
2Schema Design
3Application Access Patterns
4Document Size
4Data Lifecycle Management
5Indexing
7Working Sets
8Data Migration
8MongoDB Atlas Instance Selection

9Scaling a MongoDB Atlas Cluster
9Horizontal Scaling with Sharding

10Sharding Best Practices

10Continuous Availability & Data Consistency
10Data Redundancy
11Write Guarantees
11Read Preferences

11Managing MongoDB
12Deployments and Upgrades
12Monitoring & Capacity Planning
12Things to Monitor
14Disaster Recovery: Backup & Restore
14External Monitoring Solutions

15Security
15Defense in Depth
15IP Whitelisting
15VPC Peering
16Authorization
16Encryption
16Read-Only, Redacted Views

16Considerations for Proofs of Concept

17Conclusion

17We Can Help

18Resources

Introduction

MongoDB Atlas provides all of the features of MongoDB,

without the operational heavy lifting required for any new

application. MongoDB Atlas is available on-demand

through a pay-as-you-go model and billed on an hourly

basis, letting you focus on what you do best.

It’s easy to get started – use a simple GUI to select the

instance size, region, and features you need. MongoDB

Atlas provides:

• Security features to protect access to your data

• Built in replication for always-on availability, tolerating

complete data center failure

• Backups and point in time recovery to protect against

data corruption

• Fine-grained monitoring to let you know when to scale.

Additional instances can be provisioned with the push

of a button

• Automated patching and one-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• A choice of cloud providers, regions, and billing options

MongoDB Atlas is versatile. It’s great for everything from a

quick Proof of Concept, to test/QA environments, to

complete production clusters. If you decide you want to

bring operations back under your control, it is easy to move

your databases onto your own infrastructure and manage

them using MongoDB Ops Manager or MongoDB Cloud

Manager. The user experience across MongoDB Atlas,

Cloud Manager, and Ops Manager is consistent, ensuring

that disruption is minimal if you decide to migrate to your

own infrastructure.

MongoDB Atlas is automated, it’s easy, and it’s from the

creators of MongoDB. Learn more and take it for a spin.

While MongoDB Atlas radically simplifies the operation of

MongoDB there are still some decisions to take to ensure

the best performance and reliability for your application.

This paper provides guidance on best practices for

deploying, managing, and optimizing the performance of

your database with MongoDB Atlas.

This guide outlines considerations for achieving

performance at scale with MongoDB Atlas across a

number of key dimensions, including instance size

1

https://www.mongodb.com/atlas
https://www.mongodb.com/cloud

selection, application patterns, schema design and

indexing, and disk I/O. While this guide is broad in scope, it

is not exhaustive. Following the recommendations in this

guide will provide a solid foundation for ensuring optimal

application performance.

For the most detailed information on specific topics, please

see the on-line documentation at mongodb.com. Many

links are provided throughout this white paper to help

guide users to the appropriate resources.

Preparing for a MongoDB
Deployment

Schema Design

Developers and data architects should work together to

develop the right data model, and they should invest time in

this exercise early in the project. The requirements of the

application should drive the data model, updates, and

queries of your MongoDB system. Given MongoDB's

dynamic schema, developers and data architects can

continue to iterate on the data model throughout the

development and deployment processes to optimize

performance and storage efficiency, as well as support the

addition of new application features. All of this can be done

without expensive schema migrations.

Document Model

MongoDB stores data as documents in a binary

representation called BSON. The BSON encoding extends

the popular JSON representation to include additional

types such as int, long, and date. BSON documents

contain one or more fields, and each field contains a value

of a specific data type, including arrays, sub-documents

and binary data. It may be helpful to think of documents as

roughly equivalent to rows in a relational database, and

fields as roughly equivalent to columns. However,

MongoDB documents tend to have all related data for a

given record or object in a single document, whereas in a

relational database that data is usually normalized across

rows in many tables. For example, data that belongs to a

parent-child relationship in two RDBMS tables can

frequently be collapsed (embedded) into a single

document in MongoDB. For operational applications, the

document model makes JOINs redundant in many cases.

Where possible, store all data for a record in a single

document. MongoDB provides ACID compliance at the

document level. When data for a record is stored in a single

document the entire record can be retrieved in a single

seek operation, which is very efficient. In some cases it

may not be practical to store all data in a single document,

or it may negatively impact other operations. Make the

trade-offs that are best for your application.

Rather than storing a large array of items in an indexed

field, storing groups of values across multiple fields results

in more efficient updates.

Collections

Collections are groupings of documents. Typically all

documents in a collection have similar or related purposes

for an application. It may be helpful to think of collections

as being analogous to tables in a relational database.

Dynamic Schema & Document Validation

MongoDB documents can vary in structure. For example,

documents that describe users might all contain the user id

and the last date they logged into the system, but only

some of these documents might contain the user's

shipping address, and perhaps some of those contain

multiple shipping addresses. MongoDB does not require

that all documents conform to the same structure.

Furthermore, there is no need to declare the structure of

documents to the system – documents are self-describing.

DBAs and developers have the option to define Document

Validation rules for a collection – enabling them to enforce

checks on selected parts of a document's structure, data

types, data ranges, and the presence of mandatory fields.

As a result, DBAs can apply data governance standards,

while developers maintain the benefits of a flexible

document model. These are covered in the blog post

Document Validation: Adding Just the Right Amount of

Control Over Your Documents.

MongoDB Compass aids the identification of useful

validation rules, and then these rules can created within the

GUI. Refer to Visualizing your Schema and Adding

2

https://docs.atlas.mongodb.com
https://www.mongodb.com/blog/post/document-validation-part-1-adding-just-the-right-amount-of-control-over-your-documents
https://www.mongodb.com/blog/post/document-validation-part-1-adding-just-the-right-amount-of-control-over-your-documents

Validation Rules: MongoDB Compass below for more

details.

Indexes

MongoDB uses B-tree indexes to optimize queries. Indexes

are defined on a collection’s document fields. MongoDB

includes support for many indexes, including compound,

geospatial, TTL, text search, sparse, partial, unique, and

others. For more information see the section on indexing

below.

Transactions

Atomicity of updates may influence the schema for your

application. MongoDB guarantees ACID compliant updates

to data at the document level. It is not possible to update

multiple documents in a single atomic operation, however

as with JOINs, the ability to embed related data into

MongoDB documents eliminates this requirement in many

cases. For use cases that do require multiple documents to

be updated atomically, it is possible to implement Two

Phase Commit logic in the application.

For more information on schema design, please see Data

Modeling Considerations for MongoDB in the MongoDB

Documentation.

Visualizing your Schema and Adding Validation
Rules: MongoDB Compass

The MongoDB Compass GUI allows users to understand

the structure of existing data in the database and perform

ad hoc queries against it – all with zero knowledge of

MongoDB's query language. Typical users could include

architects building a new MongoDB project or a DBA who

has inherited a database from an engineering team, and

who must now maintain it in production. You need to

understand what kind of data is present, define what

indexes might be appropriate, and identify if Document

Validation rules should be added to enforce a consistent

document structure.

Without MongoDB Compass, users wishing to understand

the shape of their data would have to connect to the

MongoDB shell and write queries to reverse engineer the

document structure, field names, and data types. Similarly,

anyone wanting to run custom queries on the data would

need to understand MongoDB's query language.

FigurFigure 1:e 1: View schema & interactively build and execute
database queries with MongoDB Compass

MongoDB Compass provides users with a graphical view

of their MongoDB schema by sampling a subset of

documents from a collection. By using sampling, MongoDB

Compass minimizes database overhead and can present

results to the user almost instantly.

Document validation allows DBAs to enforce data

governance by applying checks on document structure,

data types, data ranges, and the presence of mandatory

fields. Validation rules can now be managed from the

Compass GUI. Rules can be created and modified directly

using a simple point and click interface, and any

documents violating the rules can be clearly presented.

DBAs can then use Compass’s CRUD support to fix data

quality issues in individual documents.

MongoDB Compass can be used for free during

development and it is also available for production use with

MongoDB Atlas Professional, MongoDB Professional, or

MongoDB Enterprise Advanced subscriptions.

Application Access Patterns

The schema design has a huge influence on performance,

how the application accesses the data can also have a

major impact.

Searching on indexed attributes is typically the single most

important pattern as it avoids collection scans. Taking it a

step further, using covercovered queriesed queries avoids the need to

access the collection data altogether. Covered queries

3

https://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/
https://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/
http://docs.mongodb.com/manual/data-modeling/
http://docs.mongodb.com/manual/data-modeling/
https://www.mongodb.com/products/compass
https://docs.mongodb.com/manual/core/document-validation/
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://docs.mongodb.com/manual/core/query-optimization/#covered-query
https://docs.mongodb.com/manual/core/query-optimization/#covered-query

return results from the indexes directly without accessing

documents and are therefore very efficient. For a query to

be covered, all the fields included in the query must be

present in an index, and all the fields returned by the query

must also be present in that index. To determine whether a

query is a covered query, use the explain() method. If

the explain() output displays true for the indexOnly

field, the query is covered by an index, and MongoDB

queries only that index to match the query and return the

results.

Rather than retrieving the entire document in your

application, updating fields, then saving the document back

to the database, instead issue the update to specific fields.

This has the advantage of less network usage and reduced

database overhead.

Document Size

The maximum BSON document size in MongoDB is 16

MB. Users should avoid certain application patterns that

would allow documents to grow unbounded. For example,

in an e-commerce application it would be difficult to

estimate how many reviews each product might receive

from customers. Furthermore, it is typically the case that

only a subset of reviews is displayed to a user, such as the

most popular or the most recent reviews. Rather than

modeling the product and customer reviews as a single

document it would be better to model each review or

groups of reviews as a separate document with a

reference to the product document; while also storing the

key reviews in the product document for fast access.

In practice most documents are a few kilobytes or less.

Consider documents more like rows in a table than the

tables themselves. Rather than maintaining lists of records

in a single document, instead make each record a

document. For large media items, such as video or images,

consider using GridFS, a convention implemented by all the

drivers that automatically stores the binary data across

many smaller documents.

Field names are repeated across documents and consume

space – RAM in particular. By using smaller field names

your data will consume less space, which allows for a

larger number of documents to fit in RAM

GridFS

For files larger than 16 MB, MongoDB provides a

convention called GridFS, which is implemented by all

MongoDB drivers. GridFS automatically divides large data

into 256 KB pieces called chunks and maintains the

metadata for all chunks. GridFS allows for retrieval of

individual chunks as well as entire documents. For example,

an application could quickly jump to a specific timestamp in

a video. GridFS is frequently used to store large binary files

such as images and videos directly in MongoDB, without

offloading them to a separate filesystem.

Data Lifecycle Management

MongoDB provides features to facilitate the management

of data lifecycles, including Time to Live indexes, and

capped collections.

Time to Live (TTL)

If documents in a collection should only persist for a

pre-defined period of time, the TTL feature can be used to

automatically delete documents of a certain age rather

than scheduling a process to check the age of all

documents and run a series of deletes. For example, if user

sessions should only exist for one hour, the TTL can be set

to 3600 seconds for a date field called lastActivity

that exists in documents used to track user sessions and

their last interaction with the system. A background thread

will automatically check all these documents and delete

those that have been idle for more than 3600 seconds.

Another example use case for TTL is a price quote that

should automatically expire after a period of time.

Capped Collections

In some cases a rolling window of data should be

maintained in the system based on data size. Capped

collections are fixed-size collections that support

high-throughput inserts and reads based on insertion order.

A capped collection behaves like a circular buffer: data is

inserted into the collection, that insertion order is

preserved, and when the total size reaches the threshold of

the capped collection, the oldest documents are deleted to

make room for the newest documents. For example, store

4

https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
http://docs.mongodb.com/manual/core/gridfs/

log information from a high-volume system in a capped

collection to quickly retrieve the most recent log entries.

Dropping a Collection

It is very efficient to drop a collection in MongoDB. If your

data lifecycle management requires periodically deleting

large volumes of documents, it may be best to model those

documents as a single collection. Dropping a collection is

much more efficient than removing all documents or a

large subset of a collection, just as dropping a table is more

efficient than deleting all the rows in a table in a relational

database.

Disk space is automatically reclaimed after a collection is

dropped.

Indexing

Like most database management systems, indexes are a

crucial mechanism for optimizing MongoDB query

performance. While indexes will improve the performance

of some operations by one or more orders of magnitude,

they incur overhead to updates, disk space, and memory

usage. Users should always create indexes to support

queries, but should not maintain indexes that queries do

not use. This is particularly important for deployments that

support insert-heavy (or writes which modify indexed

values) workloads.

To understand the effectiveness of the existing indexes

being used, an $indexStats aggregation stage can be

used to determine how frequently each index is used. This

information can also be accessed through MongoDB

Compass.

Query Optimization

Queries are automatically optimized by MongoDB to make

evaluation of the query as efficient as possible. Evaluation

normally includes the selection of data based on

predicates, and the sorting of data based on the sort

criteria provided. The query optimizer selects the best

indexes to use by periodically running alternate query plans

and selecting the index with the best performance for each

query type. The results of this empirical test are stored as a

cached query plan and periodically updated.

MongoDB provides an explain plan capability that shows

information about how a query will be, or was, resolved,

including:

• The number of documents returned

• The number of documents read

• Which indexes were used

• Whether the query was covered, meaning no documents

needed to be read to return results

• Whether an in-memory sort was performed, which

indicates an index would be beneficial

• The number of index entries scanned

• How long the query took to resolve in milliseconds

(when using the executionStats mode)

• Which alternative query plans were rejected (when

using the allPlansExecution mode)

MongoDB provides the ability to view how a query will be

evaluated in the system, including which indexes are used

and whether the query is covered. This capability is similar

to the Explain Plan and similar features in relational

databases. You should test every query in your application

using explain().

The explain plan will show 0 milliseconds if the query was

resolved in less than 1 ms, which is typical in well-tuned

systems. When the explain plan is called, prior cached

query plans are abandoned, and the process of testing

multiple indexes is repeated to ensure the best possible

plan is used. The query plan can be calculated and

returned without first having to run the query. This enables

DBAs to review which plan will be used to execute the

query, without having to wait for the query to run to

completion. The feedback from explain() will help you

understand whether your query is performing optimally.

Profiling

MongoDB provides a profiling capability called Database

Profiler, which logs fine-grained information about

database operations. The profiler can be enabled to log

information for all events or only those events whose

duration exceeds a configurable threshold (whose default

is 100 ms). Profiling data is stored in a capped collection

5

https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#executionstats-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
https://docs.mongodb.com/manual/reference/method/cursor.explain/#allplansexecution-mode
http://docs.mongodb.com/manual/reference/method/cursor.explain/
http://docs.mongodb.com/manual/reference/method/cursor.explain/

where it can easily be searched for relevant events. It may

be easier to query this collection than parsing the log files.

Both the MongoDB Atlas and the MongoDB Compass GUI

visualize additional real-time server statistics:

• Read and write activity

• A comprehensive overview of all operations, including

counts of updates, inserts, page faults, index misses,

and many other important measures of the system

health

Primary and Secondary Indexes

A unique index on the _id attribute is created for all

documents. MongoDB will automatically create the _id

field and assign a unique value if the value is not be

specified when the document is inserted. All user-defined

indexes are secondary indexes. MongoDB includes support

for many types of secondary indexes that can be declared

on any field(s) in the document, including fields within

arrays and sub-documents. Index options include:

• Compound indexes

• Geospatial indexes

• Text search indexes

• Unique indexes

• Array indexes

• TTL indexes

• Sparse indexes

• Partial Indexes

• Hash indexes

• Collated indexes for different languages

You can learn more about each of these indexes from the

MongoDB Architecture Guide

Index Creation Options

Indexes and data are updated synchronously in MongoDB,

thus ensuring queries on indexes never return stale or

deleted data. The appropriate indexes should be

determined as part of the schema design process. By

default creating an index is a blocking operation in

MongoDB. Because the creation of indexes can be time

and resource intensive, MongoDB provides an option for

creating new indexes as a background operation on both

the primary and secondary members of a replica set. When

the background option is enabled, the total time to create

an index will be greater than if the index was created in the

foreground, but it will still be possible to query the database

while creating indexes.

Index Limitations

As with any database, indexes consume disk space and

memory, so should only be used as necessary. Indexes can

impact update performance. An update must first locate

the data to change, so an index will help in this regard, but

index maintenance itself has overhead and this work will

reduce update performance.

There are several index limitations that should be observed

when deploying MongoDB:

• A collection cannot have more than 64 indexes

• Index entries cannot exceed 1024 bytes

• The name of an index must not exceed 125 characters

(including its namespace)

• In-memory sorting of data without an index is limited to

32MB. This operation is very CPU intensive, and

in-memory sorts indicate an index should be created to

optimize these queries

Common Mistakes Regarding Indexes

The following tips may help to avoid some common

mistakes regarding indexes:

• Use a compound index rather than indexUse a compound index rather than index

intersection:intersection: For best performance when querying via

multiple predicates, compound indexes will generally be

a better option

• Compound indexesCompound indexes: Compound indexes are defined

and ordered by field. So, if a compound index is defined

for last name, first name and city, queries that

specify last name or last name and first name will

be able to use this index, but queries that try to search

based on city will not be able to benefit from this

index. Remove indexes that are prefixes of other

indexes

6

https://www.mongodb.com/collateral/mongodb-architecture-guide

• LLow selectivity indexesow selectivity indexes: An index should radically

reduce the set of possible documents to select from.

For example, an index on a field that indicates gender is

not as beneficial as an index on zip code, or even better,

phone number

• Regular exprRegular expressionsessions: Indexes are ordered by value,

hence leading wildcards are inefficient and may result in

full index scans. Trailing wildcards can be efficient if

there are sufficient case-sensitive leading characters in

the expression

• NegationNegation: Inequality queries can be inefficient with

respect to indexes. Like most database systems,

MongoDB does not index the absence of values and

negation conditions may require scanning all

documents. If negation is the only condition and it is not

selective (for example, querying an orders table, where

99% of the orders are complete, to identify those that

have not been fulfilled), all records will need to be

scanned.

• Eliminate unnecessary indexesEliminate unnecessary indexes: Indexes are

resource-intensive: even with they consume RAM, and

as fields are updated their associated indexes must be

maintained, incurring additional disk I/O overhead. To

understand the effectiveness of the existing indexes

being used, an $indexStats aggregation stage can be

used to determine how frequently each index is used. If

there are indexes that are not used then removing them

will reduce storage and speed up writes. Index usage

can also be viewed through the MongoDB Compass

GUI.

• Partial indexesPartial indexes: If only a subset of documents need to

be included in a given index then the index can be made

partial by specifying a filter expression. e.g., if an index

on the userID field is only needed for querying open

orders then it can be made conditional on the order

status being set to in progress. In this way, partial

indexes improve query performance while minimizing

overheads.

Working Sets

MongoDB makes extensive use of RAM to speed up

database operations. In MongoDB, all data is read and

manipulated through in-memory representations of the

data. Reading data from memory is measured in

nanoseconds and reading data from disk is measured in

milliseconds, thus reading from memory is orders of

magnitude faster than reading from disk.

The set of data and indexes that are accessed during

normal operations is called the working set. It is best

practice that the working set fits in RAM. It may be the

case the working set represents a fraction of the entire

database, such as in applications where data related to

recent events or popular products is accessed most

commonly.

When MongoDB attempts to access data that has not

been loaded in RAM, it must be read from disk. If there is

free memory then the operating system can locate the data

on disk and load it into memory directly. However, if there is

no free memory, MongoDB must write some other data

from memory to disk, and then read the requested data

into memory. This process can be time consuming and

significantly slower than accessing data that is already

resident in memory.

Some operations may inadvertently purge a large

percentage of the working set from memory, which

adversely affects performance. For example, a query that

scans all documents in the database, where the database

is larger than available RAM on the server, will cause

documents to be read into memory and may lead to

portions of the working set being written out to disk. Other

examples include various maintenance operations such as

compacting or repairing a database and rebuilding indexes.

If your database working set size exceeds the available

RAM of your system, consider provisioning an instance

with larger RAM capacity (scaling up) or sharding the

database across additional instances (scaling out). Scaling

is an automated, on-line operation which is launched by

selecting the new configuration after clicking the

CONFIGURE button in MongoDB Atlas (Figure 2). For a

discussion on this topic, refer to the section on Sharding

Best Practices later in the guide. It is easier to implement

sharding before the system’s resources are consumed, so

capacity planning is an important element in successful

project delivery.

7

https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/
https://docs.mongodb.com/manual/core/index-partial/

FigurFigure 2:e 2: Reconfigure MongoDB Atlas Cluster

Data Migration

Users should assess how best to model their data for their

applications rather than simply importing the flat file

exports of their legacy systems. In a traditional relational

database environment, data tends to be moved between

systems using delimited flat files such as CSV. While it is

possible to ingest data into MongoDB from CSV files, this

may in fact only be the first step in a data migration

process. It is typically the case that MongoDB's document

data model provides advantages and alternatives that do

not exist in a relational data model.

There are many options to migrate data from flat files into

rich JSON documents, including mongoimport, custom

scripts, ETL tools and from within an application itself

which can read from the existing RDBMS and then write a

JSON version of the document back to MongoDB.

For importing data from a pre-existing MongoDB system,

MongoDB Atlas includes a live migration service built into

the GUI. This functionality works with any MongoDB

replica set running MongoDB 3.0 or higher.

Other tools such as mongodump and mongorestore, or

MongoDB Atlas backups are also useful for moving data

between different MongoDB systems. The use of

mongodump and mongorestore to migrate an application

and its data to MongoDB Atlas is described in the post –

Migrating Data to MongoDB Atlas.

MongoDB Atlas Instance Selection

The following recommendations are only intended to

provide high-level guidance for hardware for a MongoDB

deployment. The specific configuration of your hardware

will be dependent on your data, queries, performance SLA,

and availability requirements.

Memory

As with most databases, MongoDB performs best when

the working set (indexes and most frequently accessed

data) fits in RAM. Sufficient RAM is the most important

factor for instance selection; other optimizations may not

significantly improve the performance of the system if

there is insufficient RAM. When selecting which MongoDB

Atlas instance size to use, opt for one that has sufficient

RAM to hold the full working data set (or the appropriate

subset if sharding).

If your working set exceeds the available RAM, consider

using a larger instance type or adding additional shards to

your system.

Storage

Using faster storage can increase database performance

and latency consistency. Each node must be configured

with sufficient storage for the full data set, or for the subset

to be stored in a single shard. The storage speed and size

can be set when picking the MongoDB Atlas instance

during cluster creation or reconfiguration.

FigurFigure 3:e 3: Select instance size and storage size & speed

Data volumes can optionally be encrypted which increases

security at the expense of reduced performance.

CPU

MongoDB Atlas instances are multi-threaded and can take

advantage of many CPU cores. Specifically, the total

8

http://docs.mongodb.com/manual/reference/program/mongoimport/
http://docs.mongodb.com/manual/reference/program/mongoimport/
https://www.mongodb.com/blog/post/migrating-data-to-mongodb-atlas

number of active threads (i.e., concurrent operations)

relative to the number of CPUs can impact performance:

• Throughput increases as the number of concurrent

active operations increases up to and beyond the

number of CPUs

• Throughput eventually decreases as the number of

concurrent active operations exceeds the number of

CPUs by some threshold amount

The threshold amount depends on your application. You

can determine the optimum number of concurrent active

operations for your application by experimenting and

measuring throughput.

The larger MongoDB Atlas instances include more virtual

CPUs and so should be considered for heavily concurrent

workloads.

Scaling a MongoDB Atlas
Cluster

Horizontal Scaling with Sharding

MongoDB Atlas provides horizontal scale-out for

databases using a technique called sharding, which is

transparent to applications. MongoDB distributes data

across multiple Replica Sets called shards. With automatic

balancing, MongoDB ensures data is equally distributed

across shards as data volumes grow or the size of the

cluster increases or decreases. Sharding allows MongoDB

deployments to scale beyond the limitations of a single

server, such as bottlenecks in RAM or disk I/O, without

adding complexity to the application.

MongoDB Atlas supports multiple sharding policies,

enabling administrators to accommodate diverse query

patterns:

• Range-based sharRange-based sharding:ding: Documents are partitioned

across shards according to the shard key value.

Documents with shard key values close to one another

are likely to be co-located on the same shard. This

approach is well suited for applications that need to

optimize range-based queries.

• Hash-based sharHash-based sharding:ding: Documents are uniformly

distributed according to an MD5 hash of the shard key

value. Documents with shard key values close to one

another are unlikely to be co-located on the same

shard. This approach guarantees a uniform distribution

of writes across shards – provided that the shard key

has high cardinality – making it optimal for

write-intensive workloads.

FigurFigure 4:e 4: Horizontal Scaling with MongoDB Atlas

Users should consider deploying a sharded cluster in the

following situations:

• RAM LimitRAM Limitation:ation: The size of the system's active

working set plus indexes is expected to exceed the

capacity of the maximum amount of RAM in the system

• Disk IDisk I/O Limit/O Limitation:ation: The system will have a large

amount of write activity, and the operating system will

not be able to write data fast enough to meet demand,

or I/O bandwidth will limit how fast the writes can be

flushed to disk

• Storage LimitStorage Limitation:ation: The data set will grow to exceed

the storage capacity of a single node in the system

Applications that meet these criteria, or that are likely to do

so in the future, should be designed for sharding in

advance rather than waiting until they have consumed

available capacity. Applications that will eventually benefit

from sharding should consider which collections they will

want to shard and the corresponding shard keys when

designing their data models. If a system has already

reached or exceeded its capacity, it will be challenging to

deploy sharding without impacting the application's

performance.

9

http://docs.mongodb.com/manual/core/sharding/

Between 1 and 12 shards can be self-configured in

MongoDB Atlas GUI; customers interested in more than 12

shards should contact MongoDB.

Sharding Best Practices

Users who choose to shard should consider the following

best practices.

Select a good sharSelect a good shard keyd key: When selecting fields to use as

a shard key, there are at least three key criteria to consider:

1. Cardinality: Data partitioning is managed in 64 MB

chunks by default. Low cardinality (e.g., a user's home

country) will tend to group documents together on a

small number of shards, which in turn will require

frequent rebalancing of the chunks and a single country

is likely to exceed the 64 MB chunk size. Instead, a

shard key should exhibit high cardinality.

2. Insert Scaling: Writes should be evenly distributed

across all shards based on the shard key. If the shard

key is monotonically increasing, for example, all inserts

will go to the same shard even if they exhibit high

cardinality, thereby creating an insert hotspot. Instead,

the key should be evenly distributed.

3. Query Isolation: Queries should be targeted to a specific

shard to maximize scalability. If queries cannot be

isolated to a specific shard, all shards will be queried in

a pattern called scatter/gather, which is less efficient

than querying a single shard.

4. Ensure uniform distribution of shard keys: When shard

keys are not uniformly distributed for reads and writes,

operations may be limited by the capacity of a single

shard. When shard keys are uniformly distributed, no

single shard will limit the capacity of the system.

For more on selecting a shard key, see Considerations for

Selecting Shard Keys.

AAvoid scvoid scatter-gather queriesatter-gather queries: In sharded systems,

queries that cannot be routed to a single shard must be

broadcast to multiple shards for evaluation. Because these

queries involve multiple shards for each request they do

not scale well as more shards are added.

Use hash-based sharUse hash-based sharding when apprding when appropriateopriate: For

applications that issue range-based queries, range-based

sharding is beneficial because operations can be routed to

the fewest shards necessary, usually a single shard.

However, range-based sharding requires a good

understanding of your data and queries, which in some

cases may not be practical. Hash-based sharding ensures

a uniform distribution of reads and writes, but it does not

provide efficient range-based operations.

Apply best practices for bulk insertsApply best practices for bulk inserts: Pre-split data into

multiple chunks so that no balancing is required during the

insert process. For more information see Create Chunks in

a Sharded Cluster in the MongoDB Documentation.

Add cAdd capacity beforapacity before it is needede it is needed: Cluster maintenance

is lower risk and more simple to manage if capacity is

added before the system is over utilized.

Continuous Availability & Data
Consistency

Data Redundancy

MongoDB maintains multiple copies of data, called replica

sets, using native replication. Replica failover is fully

automated in MongoDB, so it is not necessary to manually

intervene to recover nodes in the event of a failure.

A replica set consists of multiple replica nodes. At any

given time, one member acts as the primary replica and the

other members act as secondary replicas. If the primary

member fails for any reason (e.g., a failure of the host

system), one of the secondary members is automatically

elected to primary and begins to accept all writes; this is

typically completed in 2 seconds or less and reads can

optionally continue on the secondaries.

Sophisticated algorithms control the election process,

ensuring only the most suitable secondary member is

promoted to primary, and reducing the risk of unnecessary

failovers (also known as "false positives"). The election

algorithm processes a range of parameters including

analysis of histories to identify those replica set members

that have applied the most recent updates from the primary

and heartbeat and connectivity status.

A larger number of replica nodes provides increased

protection against database downtime in case of multiple

10

http://docs.mongodb.com/manual/tutorial/choose-a-shard-key/
http://docs.mongodb.com/manual/tutorial/choose-a-shard-key/
https://docs.mongodb.com/manual/core/index-hashed/
https://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/
https://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/

machine failures. A MongoDB Atlas replica set can be

configured with 3, 5, or 7 replicas.

More information on replica sets can be found on the

Replication MongoDB documentation page.

Write Guarantees

MongoDB allows administrators to specify the level of

persistence guarantee when issuing writes to the

database, which is called the write concern. The following

options can be selected in the application code:

• WWrite Acrite Acknowledged:knowledged: This is the default write concern.

The mongod will confirm the execution of the write

operation, allowing the client to catch network, duplicate

key, Document Validation, and other exceptions

• ReplicReplica Aca Acknowledged:knowledged: It is also possible to wait for

acknowledgment of writes to other replica set members.

MongoDB supports writing to a specific number of

replicas. This mode also ensures that the write is written

to the journal on the secondaries. Because replicas can

be deployed across racks within data centers and

across multiple data centers, ensuring writes propagate

to additional replicas can provide extremely robust

durability

• Majority:Majority: This write concern waits for the write to be

applied to a majority of replica set members, and that

the write is recorded in the journal on these replicas –

including on the primary

Read Preferences

Updates are typically replicated to secondaries quickly,

depending on network latency. However, reads on the

secondaries will not normally be consistent with reads on

the primary. Note that the secondaries are not idle as they

must process all writes replicated from the primary. To

increase read capacity in your operational system consider

sharding. Secondary reads can be useful for analytics and

ETL applications as this approach will isolate traffic from

operational workloads. You may choose to read from

secondaries if your application can tolerate eventual

consistency.

Reading from the primary replica is the default

configuration as it guarantees consistency. If higher read

throughput is required, it is recommended to take

advantage of MongoDB's auto-sharding to distribute read

operations across multiple primary members.

There are applications where replica sets can improve

scalability of the MongoDB deployment. For example,

analytics and Business Intelligence (BI) applications can

execute queries against a secondary replica, thereby

reducing overhead on the primary and enabling MongoDB

to serve operational and analytical workloads from a single

deployment.

A very useful option is primaryPreferred, which issues

reads to a secondary replica only if the primary is

unavailable. This configuration allows for the continuous

availability of reads during the short failover process.

For more on the subject of configurable reads, see the

MongoDB Documentation page on replica set Read

Preference.

Managing MongoDB:
Provisioning, Monitoring and
Disaster Recovery

Created by the engineers who develop the database,

MongoDB Atlas is the simplest way to run MongoDB,

making it easy to deploy, monitor, backup, and scale

MongoDB.

MongoDB Atlas incorporates best practices to help keep

managed databases healthy and optimized. They ensure

operational continuity by converting complex manual tasks

into reliable, automated procedures with the click of a

button:

• DeployDeploy.. Using your choice of instance size, number of

replica set members, and number of shards

• ScScale.ale. Add capacity, without taking the application

offline

• PPoint-in-time, Scoint-in-time, Scheduled Bacheduled Backups.kups. Restore

complete running clusters to any point in time with just

a few clicks, because disasters aren't predictable

11

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/replica-set-write-concern/
http://docs.mongodb.com/manual/core/sharding-introduction/
http://docs.mongodb.com/manual/core/sharding-introduction/
http://docs.mongodb.com/manual/core/read-preference/
http://docs.mongodb.com/manual/core/read-preference/

• PPerformance Alerts.erformance Alerts. Monitor system metrics and get

custom alerts

Deployments and Upgrades

All the user needs to do in order for MongoDB Atlas to

automatically deploy the cluster is to select a handful of

options:

• Instance size

• Storage size (optional)

• Storage speed (optional)

• Data volume encryption

• Number of replicas in the replica set

• Number of shards (optional)

• Automated backups

The database nodes will automatically be kept up date with

the latest stable MongoDB and underlying operating

system software versions; rolling upgrades ensure that

your applications are not impacted during upgrades.

Monitoring & Capacity Planning

System performance and capacity planning are two

important topics that should be addressed as part of any

MongoDB deployment. Part of your planning should involve

establishing baselines on data volume, system load,

performance, and system capacity utilization. These

baselines should reflect the workloads you expect the

system to perform in production, and they should be

revisited periodically as the number of users, application

features, performance SLA, or other factors change.

Featuring charts and automated alerting, MongoDB Atlas

tracks key database and system health metrics including

disk free space, operations counters, memory and CPU

utilization, replication status, open connections, queues,

and node status.

Historic performance can be reviewed in order to create

operational baselines and to support capacity planning.

Integration with existing monitoring tools is also

straightforward via the MongoDB Atlas RESTful API,

making the deep insights from MongoDB Atlas part of a

consolidated view across your operations.

FigurFigure 5:e 5: Database monitoring with MongoDB Atlas GUI

MongoDB Atlas allows administrators to set custom alerts

when key metrics are out of range. Alerts can be

configured for a range of parameters affecting individual

hosts and replica sets. Alerts can be sent via email,

webhooks, Flowdock, HipChat, and Slack or integrated into

existing incident management systems such as PagerDuty.

When it's time to scale, just hit the CONFIGURATION

button in the MongoDB Atlas GUI and choose the required

instance size and number of shards – the automated,

on-line scaling will then be performed.

Things to Monitor

MongoDB Atlas monitors database-specific metrics,

including page faults, ops counters, queues, connections

and replica set status. Alerts can be configured against

each monitored metric to proactively warn administrators of

potential issues before users experience a problem. The

MongoDB Atlas team are also monitoring the underlying

infrastructure, ensuring that it is always in a healthy state.

Application Logs And Database Logs

Application and database logs should be monitored for

errors and other system information. It is important to

correlate your application and database logs in order to

determine whether activity in the application is ultimately

responsible for other issues in the system. For example, a

spike in user writes may increase the volume of writes to

MongoDB, which in turn may overwhelm the underlying

storage system. Without the correlation of application and

database logs, it might take more time than necessary to

establish that the application is responsible for the

12

increase in writes rather than some process running in

MongoDB.

Page Faults

When a working set ceases to fit in memory, or other

operations have moved working set data out of memory,

the volume of page faults may spike in your MongoDB

system.

Disk

Beyond memory, disk I/O is also a key performance

consideration for a MongoDB system because writes are

journaled and regularly flushed to disk. Under heavy write

load the underlying disk subsystem may become

overwhelmed, or other processes could be contending with

MongoDB, or the storage speed chosen may be

inadequate for the volume of writes.

CPU

A variety of issues could trigger high CPU utilization. This

may be normal under most circumstances, but if high CPU

utilization is observed without other issues such as disk

saturation or pagefaults, there may be an unusual issue

in the system. For example, a MapReduce job with an

infinite loop, or a query that sorts and filters a large number

of documents from the working set without good index

coverage, might cause a spike in CPU without triggering

issues in the disk system or pagefaults.

Connections

MongoDB drivers implement connection pooling to

facilitate efficient use of resources. Each connection

consumes 1MB of RAM, so be careful to monitor the total

number of connections so they do not overwhelm RAM

and reduce the available memory for the working set. This

typically happens when client applications do not properly

close their connections, or with Java in particular, that relies

on garbage collection to close the connections.

Op Counters

The utilization baselines for your application will help you

determine a normal count of operations. If these counts

start to substantially deviate from your baselines it may be

an indicator that something has changed in the application,

or that a malicious attack is underway.

Queues

If MongoDB is unable to complete all requests in a timely

fashion, requests will begin to queue up. A healthy

deployment will exhibit very short queues. If metrics start to

deviate from baseline performance, requests from

applications will start to queue. The queue is therefore a

good first place to look to determine if there are issues that

will affect user experience.

Shard Balancing

One of the goals of sharding is to uniformly distribute data

across multiple servers. If the utilization of server resources

is not approximately equal across servers there may be an

underlying issue that is problematic for the deployment. For

example, a poorly selected shard key can result in uneven

data distribution. In this case, most if not all of the queries

will be directed to the single mongod that is managing the

data. Furthermore, MongoDB may be attempting to

redistribute the documents to achieve a more ideal balance

across the servers. While redistribution will eventually result

in a more desirable distribution of documents, there is

substantial work associated with rebalancing the data and

this activity itself may interfere with achieving the desired

performance SLA.

If in the course of a deployment it is determined that a new

shard key should be used, it will be necessary to reload the

data with a new shard key because designation and values

of the shard keys are immutable. To support the use of a

new shard key, it is possible to write a script that reads

each document, updates the shard key, and writes it back

to the database.

Replication Lag

Replication lag is the amount of time it takes a write

operation on the primary replica set member to replicate to

13

a secondary member. A small amount of delay is normal,

but as replication lag grows, significant issues may arise.

If this is observed then replication throughput can be

increased by moving to larger MongoDB Atlas instances or

adding shards.

Disaster Recovery: Backup & Restore

A backup and recovery strategy is necessary to protect

your mission-critical data against catastrophic failure, such

as a software bug or a user accidentally dropping

collections. With a backup and recovery strategy in place,

administrators can restore business operations without

data loss, and the organization can meet regulatory and

compliance requirements. Taking regular backups offers

other advantages, as well. The backups can be used to

seed new environments for development, staging, or QA

without impacting production systems.

MongoDB Atlas backups are maintained continuously, just

a few seconds behind the operational system. If the

MongoDB cluster experiences a failure, the most recent

backup is only moments behind, minimizing exposure to

data loss.

In additional, MongoDB Atlas includes queryable backups,

which allows you to perform queries against existing

snapshots to more easily restore data at the document/

object level. Queryable backups allow you to accomplish

the following with less time and effort:

• Restore a subset of objects/documents within the

MongoDB cluster

• Identify whether data has been changed in an

undesirable way by looking at previous versions

alongside current data

• Identify the best point in time to restore a system by

comparing data from multiple snapshots

mongodump

mongodump is a tool bundled with MongoDB that performs

a live backup of the data in MongoDB. mongodump may be

used to dump an entire database, collection, or result of a

query. mongodump can produce a dump of the data that

reflects a single moment in time by dumping the oplog

entries created during the dump and then replaying it

during mongorestore, a tool that imports content from

BSON database dumps produced by mongodump.

In the vast majority of cases, MongoDB Atlas backups

delivers the simplest, safest, and most efficient backup

solution. mongodump is useful when data needs to be

exported to another system, when a local backup is

needed, or when just a subset of the data needs to be

backed up.

Integrating MongoDB with External
Monitoring Solutions

The MongoDB Atlas API provides integration with external

management frameworks through programmatic access to

automation features and alerts.

APM Integration

Many operations teams use Application Performance

Monitoring (APM) platforms to gain global oversight of

their complete IT infrastructure from a single management

UI. Issues that risk affecting customer experience can be

quickly identified and isolated to specific components –

whether attributable to devices, hardware infrastructure,

networks, APIs, application code, databases and, more.

The MongoDB drivers include an API that exposes query

performance metrics to APM tools. Administrators can

monitor time spent on each operation, and identify slow

running queries that require further analysis and

optimization.

In addition, MongoDB Atlas provides packaged integration

with the New Relic platform. Key metrics from MongoDB

Atlas are accessible to the APM for visualization, enabling

MongoDB health to be monitored and correlated with the

rest of the application estate.

As shown in Figure 6, summary metrics are presented

within the APM’s UI. Administrators can also run New Relic

Insights for analytics against monitoring data to generate

dashboards that provide real-time tracking of Key

Performance Indicators (KPIs).

14

https://docs.mongodb.com/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.com/manual/reference/program/mongodump/#bin.mongodump

FigurFigure 6:e 6: MongoDB integrated into a single view of application performance

Security

As with all software, MongoDB administrators must

consider security and risk exposure for a MongoDB

deployment. There are no magic solutions for risk

mitigation, and maintaining a secure MongoDB deployment

is an ongoing process.

Defense in Depth

A Defense in Depth approach is recommended for

securing MongoDB deployments, and it addresses a

number of different methods for managing risk and

reducing risk exposure.

MongoDB Atlas features extensive capabilities to defend,

detect, and control access to MongoDB, offering among

the most complete security controls of any modern

database:

• User Rights Management.User Rights Management. Control access to sensitive

data using industry standard mechanisms for

authentication and authorization at the database level

• Encryption.Encryption. Protect data in motion over the network

and at rest in persistent storage

To ensure a secure system right out of the box,

authentication and IP Address whitelisting are

automatically enabled.

Review the security section of the MongoDB Atlas

documentation to learn more about each of the security

features discussed below.

IP Whitelisting

Clients are prevented from accessing the database unless

their IP address (or a CIDR covering their IP address) has

been added to the IP whitelist for your MongoDB Atlas

group.

VPC Peering

Virtual Private Cloud (VPC) Peering allows users to create

an extended, private network that connects the AWS VPC

housing their application servers with the VPC containing

the backend databases. VPC peering achieves this

connectivity without using public IP addresses, and without

needing to whitelist every client in your MongoDB Atlas

group.

15

https://docs.atlas.mongodb.com/setup-cluster-security
https://docs.atlas.mongodb.com/setup-cluster-security
https://docs.atlas.mongodb.com/setup-cluster-security/#add-ip-addresses-to-the-whitelist

Authorization

MongoDB Atlas allows administrators to define

permissions for a user or application, and what data it can

access when querying MongoDB. MongoDB Atlas provides

the ability to provision users with roles specific to a

database, making it possible to realize a separation of

duties between different entities accessing and managing

the data.

Additionally, MongoDB's Aggregation Framework Pipeline

includes a stage to implement Field-Level Redaction,

providing a method to restrict the content of a returned

document on a per-field level, based on user permissions.

The application must pass the redaction logic to the

database on each request. It therefore relies on trusted

middleware running in the application to ensure the

redaction pipeline stage is appended to any query that

requires the redaction logic.

Encryption

MongoDB Atlas provides encryption of data in flight over

the network and at rest on disk.

Support for SSL/TLS allows clients to connect to

MongoDB over an encrypted channel. Clients are defined

as any entity capable of connecting to MongoDB Atlas,

including:

• Users and administrators

• Applications

• MongoDB tools (e.g., mongodump, mongorestore)

• Nodes that make up a MongoDB Atlas cluster, such as

replica set members and query routers.

Data at rest can optionally be protected using encrypted

data volumes.

Read-Only, Redacted Views

DBAs can define non-materialized views that expose only a

subset of data from an underlying collection, i.e. a view that

filters out specific fields. DBAs can define a view of a

collection that's generated from an aggregation over

another collection(s) or view.

Views are defined using the standard MongoDB Query

Language and aggregation pipeline. They allow the

inclusion or exclusion of fields, masking of field values,

filtering, schema transformation, grouping, sorting, limiting,

and joining of data using $lookup and $graphLookup to

another collection.

You can learn more about MongoDB read-only views from

the documentation.

Considerations for Proofs of
Concept

Generic benchmarks can be misleading and

misrepresentative of a technology and how well it will

perform for a given application. MongoDB instead

recommends that users model and benchmark their

applications using data, queries, instance sizes, and other

aspects of the system that are representative of their

intended application. The following considerations will help

you develop benchmarks that are meaningful for your

application:

• Model your bencModel your benchmark on your applichmark on your applicationation: The

queries, data, system configurations, and performance

goals you test in a benchmark exercise should reflect

the goals of your production system. Testing

assumptions that do not reflect your production system

is likely to produce misleading results.

• CrCreate ceate chunks beforhunks before loading, or use hash-basede loading, or use hash-based

sharshardingding: If range queries are part of your benchmark

use range-based sharding and create chunks before

loading. Without pre-splitting, data may be loaded into a

shard then moved to a different shard as the load

progresses. By pre-splitting the data, documents will be

loaded in parallel into the appropriate shards. If your

benchmark does not include range queries, you can use

hash-based sharding to ensure a uniform distribution of

writes.

• Prime the system for several minutesPrime the system for several minutes: In a

production MongoDB system the working set should fit

in RAM, and all reads and writes will be executed

against RAM. MongoDB must first fetch the working set

into RAM, so prime the system with representative

queries for several minutes before running the tests to

16

https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/master/core/views/#reference-views
https://docs.mongodb.com/master/core/views/#reference-views
http://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/
http://docs.mongodb.com/manual/tutorial/create-chunks-in-sharded-cluster/

get an accurate sense for how MongoDB will perform in

production.

• Monitor everything to locMonitor everything to locate your bate your bottlenecottlenecksks: It is

important to understand the bottleneck for a

benchmark. Depending on many factors any component

of the overall system could be the limiting factor. A

variety of popular tools can be used with MongoDB –

many are listed in the manual.

• PrProfilingofiling: MongoDB provides a profiling capability

called Database Profiler, which logs fine-grained

information about database operations. The profiler can

be enabled to log information for all events or only

those events whose duration exceeds a configurable

threshold (whose default is 100 ms). Profiling data is

stored in a capped collection where it can easily be

searched for relevant events.

Conclusion

MongoDB is the next-generation database used by the

world's most sophisticated organizations, from

cutting-edge startups to the largest companies, to create

applications never before possible at a fraction of the cost

of legacy databases. MongoDB is the fastest-growing

database ecosystem, with over 15 million downloads,

thousands of customers, and over 1,000 technology and

service partners.

MongoDB Atlas automates the operational tasks that

usually burdens the user, freeing you up to focus on what

you do best – delivering great applications. There remain

some tasks that will keep your application running

smoothly and quickly; this paper describes those best

practices.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a third of the Fortune 100. We offer software

and services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

17

http://docs.mongodb.com/manual/administration/monitoring/
https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2017 MongoDB, Inc. All rights reserved.

18

	Table of Contents
	Introduction1
	Preparing for a MongoDB Deployment2
	Schema Design2
	Application Access Patterns3
	Document Size4
	Data Lifecycle Management4
	Indexing5
	Working Sets7
	Data Migration8
	MongoDB Atlas Instance Selection8

	Scaling a MongoDB Atlas Cluster9
	Horizontal Scaling with Sharding9
	Sharding Best Practices10

	Continuous Availability & Data Consistency10
	Data Redundancy10
	Write Guarantees11
	Read Preferences11

	Managing MongoDB11
	Deployments and Upgrades12
	Monitoring & Capacity Planning12
	Things to Monitor12
	Disaster Recovery: Backup & Restore14
	External Monitoring Solutions14

	Security15
	Defense in Depth15
	IP Whitelisting15
	VPC Peering15
	Authorization16
	Encryption16
	Read-Only, Redacted Views16

	Considerations for Proofs of Concept16
	Conclusion17
	We Can Help17
	Resources18
	Introduction
	Preparing for a MongoDB Deployment
	Schema Design
	Document Model
	Collections
	Dynamic Schema & Document Validation
	Indexes
	Transactions
	Visualizing your Schema and Adding Validation Rules: MongoDB Compass

	Application Access Patterns
	Document Size
	GridFS

	Data Lifecycle Management
	Time to Live (TTL)
	Capped Collections
	Dropping a Collection

	Indexing
	Query Optimization
	Profiling
	Primary and Secondary Indexes
	Index Creation Options
	Index Limitations
	Common Mistakes Regarding Indexes

	Working Sets
	Data Migration
	MongoDB Atlas Instance Selection
	Memory
	Storage
	CPU

	Scaling a MongoDB Atlas Cluster
	Horizontal Scaling with Sharding
	Sharding Best Practices

	Continuous Availability & Data Consistency
	Data Redundancy
	Write Guarantees
	Read Preferences

	Managing MongoDB: Provisioning, Monitoring and Disaster Recovery
	Deployments and Upgrades
	Monitoring & Capacity Planning
	Things to Monitor
	Application Logs And Database Logs
	Page Faults
	Disk
	CPU
	Connections
	Op Counters
	Queues
	Shard Balancing
	Replication Lag

	Disaster Recovery: Backup & Restore
	mongodump

	Integrating MongoDB with External Monitoring Solutions
	APM Integration

	Security
	Defense in Depth
	IP Whitelisting
	VPC Peering
	Authorization
	Encryption
	Read-Only, Redacted Views

	Considerations for Proofs of Concept
	Conclusion
	We Can Help
	Resources

